Skip to main content
Log in

A first-principles study on the physical properties of two-dimensional Nb3Cl8, Nb3Br8 and Nb3I8

  • S.I. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In a recent advance, Nb3Cl8 two-dimensional crystals with a kagome lattice and electronic topological flat bands have been experimentally fabricated (Sun et al. in Nano Lett 22:4596–4602, 2022). In this work motivated by the aforementioned progress, we conduct first-principles calculations to explore the structural, phonon dispersion relations, single-layer exfoliation energies and mechanical features of the Nb3X8 (X = Cl, Br, I) nanosheets. Acquired phonon dispersion relations reveal the dynamical stability of the Nb3X8 (X = Cl, Br, I) monolayers. To isolate single-layer crystals from bulk counterparts, we predicted exfoliation energies of 0.24, 0.27 and 0.28 J/m2, for the Nb3Cl8, Nb3Br8 and Nb3I8 monolayers, respectively, which are noticeably lower than that of the graphene. We found that the Nb3X8 monolayers are relatively strong nanosheets with isotropic elasticity and anisotropic tensile strength. It is moreover shown that by increasing the atomic weight of halogen atoms in the Nb3X8 nanosheets, mechanical characteristics decline. Presented results provide a useful vision about the key physical properties of novel 2D systems of Nb3X8 (X = Cl, Br, I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  3. A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, F. Guinea, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  4. Y.-L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M.-L. Chen, D.-M. Sun, X.-Q. Chen, H.-M. Cheng, W. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science (80-) 369, 670–674 (2020). https://doi.org/10.1126/science.abb7023

    Article  ADS  Google Scholar 

  5. P. Li, J. Zhang, C. Zhu, W. Shen, C. Hu, W. Fu, L. Yan, L. Zhou, L. Zheng, H. Lei, Z. Liu, W. Zhao, P. Gao, P. Yu, G. Yang, Penta-PdPSe: a new 2D pentagonal material with highly in-plane optical, electronic, and optoelectronic anisotropy. Adv. Mater. 33, 2102541 (2021). https://doi.org/10.1002/adma.202102541

    Article  Google Scholar 

  6. Y. Fang, F. Wang, R. Wang, T. Zhai, F. Huang, 2D NbOI2: a chiral semiconductor with highly in-plane anisotropic electrical and optical properties. Adv. Mater. 33, 2101505 (2021). https://doi.org/10.1002/adma.202101505

    Article  Google Scholar 

  7. M. Bykov, E. Bykova, A.V. Ponomareva, F. Tasnádi, S. Chariton, V.B. Prakapenka, K. Glazyrin, J.S. Smith, M.F. Mahmood, I.A. Abrikosov, A.F. Goncharov, Realization of an ideal Cairo tessellation in nickel diazenide NiN2: high-pressure route to pentagonal 2D materials. ACS Nano 15, 13539–13546 (2021). https://doi.org/10.1021/acsnano.1c04325

    Article  Google Scholar 

  8. Z. Sun, H. Zhou, C. Wang, S. Kumar, D. Geng, S. Yue, X. Han, Y. Haraguchi, K. Shimada, P. Cheng, L. Chen, Y. Shi, K. Wu, S. Meng, B. Feng, Observation of topological flat bands in the kagome semiconductor Nb3Cl8. Nano Lett. 22, 4596–4602 (2022). https://doi.org/10.1021/acs.nanolett.2c00778

    Article  ADS  Google Scholar 

  9. S. Oh, K.H. Choi, S. Chae, B.J. Kim, B.J. Jeong, S.H. Lee, J. Jeon, Y. Kim, S.S. Nanda, L. Shi, D.K. Yi, J.-H. Lee, H.K. Yu, J.-Y. Choi, Large-area synthesis of van der Waals two-dimensional material Nb3I8 and its infrared detection applications. J. Alloys Compd. 831, 154877 (2020). https://doi.org/10.1016/j.jallcom.2020.154877

    Article  Google Scholar 

  10. F. Conte, D. Ninno, G. Cantele, Layer-dependent electronic and magnetic properties of Nb3I8. Phys. Rev. Res. 2, 33001 (2020). https://doi.org/10.1103/PhysRevResearch.2.033001

    Article  Google Scholar 

  11. S. Regmi, T.W. Fernando, Y. Zhao, A.P. Sakhya, G. Dhakal, I. Bin Elius, H. Vazquez, J.D. Denlinger, J. Yang, J.-H. Chu, X. Xu, T. Cao, M. Neupane, Spectroscopic evidence of flat bands in breathing kagome semiconductor Nb3I8 (2022). https://doi.org/10.48550/arxiv.2203.10547

  12. G. Cantele, F. Conte, L. Zullo, D. Ninno, Tunable electronic and magnetic properties of thin Nb3I8 nanofilms: interplay between strain and thickness (2021). https://doi.org/10.48550/arxiv.2107.12836.

  13. R. Peng, Y. Ma, X. Xu, Z. He, B. Huang, Y. Dai, Intrinsic anomalous valley Hall effect in single-layer Nb3I8. Phys. Rev. B. 102, 35412 (2020). https://doi.org/10.1103/PhysRevB.102.035412

    Article  ADS  Google Scholar 

  14. B.J. Kim, B.J. Jeong, S. Oh, S. Chae, K.H. Choi, S.S. Nanda, T. Nasir, S.H. Lee, K.-W. Kim, H.K. Lim, L. Chi, I.J. Choi, M.-K. Hong, D.K. Yi, H.K. Yu, J.-H. Lee, J.-Y. Choi, Structural and electrical properties of Nb3I8 layered crystal. Phys. Status Solidi Rapid Res. Lett. 13, 1800448 (2019). https://doi.org/10.1002/pssr.201800448

    Article  ADS  Google Scholar 

  15. J. Jiang, Q. Liang, R. Meng, Q. Yang, C. Tan, X. Sun, X. Chen, Exploration of new ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with considerable visible and infrared light absorption. Nanoscale 9, 2992–3001 (2017). https://doi.org/10.1039/C6NR07231C

    Article  Google Scholar 

  16. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  18. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  ADS  Google Scholar 

  19. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  20. H. Monkhorst, J. Pack, Special points for Brillouin zone integrations. Phys. Rev. B. 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  21. A.V. Shapeev, Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016). https://doi.org/10.1137/15M1054183

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Mortazavi, F. Shojaei, B. Javvaji, T. Rabczuk, X. Zhuang, Outstandingly high thermal conductivity, elastic modulus, carrier mobility and piezoelectricity in two-dimensional semiconducting CrC2N4: a first-principles study. Mater. Today Energy. 22, 100839 (2021). https://doi.org/10.1016/j.mtener.2021.100839

    Article  Google Scholar 

  23. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  ADS  Google Scholar 

  24. B. Mortazavi, I.S. Novikov, E.V. Podryabinkin, S. Roche, T. Rabczuk, A.V. Shapeev, X. Zhuang, Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials. Appl. Mater. Today. 20, 100685 (2020). https://doi.org/10.1016/j.apmt.2020.100685

    Article  Google Scholar 

  25. G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  26. B. Silvi, A. Savin, Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994). https://doi.org/10.1038/371683a0

    Article  ADS  Google Scholar 

  27. W. Wang, S. Dai, X. Li, J. Yang, D.J. Srolovitz, Q. Zheng, Measurement of the cleavage energy of graphite. Nat. Commun. (2015). https://doi.org/10.1038/ncomms8853

    Article  Google Scholar 

Download references

Acknowledgements

B.M. and X.Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). B. M and T. R. are greatly thankful to the VEGAS cluster at Bauhaus University of Weimar for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bohayra Mortazavi or Timon Rabczuk.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 383 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavi, B., Zhuang, X. & Rabczuk, T. A first-principles study on the physical properties of two-dimensional Nb3Cl8, Nb3Br8 and Nb3I8. Appl. Phys. A 128, 934 (2022). https://doi.org/10.1007/s00339-022-06011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06011-z

Keywords

Navigation