Skip to main content
Log in

On the mixing of graphene and oleic acid in kerosene: a dissipative particle dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, we focus to model and study a coarse-grained single layer graphene nanosheet for its surface-coverage effects using dissipative particle dynamics (DPD) simulation. In particular, the DPD simulations considering oleic acid as surfactant molecules have been accomplished to explore the adsorbed structure of graphene–oleic acid species. A weak and dynamic assembly of oleic acid molecules near graphene nanosheet is predicted. For equilibrium structure and subsequent calibration, the graphene nanosheets soaked in water have been studied by varying bond stretching and angular stiffnesses in the simulation box. The set of interaction parameters for different bead combinations were calculated using Monte Carlo method by taking a trajectory of each chemical species providing various spatial configurations. The DPD simulation forecasts a short-range molecular ordering mediated via physicochemical interaction between hydrophilic head of free oleic acid molecules and beads of planar graphene nanosheet. In general, the simulation study forecasts an insight onto the structure of graphene nanosheets and their interactions with nanoparticles coated with oleic acid under variable experimental conditions. On the basis of observations in the computer modelling, we summarized the results that how these can help in coherent design of hybrid graphene nanosheet based nanocomposites for technological applications in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral, G. Papari, A. Andreone, C. Galiotis, Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4

    Article  ADS  Google Scholar 

  2. T. Mahmoudi, Y. Wang, Y.-B. Hahn, Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018). https://doi.org/10.1016/j.nanoen.2018.02.047

    Article  Google Scholar 

  3. S. Mura, Y. Jiang, I. Vassalini, A. Gianoncelli, I. Alessandri, G. Granozzi, L. Calvillo, N. Senes, S. Enzo, P. Innocenzi, L. Malfatti, Graphene oxide/iron oxide nanocomposites for water remediation. ACS Appl. Nano Mater. 1, 6724–6732 (2018). https://doi.org/10.1021/acsanm.8b01540

    Article  Google Scholar 

  4. K. Tadyszak, J. Wychowaniec, J. Litowczenko, Biomedical applications of graphene-based structures. Nanomaterials 8, 944 (2018). https://doi.org/10.3390/nano8110944

    Article  Google Scholar 

  5. O. Akhavan, M. Saadati, M. Jannesari, Graphene jet nanomotors in remote controllable self-propulsion swimmers in pure water. Nano Lett. 16, 5619–5630 (2016). https://doi.org/10.1021/acs.nanolett.6b02175

    Article  ADS  Google Scholar 

  6. V.P. Pham, H.-S. Jang, D. Whang, J.-Y. Choi, Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges. Chem. Soc. Rev. 46, 6276–6300 (2017). https://doi.org/10.1039/C7CS00224F

    Article  Google Scholar 

  7. S.P. Gubin, Magnetic nanoparticles (Wiley-VCH Verlag GmBH & Co KGaA, 2009)

    Book  Google Scholar 

  8. S. Mallick, A. Shankar, B. Prasad, Bionanomaterials utility for therapeutic applications, in Bionanomaterials: fundamentals and biomedical applications. ed. by R.P. Singh, K.R.B. Singh (IOP Publishing, 2021)

    Google Scholar 

  9. R. Hudson, Y. Feng, R.S. Varma, A. Moores, Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem. 16, 4493–4505 (2014). https://doi.org/10.1039/C4GC00418C

    Article  Google Scholar 

  10. N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532 (2009). https://doi.org/10.1039/b815548h

    Article  Google Scholar 

  11. M. Mishra, A.P. Singh, B.P. Singh, V.N. Singh, S.K. Dhawan, Conducting ferrofluid: a high-performance microwave shielding material. J. Mater. Chem. A. 2, 13159 (2014). https://doi.org/10.1039/C4TA01681E

    Article  Google Scholar 

  12. A. Shankar, A.P. Safronov, E.A. Mikhnevich, I.V. Beketov, G.V. Kurlyandskaya, Ferrogels based on entrapped metallic iron nanoparticles in a polyacrylamide network: extended Derjaguin–Landau–Verwey–Overbeek consideration, interfacial interactions and magnetodeformation. Soft Matter 13, 3359–3372 (2017). https://doi.org/10.1039/C7SM00534B

    Article  ADS  Google Scholar 

  13. E. Sadeghinezhad, M. Mehrali, A.R. Akhiani, S. Tahan Latibari, A. Dolatshahi-Pirouz, H.S.C. Metselaar, M. Mehrali, Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field. Appl. Therm. Eng. 114, 415–427 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.199

    Article  Google Scholar 

  14. G.V. Kurlyandskaya, D.S. Portnov, I.V. Beketov, A. Larrañagad, A.P. Safronov, I. Orue, A.I. Medvedev, A.A. Chlenova, M.B. Sanchez-Ilarduya, A. Martinez-Amesti, A.V. Svalov, Nanostructured materials for magnetic biosensing. Biochim. Biophys. Acta BBA Gen. Subj. 2017, 1494–1506 (1861). https://doi.org/10.1016/j.bbagen.2016.12.003

    Article  Google Scholar 

  15. M. Chand, A. Shankar, A. Pratap Singh, M. Chandra Mathpal, R. Prasad Pant, J. Deperyot, Mechanism of chain formation under shearing forces in magneto-rheological fluids. Mater. Today Proc. 47, 1575–1579 (2021). https://doi.org/10.1016/j.matpr.2021.03.675

    Article  Google Scholar 

  16. A.P. Singh, M. Mishra, A. Chandra, S.K. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology 22, 465701 (2011). https://doi.org/10.1088/0957-4484/22/46/465701

    Article  Google Scholar 

  17. O. Akhavan, A. Meidanchi, E. Ghaderi, S. Khoei, Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. J. Mater. Chem. B. 2, 3306 (2014). https://doi.org/10.1039/c3tb21834a

    Article  Google Scholar 

  18. H. Ren, X. Zhuang, Y. Cai, T. Rabczuk, Dual-horizon peridynamics: dual-horizon peridynamics. Int. J. Numer. Methods Eng. 108, 1451–1476 (2016). https://doi.org/10.1002/nme.5257

    Article  Google Scholar 

  19. H. Ren, X. Zhuang, T. Rabczuk, A new peridynamic formulation with shear deformation for elastic solid. J. Micromechanics Mol. Phys. 01, 1650009 (2016). https://doi.org/10.1142/S2424913016500090

    Article  Google Scholar 

  20. T. Rabczuk, H. Ren, X. Zhuang, A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Comput. Mater. Contin. 59, 31–55 (2019). https://doi.org/10.32604/cmc.2019.04567

    Article  Google Scholar 

  21. H. Ren, X. Zhuang, T. Rabczuk, H. Zhu, Dual-support smoothed particle hydrodynamics in solid: variational principle and implicit formulation. Eng. Anal. Bound. Elem. 108, 15–29 (2019). https://doi.org/10.1016/j.enganabound.2019.05.024

    Article  MathSciNet  MATH  Google Scholar 

  22. P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. EPL 19, 155–160 (1992). https://doi.org/10.1209/0295-5075/19/3/001

    Article  ADS  Google Scholar 

  23. P. Español, P. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. EPL 30, 191–196 (1995). https://doi.org/10.1209/0295-5075/30/4/001

    Article  ADS  Google Scholar 

  24. R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997). https://doi.org/10.1063/1.474784

    Article  ADS  Google Scholar 

  25. T.E. Gartner, A. Jayaraman, Modeling and simulations of polymers: a roadmap. Macromolecules 52, 755–786 (2019). https://doi.org/10.1021/acs.macromol.8b01836

    Article  ADS  Google Scholar 

  26. R.D. Groot, K.L. Rabone, Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys. J. 81, 725–736 (2001). https://doi.org/10.1016/S0006-3495(01)75737-2

    Article  ADS  Google Scholar 

  27. G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J.-C. Bradley, K.G. Kornev, Carbon nanotubes loaded with magnetic particles. Nano Lett. 5, 879–884 (2005). https://doi.org/10.1021/nl0502928

    Article  ADS  Google Scholar 

  28. T.N. Narayanan, A.P. Reena Mary, M.M. Shaijumon, L. Ci, P.M. Ajayan, M.R. Anantharaman, On the synthesis and magnetic properties of multiwall carbon nanotube–superparamagnetic iron oxide nanoparticle nanocomposites. Nanotechnology 20, 055607 (2009). https://doi.org/10.1088/0957-4484/20/5/055607

    Article  ADS  Google Scholar 

  29. R.P. Pant, A. Shankar, K. Jain, Sonia, M. Chand, Ferrofluid-MWCNT hybrid nanocomposite in liquid state, US20150371776A1, 2015. http://www.patentsencyclopedia.com/imgfull/20150371776_01

  30. D. Yang, X. Li, D. Meng, Y. Yang, Carbon quantum dots-modified ferrofluid for dispersive solid-phase extraction of phenolic compounds in water and milk samples. J. Mol. Liq. 261, 155–161 (2018). https://doi.org/10.1016/j.molliq.2018.04.036

    Article  Google Scholar 

  31. Y. Chu, S. Bilal, M.R. Hajizadeh, Hybrid ferrofluid along with MWCNT for augmentation of thermal behavior of fluid during natural convection in a cavity. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6937

    Article  Google Scholar 

  32. W. Zhang, M. Zhou, H. Zhu, Y. Tian, K. Wang, J. Wei, F. Ji, X. Li, Z. Li, P. Zhang, D. Wu, Tribological properties of oleic acid-modified graphene as lubricant oil additives. J. Phys. Appl. Phys. 44, 205303 (2011). https://doi.org/10.1088/0022-3727/44/20/205303

    Article  ADS  Google Scholar 

  33. T. Chen, Y. Xia, Z. Jia, Z. Liu, H. Zhang, Synthesis, characterization, and tribological behavior of oleic acid capped graphene oxide. J. Nanomater 2014, 1–8 (2014). https://doi.org/10.1155/2014/654145

    Article  Google Scholar 

  34. X. Liu, D. Ma, H. Tang, L. Tan, Q. Xie, Y. Zhang, M. Ma, S. Yao, Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS Appl. Mater. Interfaces. 6, 8173–8183 (2014). https://doi.org/10.1021/am500812h

    Article  Google Scholar 

  35. S. Askari, R. Lotfi, A.M. Rashidi, H. Koolivand, M. Koolivand-Salooki, Rheological and thermophysical properties of ultra-stable kerosene-based Fe3O4/Graphene nanofluids for energy conservation. Energy Convers. Manag. 128, 134–144 (2016). https://doi.org/10.1016/j.enconman.2016.09.037

    Article  Google Scholar 

  36. S. Seidi, N.S. Moosavi, M. Shanehsaz, M. Abdolhosseini, S.J. Sadeghi, Rapid ultrasound-assisted dispersive solid-phase extraction of nonsteroidal anti-inflammatory drugs in urine using oleic acid functionalized magnetic graphene oxide. J. Sep. Sci. 41, 4370–4378 (2018). https://doi.org/10.1002/jssc.201800663

    Article  Google Scholar 

  37. J.S. Boruah, D. Chowdhury, Hybrid oleic acid-graphene quantum dot vesicles for drug delivery. ChemistrySelect 4, 4347–4354 (2019). https://doi.org/10.1002/slct.201803619

    Article  Google Scholar 

  38. M. Khalilifard, S. Javadian, Magnetic superhydrophobic polyurethane sponge loaded with Fe3O4@oleic acid@graphene oxide as high performance adsorbent oil from water. Chem. Eng. J. 408, 127369 (2021). https://doi.org/10.1016/j.cej.2020.127369

    Article  Google Scholar 

  39. A. Maiti, S. McGrother, Bead–bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension. J. Chem. Phys. 120, 1594–1601 (2004). https://doi.org/10.1063/1.1630294

    Article  ADS  Google Scholar 

  40. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159, 98–103 (1967). https://doi.org/10.1103/PhysRev.159.98

    Article  ADS  Google Scholar 

  41. J. Mao, R. Guo, L.-T. Yan, Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets. Biomaterials 35, 6069–6077 (2014). https://doi.org/10.1016/j.biomaterials.2014.03.087

    Article  Google Scholar 

  42. J. Medina, F. Avilés, A. Tapia, The bond force constants of graphene and benzene calculated by density functional theory. Mol. Phys. 113, 1297–1305 (2015). https://doi.org/10.1080/00268976.2014.986241

    Article  ADS  Google Scholar 

  43. S.H. Min, C. Lee, J. Jang, Dissipative particle dynamics modeling of a graphene nanosheet and its self-assembly with surfactant molecules. Soft Matter 8, 8735 (2012). https://doi.org/10.1039/c2sm26029h

    Article  ADS  Google Scholar 

  44. B. Hafskjold, C.C. Liew, W. Shinoda, Can such long time steps really be used in dissipative particle dynamics simulations? Mol. Simul. 30, 879–885 (2004). https://doi.org/10.1080/08927020410001709370

    Article  MATH  Google Scholar 

  45. Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R.H. Hurt, A.B. Kane, H. Gao, Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. 110, 12295–12300 (2013). https://doi.org/10.1073/pnas.1222276110

    Article  ADS  Google Scholar 

  46. I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 25, 2558 (2007). https://doi.org/10.1116/1.2789446

    Article  ADS  Google Scholar 

  47. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  ADS  Google Scholar 

  48. F.O. Ogundare, F.M. Adekola, I.A. Oladosu, Compositions and photon mass attenuation coefficients of diesel, kerosene, palm and groundnut oils. Fuel 255, 115697 (2019). https://doi.org/10.1016/j.fuel.2019.115697

    Article  Google Scholar 

  49. F. Alvarez, E.A. Flores, L.V. Castro, J.G. Hernández, A. López, F. Vázquez, Dissipative particle dynamics (DPD) study of crude oil−water emulsions in the presence of a functionalized co-polymer . Energy Fuels 25, 562–567 (2011). https://doi.org/10.1021/ef1012038

    Article  Google Scholar 

  50. M.D. Vo, B. Shiau, J.H. Harwell, D.V. Papavassiliou, Adsorption of anionic and non-ionic surfactants on carbon nanotubes in water with dissipative particle dynamics simulation. J. Chem. Phys. 144, 204701 (2016). https://doi.org/10.1063/1.4949364

    Article  ADS  Google Scholar 

  51. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  52. A. Shankar, M. Chand, G.A. Basheed, S. Thakur, R.P. Pant, Low temperature FMR investigations on double surfactant water based ferrofluid. J. Magn. Magn. Mater. 374, 696–702 (2015). https://doi.org/10.1016/j.jmmm.2014.09.038

    Article  ADS  Google Scholar 

  53. A. Shankar, A.P. Safronov, E.A. Mikhnevich, I.V. Beketov, Multidomain iron nanoparticles for the preparation of polyacrylamide ferrogels. J. Magn. Magn. Mater. 431, 134–137 (2017). https://doi.org/10.1016/j.jmmm.2016.08.075

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by UGC-BSR Research Start-Up-Grant F.30-420/2018(BSR), UGC, India, and by Brazilian agencies CNPq and CAPES. AS also acknowledges the encouragement by Madhya Pradesh Council of Science and Technology (MPCST), India, and financial assistance provided in the form of MP Young Scientist Award and subsequent financial support under its FTYS scheme (sanction order no. 3063/CST/FTYS/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Chand.

Ethics declarations

Conflict of interest

Authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 145 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, A., Chand, M. & Sharma, S. On the mixing of graphene and oleic acid in kerosene: a dissipative particle dynamics study. Appl. Phys. A 128, 224 (2022). https://doi.org/10.1007/s00339-022-05355-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05355-w

Keywords

Navigation