Skip to main content
Log in

Exploring the interfacial thermal resistance and mechanical properties of hybrid C3N–BC3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Present study focuses on the interfacial thermal resistance (ITR) and mechanical properties of hybrid C3N–BC3 structure utilizing molecular dynamics (MD) simulation. According to the results, various vacancy atoms types (B, N and C) dramatically affect the ITR of hybrid C3N–BC3. As the vacancy defects are positioned throughout the entire or interface of hybrid C3N–BC3 structure, the ITR of hybrid C3N–BC3 rises. The influence of C atom vacancy defect on the ITR of hybrid C3N–BC3 is higher compared to others. In addition, the vacancy defects located along the interface have more effect on the ITR than those located throughout the entire of hybrid C3N–BC3. Uniaxial tensile test results indicated that hybrid C3N–BC3 demonstrates high mechanical properties. The mechanical properties of hybrid C3N–BC3 are conducted for different temperatures and strain rates varying between 1–1200 K and 107–109 s−1, respectively. As temperature falls to 1 K and the strain rate rises to 109 s−1, the mechanical properties of this hybrid structure gradually increase. At high temperature, the strain rate influences on the mechanical properties of hybrid C3N–BC3 are more pronounced. Furthermore, the influences of temperatures on the mechanical properties of hybrid C3N–BC3 increase at low strain rate. The mechanical properties of hybrid C3N–BC3 structure are examined with B, N and C atoms vacancy defects positioned throughout the entire of structure. When the concentrations of defects rise to 3%, the mechanical properties of defective hybrid C3N–BC3 decrease. C atom vacancy defect shows the most effect on the mechanical properties, while B atom vacancy defect indicates the least effect. Furthermore, the vacancy defects located throughout the interface have less effect on the mechanical properties than the ITR. Finally, the results of this study make aforementioned structure a splendid competitor for thermo-mechanical practice of 2D-based hybrid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.I. Katsnelson, Mater. Today 10(1–2), 20 (2007)

    Article  Google Scholar 

  2. J. Zhou, Q. Sun, Q. Wang, P. Jena, Phys. Rev. B 92, 064505 (2015)

    Article  ADS  Google Scholar 

  3. J.P.L. Faye, P. Sahebsara, D. Sénéchal, Phys. Rev. B 92, 085121 (2015)

    Article  ADS  Google Scholar 

  4. R. Nandkishore, A.V. Chubukov, Phys. Rev. B 86, 115426 (2012)

    Article  ADS  Google Scholar 

  5. B.M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D.J. Dvorak, C.N. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Straßer, A. Stohr, S. Forti, C.R. Ast, U. Starke, A. Damascelli, Proc. Natl. Acad. Sci. USA 112(38), 11795 (2015)

    Article  ADS  Google Scholar 

  6. W. Park, Y. Guo, X. Li, J. Hu, L. Liu, X. Ruan, Y.P. Chen, J. Phys. Chem. C 119(47), 26753 (2015)

    Article  Google Scholar 

  7. X. Tan, H. Shao, T. Hu, G. Liu, J. Jiang, H. Jiang, Phys. Chem. Chem. Phys. 17(35), 22872 (2015)

    Article  Google Scholar 

  8. Y. Xiao, W. Wang, T. Lin, X. Chen, Y. Zhang, J. Yang, Y. Wang, Z. Zhou, J. Phys. Chem. C 120(12), 6344 (2016)

    Article  Google Scholar 

  9. M. Hu, Y. Jing, X. Zhang, Phys. Rev. B 91, 155408 (2015)

    Article  ADS  Google Scholar 

  10. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269(5230), 1550 (1995)

    Article  ADS  Google Scholar 

  11. G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, Y. Li, J. Phys. Chem. C 115(6), 2611 (2011)

    Article  Google Scholar 

  12. T.C. Li, S.P. Lu, Phys. Rev. B 77, 085408 (2008)

    Article  ADS  Google Scholar 

  13. J.R. Williams, D.A. Abanin, L. DiCarlo, L.S. Levitov, C.M. Marcus, Phys. Rev. B 80, 045408 (2009)

    Article  ADS  Google Scholar 

  14. L.Y. Gan, Q. Zhang, C.S. Guo, U. Schwingenschlög, Y. Zhao, J. Phys. Chem. C 120(4), 2119 (2016)

    Article  Google Scholar 

  15. S. Dutta, S.K. Pati, J. Phys. Chem. B 112(5), 1333 (2008)

    Article  Google Scholar 

  16. G. Berdiyorov, H. Bahlouli, F.M. Peeters, Phys. E 84, 22 (2016)

    Article  Google Scholar 

  17. V. Lherbier, L. Liang, J.C. Charlier, V. Meunier, Carbon 95, 833 (2015)

    Article  Google Scholar 

  18. A.M. Fennimore, T.D. Yuzvinsky, W.-Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Nature 424(6947), 408 (2003)

    Article  ADS  Google Scholar 

  19. Q. Zheng, Q. Jiang, Phys. Rev. Lett. 88(4), 45503 (2002)

    Article  ADS  Google Scholar 

  20. A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 9(6), 674 (2005)

    Article  Google Scholar 

  21. B.L. Allen, P.D. Kichambare, A. Star, Adv. Mater. 19(11), 1439 (2007)

    Article  Google Scholar 

  22. G. Gruner, Anal. Bioanal. Chem. 384(2), 322 (2006)

    Article  Google Scholar 

  23. Q. Wang, L.-Q. Chen, J.F. Annett, Phys. Rev. B 54, R2271 (1996)

    Article  ADS  Google Scholar 

  24. D. Tomanek, R.M. Wentzcovitch, S.G. Louie, M.L. Cohen, Phys. Rev. B 37, 3134 (1988)

    Article  ADS  Google Scholar 

  25. Y. Miyamoto, A. Rubio, S.G. Louie, M.L. Cohen, Phys. Rev. B 50, 18360 (1994)

    Article  ADS  Google Scholar 

  26. Y. Ding, Y. Wang, J. Ni, Appl. Phys. Lett. 94, 073111 (2009)

    Article  ADS  Google Scholar 

  27. H. Wang, H. Wu, J. Yang, Cond. Mat. Mater. Sci. 1703, 08754 (2017)

    Google Scholar 

  28. J. Beheshtian, A.A. Peyghan, M. Noei, Sens. Actuators B Chem. 181, 829 (2013)

    Article  Google Scholar 

  29. Y. Tang, X. Cui, W. Chen, D. Zhu, H. Chai, X. Dai, Appl. Phys. A 124(6), 434 (2018)

    Article  ADS  Google Scholar 

  30. X. Wang, J. Chen, Phys. C Supercond. Appl. 558, 12 (2019)

    Article  ADS  Google Scholar 

  31. Y. Tang, M. Zhang, Z. Shen, J. Zhou, H. Chaiab, X. Dai, New. J. Chem. 42(5), 3770 (2018)

    Article  Google Scholar 

  32. E. Chigo-Anota, M.A. Alejandro, A.B. Hernandez, J.J.S. Torres, M. Castro, RSC Adv. 6(24), 20409 (2016)

    Article  ADS  Google Scholar 

  33. Y. Wang, Z. Jiao, S. Ma, Y. Guo, J. Power Sources 413, 117 (2019)

    Article  ADS  Google Scholar 

  34. T. Hussain, D.J. Searles, K. Takahashi, J. Phys. Chem. A 120, 2009 (2016)

    Article  Google Scholar 

  35. Y. Qie, J. Liu, S. Wang, S. Gong, Q. Sun, Carbon N. Y. 129, 38 (2018)

    Article  Google Scholar 

  36. T. Zhang, H. Zeng, D. Ding, R. Chen, IEEE Trans. Electron. Devices 66(2), 1087 (2019)

    Article  ADS  Google Scholar 

  37. H. Zhang, Y. Liao, G. Yang, X. Zhou, ACS Omega 3(9), 10517 (2018)

    Article  Google Scholar 

  38. K.E. Eshkalak, S. Sadeghzadeh, M. Jalaly, Comput. Mater. Sci. 149, 170 (2018)

    Article  Google Scholar 

  39. A.E. Senturk, A.S. Oktem, A.E.S. Konukman, Int. J. Mech. Mater. Des. 15, 727 (2019)

    Article  Google Scholar 

  40. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)

    Article  ADS  Google Scholar 

  41. L. Lindsay, D.A. Broido, Phys. Rev. B 81(20), 205441 (2010)

    Article  ADS  Google Scholar 

  42. K. Matsunaga, C. Fisher, H. Matsubara, Jpn. J. Appl. Phys. 39, 48 (2000)

    Article  ADS  Google Scholar 

  43. B. Mortazavi, G. Cuniberti, T. Rabczuk, Comput. Mater. Sci. 99, 285 (2015)

    Article  Google Scholar 

  44. B. Mortazavi, O. Rahaman, T. Rabczuk, L.F.C. Pereira, Carbon 106, 1 (2016)

    Article  Google Scholar 

  45. A.E. Senturk, A.S. Oktem, A.E.S. Konukman, Appl. Phys. A 125, 53 (2019)

    Article  ADS  Google Scholar 

  46. A.E. Senturk, J. Fac. Eng. Archit. Gazi Univ. 37(3), 1483 (2022)

    Google Scholar 

  47. A.E. Senturk, Appl. Phys. A. 126, 584 (2020)

    Article  ADS  Google Scholar 

  48. A.E. Senturk, Mol. Simul. 47(18), 1493 (2021)

    Article  Google Scholar 

  49. A. Kınacı, J.B. Haskins, C. Sevik, T. Çağın, Phys. Rev. B 86(11), 115410 (2012)

    Article  ADS  Google Scholar 

  50. M. Hu, S. Shenogin, P. Keblinski, Appl. Phys. Lett. 91, 241910 (2007)

    Article  ADS  Google Scholar 

  51. W. Lin, K.S. Moon, C.P. Wong, Adv. Mater. 21, 2421 (2009)

    Article  ADS  Google Scholar 

  52. L. Shi, Nanoscale Microscale Thermophys. Eng. 16, 79 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Emin Senturk.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senturk, A.E. Exploring the interfacial thermal resistance and mechanical properties of hybrid C3N–BC3. Appl. Phys. A 128, 638 (2022). https://doi.org/10.1007/s00339-022-05782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05782-9

Keywords

Navigation