Skip to main content
Log in

Two-dimensional mesoporous B, N co-doped carbon nanosheets decorated with TiN nanostructures for enhanced performance lithium–sulfur batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) mesoporous B, N co-doped carbon/TiN (BNC-TN) composites were synthesized for the first time via hydrogel method followed by an ionothermal route using polyvinyl alcohol, guanidine carbonate, and boric acid as the carbon, nitrogen, and boron sources, NH2-MIL-125 (Ti) as the TiN precursor. The as-synthesized BNC-TN not only possesses mesoporous 2D sheet-like structure, adjustable B, N co-doping and TiN content, but also effectively alleviates the lithium polysulfides (LiPSs) shuttle effect because of the porous framework, as well as polar TiN and doping heteroatoms as chemical anchors of LiPSs. S@BNC-TN cathode exhibited a high initial overall discharge capacity of 1130.9 mA h g−1 and a discharge capacity of 951.5 mA h g−1 after 50 cycles. This material offers a promising pathway to alleviate challenges facing lithium–sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018)

    Article  ADS  Google Scholar 

  2. Z. Xing, S. Wang, A. Yu, Z. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium. Nano Energy 50, 229–244 (2018)

    Article  Google Scholar 

  3. A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Rechargeable Lithium-Sulfur Batteries. Chem. Rev. 114(23), 11751–11787 (2014)

    Article  Google Scholar 

  4. Z. Wei Seh, W. Li, J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4(1), 1331 (2013)

    Article  ADS  Google Scholar 

  5. Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar, A Comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7(6), 1601630 (2017)

    Article  Google Scholar 

  6. H. Sohn, M.L. Gordin, M. Regula, D.H. Kim, Y. Jung, J. Song, D. Wang, Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium–sulfur batteries. J. Power Sources 302, 70–78 (2016)

    Article  ADS  Google Scholar 

  7. Z. Lin, C. Liang, Lithium–sulfur batteries: from liquid to solid cells. J. Mater. Chem. A 3(3), 936–958 (2015)

    Article  Google Scholar 

  8. X. Ji, K.T. Lee, L. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009)

    Article  ADS  Google Scholar 

  9. J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, D. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem. Int. Ed. 54(14), 4325–4329 (2015)

    Article  Google Scholar 

  10. T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li, Q. Zhang, B. Li, Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 12(24), 3283–3291 (2016)

    Article  Google Scholar 

  11. H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang, J. Xie, W.T. Xu, J.L. Shi, X. Chen, X.B. Cheng, Q. Zhang, A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 28(43), 9551–9558 (2016)

    Article  Google Scholar 

  12. Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, Y. Zhang, High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 14(8), 4821–4827 (2014)

    Article  ADS  Google Scholar 

  13. C. Wang, Z. Guo, W. Shen, Q. Xu, H. Liu, Y. Wang, B-doped carbon coating improves the electrochemical performance of electrode materials for Li-ion batteries. Adv. Funct. Mater. 24(35), 5511–5521 (2014)

    Article  Google Scholar 

  14. C.P. Yang, Y.X. Yin, H. Ye, K.C. Jiang, J. Zhang, Y.G. Guo, Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 6(11), 8789–8795 (2014)

    Article  Google Scholar 

  15. G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z.W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D. Wu, Q. Zhang, Y. Cui, Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. 114(5), 840–845 (2017)

    Article  Google Scholar 

  16. X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29(20), 1601759 (2017)

    Article  Google Scholar 

  17. Z. Li, Q. He, X. Xu, Y. Zhao, X. Liu, C. Zhou, D. Ai, L. Xia, L. Mai, A 3D nitrogen-doped Graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 30(45), 1804089 (2018)

    Article  Google Scholar 

  18. T. Chen, X. Liu, L. Niu, Y. Gong, C. Li, S. Xu, L. Pan, Recent progress on metal–organic framework-derived materials for sodium-ion battery anodes. Inorg. Chem. Front. 7(3), 567–582 (2020)

    Article  Google Scholar 

  19. Y. Liu, X. Xu, Z. Shao, S. Jiang, Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater. 26, 1–22 (2020)

    Article  Google Scholar 

  20. Y. He, X. Zhang, Y. Wei, X. Chen, Z. Wang, R. Yu, Ti-MOF derived N-doped TiO2 nanostructure as visible-light-driven photocatalyst. Chem. Res. Chin. Univ. 36(3), 447–452 (2020)

    Article  Google Scholar 

  21. J. Hu, J. Ding, Q. Zhong, In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation. J. Colloid Interface Sci. 560, 857–865 (2020)

    Article  ADS  Google Scholar 

  22. M. Zhang, M. Zhou, Z. Luo, J. Zhang, S. Wang, X. Wang, Molten salt assisted assembly growth of atomically thin boron carbon nitride nanosheets for photocatalytic H2 evolution. Chem. Commun. 56(17), 2558–2561 (2020)

    Article  Google Scholar 

  23. L. Tian, J. Li, F. Liang, J. Wang, S. Li, H. Zhang, S. Zhang, Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl. Catal. B: Environ. 225, 307–313 (2018)

    Article  Google Scholar 

  24. J. Wang, J. Hao, D. Liu, S. Qin, D. Portehault, Y. Li, Y. Chen, W. Lei, Porous boron carbon nitride nanosheets as efficient metal-free catalysts for the oxygen reduction reaction in both alkaline and acidic solutions. ACS Energy Lett. 2(2), 306–312 (2017)

    Article  Google Scholar 

  25. R. Jiang, M. Jiang, Z. Huang, J. Wang, Y. Kuang, C. Fu, Constructing light-weight polar boron-doped carbon nitride nanosheets with increased active sites and conductivity for high performance lithium-sulfur batteries. Int. J. Hydrogen Energy 45(29), 14940–14952 (2020)

    Article  Google Scholar 

  26. L. Chen, J. Feng, H. Zhou, C. Fu, G. Wang, L. Yang, C. Xu, Z. Chen, W. Yang, Y. Kuang, Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes. J. Mater. Chem. A 5(16), 7403–7415 (2017)

    Article  Google Scholar 

  27. Z. Xie, X. Shang, J. Yang, B. Hu, P. Nie, W. Jiang, J. Liu, 3D interconnected boron- and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization. Carbon 158, 184–192 (2020)

    Article  Google Scholar 

  28. J. Li, Y. Dong, J. Zhu, L. Wang, W. Tian, J. Zhao, H. Lin, S. Zhang, Y. Cao, H. Song, D. Jia, B, N co-doped carbon nanosheets derived from graphene quantum dots: Improving the pseudocapacitive performance by efficient trapping nitrogen. Appl. Surf. Sci. 529, 147239 (2020)

    Article  Google Scholar 

  29. L. Chen, M. Zhou, Z. Luo, M. Wakeel, A.M. Asiri, X. Wang, Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 241, 246–255 (2019)

    Article  Google Scholar 

  30. S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J. Mater. Chem. A 6(4), 1832–1839 (2018)

    Article  Google Scholar 

  31. L. Tian, F. Liang, L. Dong, J. Li, Q. Jia, H. Zhang, S. Yan, S. Zhang, Preparation and enhanced adsorption properties for CO2 and dyes of amino-decorated hierarchical porous BCN aerogels. J. Am. Ceram. Soc. 104(2), 1110–1119 (2021)

    Article  Google Scholar 

  32. L. Luo, Y. Zhou, W. Yan, X. Wu, S. Wang, W. Zhao, Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochim Acta 360, 137010 (2020)

    Article  Google Scholar 

  33. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G.F. Zheng, Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8), 1610–1622 (2018)

    Article  Google Scholar 

  34. R. Zhao, Q. Li, Z. Chen, V. Jose, X. Jiang, G. Fu, J.M. Lee, S. Huang, B, N-doped ultrathin carbon nanosheet superstructure for high-performance oxygen reduction reaction in rechargeable zinc-air battery. Carbon 164, 398–406 (2020)

    Article  Google Scholar 

  35. S. Wang, G. Wang, T. Wu, Y. Zhang, F. Zhan, Y. Wang, J. Wang, Y. Fu, J. Qiu, BCN nanosheets templated by g-C3N4 for high performance capacitive deionization. J. Mater. Chem. A 6(30), 14644–14650 (2018)

    Article  Google Scholar 

  36. A. Zehtab Yazdi, H. Fei, R. Ye, G. Wang, J. Tour, U. Sundararaj, Boron/Nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 7(14), 7786–7794 (2015)

    Article  Google Scholar 

  37. Z.H. Sun, Z.Q. Yan, K.C. Yue, A.R. Li, L. Qian, Novel high-performance electromagnetic absorber based on Nitrogen/Boron co-doped reduced graphene oxide. Compos. Part B: Eng. 196, 108132 (2020)

    Article  Google Scholar 

  38. D. Xiong, Z. Zhang, X. Huang, Y. Huang, J. Yu, J. Cai, Z. Yang, Boosting the polysulfide confinement in B/N–codoped hierarchically porous carbon nanosheets via Lewis acid–base interaction for stable Li–S batteries. J. Energy Chem. 51, 90–100 (2020)

    Article  Google Scholar 

  39. B. Qi, X. Zhao, S. Wang, K. Chen, Y. Wei, G. Chen, Y. Gao, D. Zhang, Z. Sun, F. Li, Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium–sulfur batteries. J. Mater. Chem. A 6(29), 14359–14366 (2018)

    Article  Google Scholar 

  40. W. Yang, W. Yang, L. Dong, X. Gao, G. Wang, G. Shao, Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core–shell architecture for lithium–sulfur batteries. J. Mater. Chem. A 7(21), 13103–13112 (2019)

    Article  Google Scholar 

  41. T.G. Jeong, D.S. Choi, H. Song, J. Choi, S.A. Park, S.H. Oh, H. Kim, Y. Jung, Y.T. Kim, heterogeneous catalysis for lithium-sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations. ACS Energy Lett. 2(2), 327–333 (2017)

    Article  Google Scholar 

  42. Z. Hao, L. Yuan, C. Chen, J. Xiang, Y. Li, Z. Huang, P. Hu, Y. Huang, TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. J. Mater. Chem. A 4(45), 17711–17717 (2016)

    Article  Google Scholar 

  43. N. Mosavati, V.R. Chitturi, S.O. Salley, K.Y.S. Ng, Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries. J. Power Sources 321, 87–93 (2016)

    Article  ADS  Google Scholar 

  44. Y. Ding, X. Sun, L. Zhang, S. Mao, Z. Xie, Z.W. Liu, D. Su, Entrapping an ionic liquid with nanocarbon: the formation of a tailorable and functional surface. Angew. Chem. Int. Ed. 54(1), 231–235 (2015)

    Article  Google Scholar 

  45. S. Yuan, J. Bao, L. Wang, Y. Xia, D.G. Truhlar, Y. Wang, Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv. Energy Mater. 6(5), 1501733 (2016)

    Article  Google Scholar 

  46. T. Lin, C. Yang, Z. Wang, H. Yin, X. Lü, F. Huang, J. Lin, X. Xie, M. Jiang, Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ. Sci. 7(3), 967–972 (2014)

    Article  Google Scholar 

  47. Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28(32), 6926–6931 (2016)

    Article  Google Scholar 

  48. F. Li, Y. Su, J. Zhao, Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li–S batteries. Phys. Chem. Chem. Phys. 18(36), 25241–25248 (2016)

    Article  Google Scholar 

  49. Q. Shen, L. Huang, G. Chen, X. Zhang, Y. Chen, One-step synthesis of titanium nitride/nitrogen-doped graphene nanocomposite as separator modifying material for advanced lithium-sulfur batteries. J. Alloy Compd. 845, 155543 (2020)

    Article  Google Scholar 

  50. H. You, M. Shi, J. Hao, H. Min, H. Yang, X. Liu, A spongy mesoporous titanium nitride material as sulfur host for high performance lithium-sulfur batteries. J. Alloy Compd. 823, 153879 (2020)

    Article  Google Scholar 

  51. J. Wang, Z. Meng, X. Yan, H. Ying, S. Zhang, W. Han, Facile preparation of porous TiN-C microspheres as an efficient sulfur host for high performance lithium-sulfur battery. Mater. Today Energy 13, 1–10 (2019)

    Article  ADS  Google Scholar 

  52. J. Zhu, C. Jiao, T. Kang, L. Zhong, S. Zhao, Y. Qiu, A sandwich-structured TiN/BN-C composite interlayer with enhanced performance for LiS batteries. J. Electroanal. Chem. 862, 113963 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (51702239). The authors acknowledge funding through project 17QD60 from Wuhan Institute of Technology and funding through project X19D003 from Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyan Xiong or Feng Liang.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 608 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Wang, C., Wang, X. et al. Two-dimensional mesoporous B, N co-doped carbon nanosheets decorated with TiN nanostructures for enhanced performance lithium–sulfur batteries. Appl. Phys. A 127, 933 (2021). https://doi.org/10.1007/s00339-021-05068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05068-6

Keywords

Navigation