Skip to main content

Advertisement

Log in

Highly bendable ionic electroactive polymer actuator based on carboxylated bacterial cellulose by doping with MWCNT

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Human-friendly electronic devices including medical active devices, soft haptic devices, artificial muscle, and wearable electronics, will require the use of high-performance soft actuators with bio-friendly property, large bending deformation, and low actuation voltage. Herein, we report a novel ionic electroactive actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), multi-walled carbon nanotubes (MWCNT), and PEDOT: PSS electrodes. The designed actuator displayed superior electro-chemo-mechanical properties due to its ionic crosslinking structure formed by the strong ionic interactions among CBC, MWCNT, and IL. Specifically, the actuator demonstrated large bending strain (8.2 mm under 1.0 V sinusoidal input voltage at 0.1 Hz), low actuation voltage (< 2 V), excellent actuation durability (95% retention in 2 h), high Young's modulus (349.1 MPa), and specific capacitance (76.97 mF cm–2). More importantly, the artificial soft robotic fingers using the CBC-IL-MWCNT actuators were successfully realized. Therefore, the designed actuator will promote the advancement of artificial muscles, soft haptic devices, biomimetic robots, soft robots, wearable devices, and tactile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Bahramzadeh, M. Shahinpoor, A review of ionic polymeric soft actuators and sensors. Soft Robot. 1(1), 38–52 (2014)

    Article  Google Scholar 

  2. F. Wang, Y. Kong, F. Shen, Y. Wang, D. Wang, Q. Li, High-performance microfibrillated cellulose-based low voltage electroactive ionic artificial muscles in bioinspired applications. Compos. B. Eng. 228, 109436 (2022)

    Article  Google Scholar 

  3. X. Liu, H. Xu, Y. Li, M. Jing, W. Wang, Z. Li, P. Zhang, Z. Sun, A stretchable and self-healing ionic artificial muscle modified by conductive substances. Appl. Phys. A-Mater. Sci. Process. 128(2), 1–11 (2022)

    Article  ADS  Google Scholar 

  4. G.Y. Gu, J. Zhu, L.M. Zhu, X. Zhu, A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 12(1), 011003 (2017)

    Article  ADS  Google Scholar 

  5. F. Wang, Q. Li, J.O. Park, S. Zheng, E. Choi, Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. 31(13), 2007749 (2021)

    Article  Google Scholar 

  6. G. Wu, X. Wu, Y. Xu, H. Cheng, J. Meng, Q. Yu, X. Shi, K. Zhang, W. Chen, S. Chen, High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 31(25), 1806492 (2019)

    Article  Google Scholar 

  7. S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou, S. Nam, I.K. Oh, Oh, MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4(33), eaaw7797 (2019)

    Article  Google Scholar 

  8. A. Valentine, T. Busbee, J. Boley, J. Raney, A. Chortos, A. Kotikian, J. Berrigan, M. Durstock, J. Lewis, Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017)

    Article  Google Scholar 

  9. C.S. Bian, Z.C. Zhu, W.F. Bai, H. Chen, Y. Li, Fast actuation properties of several typical IL-based ionic electro-active polymers under high impulse voltage. Smart Mater. Struct. 29(3), 035014 (2020)

    Article  ADS  Google Scholar 

  10. F. Wang, Z. Jin, S. Zheng, H. Li, S. Cho, H.J. Kim, S.J. Kim, E. Choi, J.O. Park, S. Park, High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane. Sens. Actuators B Chem. 250, 402–411 (2017)

    Article  Google Scholar 

  11. M. Zhang, M. Wang, X. Zhang, C. Zhang, M. Li, S. Yu, Fabrication of a multilayered SGO/macroporous Nafion-based IPMC with enhanced actuation performance. Sens. Actuators B Chem. 356, 131319 (2022)

    Article  Google Scholar 

  12. X. Zhang, S. Yu, M. Li, M. Zhang, C. Zhang, M. Wang, Enhanced performance of IPMC actuator based on macroporous multilayer MCNTs/Nafion polymer. Sens. Actuator A Phys. 339, 113489 (2022)

    Article  Google Scholar 

  13. K.S. Yang, H.K. Lee, N.J. Choi, Y.H. Jeong, J.H. Cho, J.H. Paik, J.S. Yun, IPMC actuators based on metal-Nafion composite films prepared by thermal decomposition of noble metal complexes. Appl. Phys. A-Mater. Sci. Process. 120(2), 785–791 (2015)

    Article  ADS  Google Scholar 

  14. Z. Sun, G. Zhao, D. Qiao, W. Song, Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites. Appl. Phys. A-Mater. Sci. Process. 123(12), 749 (2017)

    Article  ADS  Google Scholar 

  15. M. Kotal, R. Tabassian, S. Roy, S. Oh, I.K. Oh, Electroionic artificial muscles: metal–organic framework-derived graphitic nanoribbons anchored on graphene for electroionic artificial muscles. Adv. Funct. Mater. 30(29), 2070195 (2020)

    Article  Google Scholar 

  16. M. Shimizu, T. Saito, A. Isogai, Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J. Membr. Sci. 500, 1–7 (2016)

    Article  Google Scholar 

  17. N. Terasawa, K. Asaka, Electrochemical and electromechanical properties of activated multi-walled carbon nanotube polymer actuator that surpass the performance of a single-walled carbon nanotube polymer actuator. Mater. Today: Proc. 3, S178–S183 (2016)

    Google Scholar 

  18. C. Sriwong, P. Sukyai, Simulated elephant colon for cellulose extraction from sugarcane bagasse: an effective pretreatment to reduce chemical use. Sci. Total Environ. 835, 155281 (2022)

    Article  ADS  Google Scholar 

  19. S. Tanpichai, A. Boonmahitthisud, N. Soykeabkaew, L. Ongthip, Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr. Polym. 286, 119192 (2022)

    Article  Google Scholar 

  20. A.M. Kozlowski, M. Hasani, Cellulose interactions with CO2 in NaOH(aq): The (un)expected coagulation creates potential in cellulose technology. Carbohydr. Polym. 294, 119771 (2022)

    Article  Google Scholar 

  21. J. Kim, S. Yun, Z. Ounaies, Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006)

    Article  ADS  Google Scholar 

  22. J.H. Jeon, S.W. Yeom, I.K. Oh, Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating. Compos. Part A-Appl. S. 39(4), 588–596 (2008)

    Article  Google Scholar 

  23. C.H. Hong, S.J. Ki, J.H. Jeon, H.L. Che, I.K. Park, C.D. Kee, I.K. Oh, Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Compos. Sci. Technol. 87, 135–141 (2013)

    Article  Google Scholar 

  24. M. Hospodiuk-Karwowski, S. Bokhari, K. Chi, K. Moncal, V. Ozbolat, I. Ozbolat, J. Catchmark, Dual-charge bacterial cellulose as a potential 3D printable material for soft tissue engineering. Compos. Part B-Eng. 231, 109598 (2022)

    Article  Google Scholar 

  25. J. Caro-Astorga, K. Walker, N. Herrera, K. Lee, T. Ellis, Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat. Commun. 12(1), 5027 (2021)

    Article  ADS  Google Scholar 

  26. Y. Wang, F. Wang, Y. Kong, L. Wang, Q. Li, Novel ionic bioartificial muscles based on ionically crosslinked multi-walled carbon nanotubes-mediated bacterial cellulose membranes and PEDOT: PSS electrodes. Smart Mater. Struct. 31(2), 025023 (2022)

    Article  ADS  Google Scholar 

  27. M. Iguchi, S. Yamanaka, A. Budhiono, Bacterial cellulose-a masterpiece of nature’s arts. J. Mater. Sci. 35(2), 261–270 (2000)

    Article  ADS  Google Scholar 

  28. S. Rogalsky, J.F. Bardeau, S. Makhno, N. Babkina, O. Tarasyuk, T. Cherniavska, I. Orlovska, N. Kozyrovska, O. Brovko, New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid. Polymer 142, 183–195 (2018)

    Article  Google Scholar 

  29. A.F. Sousa, S. Ferreira, A. Lopez, I. Borges, R.J.B. Pinto, A.J.D. Silvestre, C.S.R. Freire, Thermosetting AESO-bacterial cellulose nanocomposite foams with tailored mechanical properties obtained by Pickering emulsion templating. Polymer 118, 127–134 (2017)

    Article  Google Scholar 

  30. J. Kim, Y.B. Seo, Electro-active paper actuators. Smart Mater. Struct. 11, 355–360 (2002)

    Article  ADS  Google Scholar 

  31. J.H. Jeon, I.K. Oh, C.D. Kee, S.J. Kim, Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition. Sens. Actuators B Chem. 146, 307–313 (2010)

    Article  Google Scholar 

  32. S.S. Kim, J.H. Jeon, C.D. Kee, I.K. Oh, Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS. Smart Mater. Struct. 22, 085026 (2013)

    Article  ADS  Google Scholar 

  33. A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 31, 71–85 (2011)

    Google Scholar 

  34. Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu, C. Preston, Q. Chen, Y. Li, X. Han, S. Lee, G. Chen, T. Li, J.N. Munday, J. Huang, L. Hu, Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano. Lett. 142, 765–773 (2014)

    Article  ADS  Google Scholar 

  35. F. Wang, H.J. Kim, S. Park, C.D. Kee, S.J. Kim, I.K. Oh, Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos. Sci. Technol. 128, 33–40 (2016)

    Article  Google Scholar 

  36. F. Wang, J.H. Jeon, S.J. Kim, J.O. Park, S. Park, An eco-friendly ultra-high performance ionic artificial muscle based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and carboxylated bacterial cellulose. J. Mater. Chem. B. 4(29), 5015–5024 (2016)

    Article  Google Scholar 

  37. C. Chen, W. Ding, H. Zhang, L. Zhang, Y. Huang, M. Fan, J. Yang, D. Sun, Bacterial cellulose-based biomaterials: From fabrication to application. Carbohyd. Polym. 278, 118995 (2021)

    Article  Google Scholar 

  38. S. Kim, J. Ko, J. Choi, J. Kang, C. Kim, M. Shin, D. Lee, J. Kim, Antigen-antibody interaction-derived bioadhesion of bacterial cellulose nanofibers to promote topical wound healing. Adv. Funct. Mater. 32(20), 2110557 (2022)

    Article  Google Scholar 

  39. K. Wang, R. Hazra, Q. Ma, L. Jiang, Z. Liu, Y. Zhang, S. Wang, G. Han, Multifunctional silk fibroin/PVA bio-nanocomposite films containing TEMPO-oxidized bacterial cellulose nanofibers and silver nanoparticles. Cellulose 29(3), 1647–1666 (2022)

    Article  Google Scholar 

  40. H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma, A. Isogai, Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 144, 1160–1165 (2013)

    Article  Google Scholar 

  41. S.S. Kim, J.H. Jeon, H.I. Kim, C.D. Kee, I.K. Oh, High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-oxidized bacterial cellulose. Adv. Funct. Mater. 25(23), 3560–3570 (2015)

    Article  Google Scholar 

  42. M.F. Yu, B. Files, S. Arepalli, R. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  ADS  Google Scholar 

  43. N. Terasawa, K. Asaka, Superior performance of PEDOT: Poly(4-styrenesulfonate)/vapor-grown carbon fibre/ionic liquid actuators exhibiting synergistic effects. Sens. Actuators B Chem. 248, 273–279 (2017)

    Article  Google Scholar 

  44. S. Hong, S. Myung, Nanotube electronics: a flexible approach to mobility. Nat. Nanotechnol. 2, 207–208 (2007)

    Article  ADS  Google Scholar 

  45. S.K. Mahadeva, J. Kim, An electro-active paper actuator made with cellulose–polypyrrole-ionic liquid nanocomposite: influence of ionic liquid concentration, type of anion and humidity. Smart Mater. Struct. 19(10), 105014 (2010)

    Article  ADS  Google Scholar 

  46. S.S. Kim, J.H. Jeon, C.D. Kee, I.K. Oh, Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS. Smart Mater. Struct. 22(8), 085026 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51905487) and Natural Science Foundation of Zhejiang Province (Grant No. LY21E050023 and LTY21F030001).

Author information

Authors and Affiliations

Authors

Contributions

FW: writing- original draft & editing, Funding acquisition. LW: analyzing data. YFW: analyzing data. DW: writing—review & editing.

Corresponding authors

Correspondence to Fan Wang or Donghai Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, L., Wang, Y. et al. Highly bendable ionic electroactive polymer actuator based on carboxylated bacterial cellulose by doping with MWCNT. Appl. Phys. A 128, 911 (2022). https://doi.org/10.1007/s00339-022-06052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06052-4

Keywords

Navigation