Skip to main content
Log in

Structural, morphological and magnetic investigations on cobalt ferrite nanoparticles obtained through green synthesis routes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper describes for the first time two processing routes—the precursor method and the two-step wet chemical process—for the synthesis of magnetic cobalt ferrite using the Tamarindus indica fruit extract. These green approaches are eco-friendly, safe and efficient alternatives to classical chemical methods. The aqueous extract from tamarind fruit contains numerous metabolites (organic acids, aminoacids). All these bioactive components are able to chelate metal ions leading to the formation of the multimetallic complex (precursor of cobalt ferrite). The obtained precursor was characterized by Fourier transform infrared spectroscopy (FTIR), thermal analysis, X-ray diffraction analysis (XRD) and magnetic measurements. The structure, morphology and magnetic behavior of the cobalt ferrite samples prepared through both synthesis routes were investigated by various characterization techniques: FTIR, XRD, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), Mössbauer spectroscopy and magnetic measurements. XRD data confirmed that a cubic spinel structure was obtained for both ferrite powders with average crystallite size of 13 and 5 nm, respectively. The microstructure study by SEM revealed the formation of nanocrystallites assemblies using the precursor method and carbon-rich particles forming granulated micron-sized agglomerates, embedding ferrite nanocrystallites obtained through the two-step wet chemical process. Mössbauer spectroscopy results evidenced relaxation processes in the CoFe2O4 samples at room temperature, and the main characteristics of the involved sublattices were derived. The magnetic investigation revealed a typical magnetic behavior for a spinel, with CoFe2O4 nanoparticles ferrimagnetic at low temperature and superparamagnetic at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.M. Ansari, B.B. Sinha, D. Phase, D. Sen, P.U. Sastry, Y.D. Kolekar, C.V. Raman, Particle size, morphology, and chemical composition controlled CoFe2O4 nanoparticles with tunable magnetic properties via oleic acid based solvothermal synthesis for application in electronic devices. ACS Appl. Nano Mater. 2, 1828–1843 (2019). https://doi.org/10.1021/acsanm.8b02009

    Article  Google Scholar 

  2. O.K. Mmelesi, N. Masunga, A. Kuvarega, T.T. Nkambule, B.B. Mamba, K.K. Kefeni, Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mat. Sci. Semiconduct. Proc. 123, 105523 (2021). https://doi.org/10.1016/j.mssp.2020.105523

    Article  Google Scholar 

  3. M. Ghanbari, F. Davar, A.E. Shalan, Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery. Ceram. Int. 47, 9409–9417 (2021). https://doi.org/10.1016/j.ceramint.2020.12.073

    Article  Google Scholar 

  4. D. Gheidari, M. Mehrdad, S. Maleki, S. Hosseini, Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light. Heliyon 6, e05058 (2020). https://doi.org/10.1016/j.heliyon.2020.e05058

    Article  Google Scholar 

  5. R. Eivazzadeh-Keihan, S. Asgharnasl, M.S. Bani, F. Radinekiyan, A. Maleki, M. Mahdavi, P. Babaniamansour, H. Bahreinizad, A.E. Shalan, S. Lanceros-Méndez, Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications. Langmuir 37(29), 8847–8854 (2021). https://doi.org/10.1021/acs.langmuir.1c01251

    Article  Google Scholar 

  6. J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials 7, 243 (2017). https://doi.org/10.3390/nano7090243

    Article  Google Scholar 

  7. M. Suljagic, P. Vulic, D. Jeremic, V. Pavlovic, S. Filipovic, L. Kilanski, S. Lewinska, A. Slawska-Waniewska, M.R. Milenkovic, A.S. Nikolic, L. Andjelkovic, The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. Mater. Res. Bull. 134, 111117 (2021). https://doi.org/10.1016/j.materresbull.2020.111117

    Article  Google Scholar 

  8. K.V. Chandekar, M. Shkir, S. AlFaify, A structural, elastic, mechanical, spectroscopic, thermodynamic, and magnetic properties of polymer coated CoFe2O4 nanostructures for various applications. J. Mol. Struct. 1205, 127681 (2020). https://doi.org/10.1016/j.molstruc.2020.1276

    Article  Google Scholar 

  9. D. Gingasu, I. Mindru, L. Patron, A. Ianculescu, E. Vasile, G. Marinescu, S. Preda, L. Diamandescu, O. Oprea, M. Popa, C. Saviuc, M.C. Chifiriuc, Synthesis and characterization of chitosan-coated cobalt ferrite nanoparticles and their antimicrobial activity. J. Inor. Organomet. Polym. 28, 1932–1941 (2018). https://doi.org/10.1007/s10904-018-0870-3

    Article  Google Scholar 

  10. H. Zhang, J. Wang, Y. Zeng, G. Wang, S. Han, Z. Yang, B. Li, X. Wang, J. Gao, L. Zheng, X. Liu, Z. Huo, R. Yu, Leucine-coated cobalt ferrite nanoparticles: Synthesis, characterization and potential biomedical applications for drug delivery. Phys. Lett. A 384, 126600 (2020). https://doi.org/10.1016/j.physleta.2020.126600

    Article  Google Scholar 

  11. D.C. Culita, L. Patron, V.S. Teodorescu, I. Balint, Synthesis and characterization of spinelic ferrites obtained from coordination compounds as precursors. J. Alloys Compd. 432, 211–216 (2007). https://doi.org/10.1016/j.jallcom.2006.05.104

    Article  Google Scholar 

  12. G. Lavorato, M. Alzamora, C. Contreras, G. Burlandy, F.J. Litterst; E. Baggio-Saitovitch, Internal structure and magnetic properties in cobalt ferrite nanoparticles: Influence of the synthesis method. Part. Part. Syst. Charact. 1900061 (2019). https://doi.org/10.1002/ppsc.201900061

  13. A.I. Alharthi, I.U. Din, M.A. Alotaibi, G. Centi, Application of cobalt ferrite nano-catalysts for methanol synthesis by CO2 hydrogenation: deciphering the role of metals cations distribution. Ceram. Int. 47, 19234–19240 (2021). https://doi.org/10.1016/j.ceramint.2021.03.149

    Article  Google Scholar 

  14. M.V. Gerbaldo, S.G. Marchetti, V.R. Elías, S. Nazaret Mendieta, M. Elsie Crivello, Degradation of anti-inflammatory drug diclofenac using cobalt ferrite as photocatalyst. Chem. Eng. Res. Design 166, 237–247 (2021). https://doi.org/10.1016/j.cherd.2020.12.009

  15. G.R. Patta, V. Ravi Kumar, B.V. Ragavaiah, N. Veeraiah, A critical study on the magnetic properties of ultrafine cobalt ferrite nanoparticles synthesized by polyethylene glycol assisted sol–gel method. Appl. Phys. A 126, 64 (2020). https://doi.org/10.1007/s00339-019-3253-x

  16. F. Ansari, A. Sobhani, M. Salavati-Niasari, Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J. Colloid Interface Sci. 514, 723–732 (2018). https://doi.org/10.1016/j.jcis.2017.12.083

    Article  ADS  Google Scholar 

  17. S. Das, M. Bououdina, C. Manoharan, The influence of cationic surfactant CTAB on optical, dielectric and magnetic properties of cobalt ferrite nanoparticles. Ceram. Int. 46, 11705–11716 (2020). https://doi.org/10.1016/j.ceramint.2020.01.202

    Article  Google Scholar 

  18. I. Anila, M.J. Mathew, Study on the physico-chemical properties, magnetic phase resolution and cytotoxicity behavior of chitosan-coated cobalt ferrite nanocubes. Appl. Surface Sci. 556, 149791 (2021). https://doi.org/10.1016/j.apsusc.2021.149791

    Article  Google Scholar 

  19. P. Palade, C. Comanescu, A. Kuncser, D. Berger, C. Matei, N. Iacob, V. Kuncser, Mesoporous cobalt ferrite nanosystems obtained by surfactant-assisted hydrothermal method: Tuning morpho-structural and magnetic properties via pH-variation. Nanomaterials 10, 476 (2020). https://doi.org/10.3390/nano10030476

    Article  Google Scholar 

  20. I. Mindru, D. Gingasu, L. Diamandescu, L. Patron, G. Marinescu, D.C. Culita, J.M. Calderon-Moreno, S. Preda, O. Oprea, V. Parvulescu, CoFe2−xCrxO4 ferrites: synthesis, characterization and their catalytic activity. Chem. Paper 72, 3203–3213 (2018). https://doi.org/10.1007/s11696-018-0553-0

    Article  Google Scholar 

  21. D. Gingasu, L. Diamandescu, I. Mindru, G. Marinescu, D.C. Culita, J.M. Calderon-Moreno, S. Preda, C. Bartha, L. Patron, Chromium substituted cobalt ferrites by glycine-nitrates process. Croat. Chem. Acta 88, 445–451 (2015). https://doi.org/10.5562/cca2743

    Article  Google Scholar 

  22. I.H. Karakas, The effects of fuel type onto the structural, morphological, magnetic and photocatalytic properties of nanoparticles in the synthesis of cobalt ferrite nanoparticles with microwave assisted combustion method. Ceram. Int. 47, 5597–5609 (2021). https://doi.org/10.1016/j.ceramint.2020.10.144

    Article  Google Scholar 

  23. M. Hashim, N. Boda, A. Ahmed, S.K. Sharma, D. Ravinder, E. Sumalatha, A. Ul-Hamid, M.M. Ismail, M. Chaman, S.E. Shirsath, R. Kumar, S. Kumar, S.S. Meena, M. Nasir, Influence of samarium doping on structural, elastic, magnetic, dielectric, and electrical properties of nanocrystalline cobalt ferrite. Appl. Phys. A 127, 526 (2021). https://doi.org/10.1007/s00339-021-04686-4

    Article  ADS  Google Scholar 

  24. K. Vasundhara, S.N. Achary, S.K. Deshpande, P.D. Babu, S.S. Meena, A.K. Tyagi, Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 113, 194101 (2013). https://doi.org/10.1063/1.4804946

    Article  ADS  Google Scholar 

  25. S. Shanmugam, B. Subramanian, Evolution of phase pure magnetic cobalt ferrite nanoparticles by varying the synthesis conditions of polyol method. Mater. Sci. Eng. B 252, 114451 (2020). https://doi.org/10.1016/j.mseb.2019.114451

    Article  Google Scholar 

  26. R. El-Sayed, H.K. Abdelhakim, Z. Zakaria, Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater. Sci. Eng. C 107, 110318 (2020). https://doi.org/10.1016/j.msec.2019.110318

    Article  Google Scholar 

  27. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, D. Ghanbari, Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria, Spectrochim. Acta A Mol. Biomol. Spectrosc. 203, 481–493 (2018). https://doi.org/10.1016/j.saa.2018.06.021

  28. S. Zinatloo-Ajabshira, M.S. Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. B Eng. 167, 643–653 (2019). https://doi.org/10.1016/j.compositesb.2019.03.045

    Article  Google Scholar 

  29. A. Manikandan, R. Sridhar, S. Arul Antony, S. Ramakrishna, A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014). https://doi.org/10.1016/j.molstruc.2014.07.054

  30. D. Gingasu, I. Mindru, L. Patron, J.M. Calderon-Moreno, O.C. Mocioiu, S. Preda, N. Stanica, S. Nita, N. Dobre, M. Popa, G. Gradisteanu, M.C. Chifiriuc, Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts. J. Nanomater. 2016, 2106756 (2016). https://doi.org/10.1155/2016/2106756

    Article  Google Scholar 

  31. D. Gingasu, I. Mindru, O.C. Mocioiu, S. Preda, N. Stanica, L. Patron, A. Ianculescu, O. Oprea, S. Nita, I. Paraschiv, M. Popa, C. Saviuc, C. Bleotu, M.C. Chifiriuc, Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract. Mater. Chem. Phys. 182, 219–230 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.026

    Article  Google Scholar 

  32. D. Gingasu, I. Mindru, S. Preda, J.M. Calderon-Moreno, D.C. Culita, L. Patron, L. Diamandescu, Green synthesis of cobalt ferrite nanoparticles using plant extract. Rev. Roum. Chim. 62, 647–655 (2017)

    Google Scholar 

  33. P. Mahajan, A. Sharma, B. Kaur, N. Goyal, S. Gautam, Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum 161, 389–397 (2019). https://doi.org/10.1016/j.vacuum.2018.12.021

    Article  ADS  Google Scholar 

  34. E.B.S. Da Silva; S.R. Da Silva Ferreira, A.O. Da Silva; J.A. Lopes Matias, A.R. Albuquerque, J.B.L. De Oliveira, M.A. Morales, Cashew gum as a sol-gel precursor for green synthesis of nanostructured Ni and Co ferrites, Int. J. Biol. Macromolec. 164, 4245–4251 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.252

  35. M.K. Satheeshkumar, E. Ranjith Kumar, C. Srinivasc, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V.C. Rao, D.L. Sastry, Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 469, 691–697 (2019). https://doi.org/10.1016/j.jmmm.2018.09.039

  36. E. De Caluwe, K. Halamova, P. Van Damme, Tamarindus indica L.—A review of traditional uses, phytochemistry and pharmacology. Afrika Focus 23, 53–83 (2010)

  37. A.O.E.E. Ahmed, S.M.H. Ayoub, Chemical composition and antimalarial activity of extracts of Sudanese Tamarindus indica L. (Fabaceae), The Pharma Innov. J. 4, 90–93 (2015)

  38. A.M.E. Sulieman, S.M. Alawad, M.A. Osman, E.A. Abdelmageed, Physicochemical characteristics of local varieties of tamarind (Tamarindus indica L) Sudan. Int. J. Plant Res. 5, 13–18 (2015)

    Google Scholar 

  39. N. Jayaprakash, J.J. Vijaya, K. Kaviyarasu, K. Kombaiah, L.J. Kennedy, R.J. Ramalingam, M.A. Munusamy, H.A. Al-Lohedan, Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J. Photochem. Photobiol. B Biol. 169, 178–185 (2017). https://doi.org/10.1016/j.jphotobiol.2017.03.013

    Article  Google Scholar 

  40. I. Mindru, D. Gingasu, L. Patron, A. Ianculescu, V.A. Surdu, D.C. Culita, S. Preda, C.D. Negut, O. Oprea, A new approach: Synthesis of cobalt aluminate nanoparticles using tamarind fruit extract. Mat. Sci. Eng. B 246, 42–48 (2019). https://doi.org/10.1016/j.mseb.2019.05.031

    Article  Google Scholar 

  41. M.B. Zaman, R. Poolla, P. Singh, T. Gudipat, Biogenic synthesis of CuO nanoparticles using Tamarindus indica L. and a study of their photocatalytic and antibacterial activity. Environ. Nanotechnol. Monit. Manag. 14, 100346 (2020). https://doi.org/10.1016/j.enmm.2020.100346

  42. R.A. Brand, Improving the validity of hyperfine field distributions from magnetic alloys: Part I: Unpolarized source. Nuclear Instrum. Method Phys. Res. B 28, 398–416 (1987). https://doi.org/10.1016/0168-583X(87)90182-0

    Article  ADS  Google Scholar 

  43. D. Gingasu, I. Mindru, D.C. Culita, L. Patron, J.M. Calderon-Moreno, P. Osiceanu, S. Preda, O. Oprea, V. Parvulescu, V. Teodorescu, J.P.S. Walsh, Structural, magnetic and catalytic properties of cobalt chromite obtained through precursor method. Mater. Res. Bull. 62, 52–64 (2015). https://doi.org/10.1016/j.materresbull.2014.11.009

    Article  Google Scholar 

  44. D. Gingasu, I. Mindru, L. Patron, S. Stoleriu, Synthesis of lithium ferrites from polymetallic carboxylates. J. Serb. Chem. Soc. 73, 979–988 (2008). https://doi.org/10.2298/JSC0810979G

    Article  Google Scholar 

  45. M. Razavi, S. Nyamathulla, H. Karimian, S.Z. Moghadamtousi, M.I. Noordin, Hydrogel polysaccharides of tamarind and xanthan to formulate hydrodynamically balanced matrix tablets of famotidine. Molecules 19, 1390–13931 (2014). https://doi.org/10.3390/molecules190913909

    Article  Google Scholar 

  46. P.G.K. Kumar, G. Battu, K.N.S.L. Raju, Isolation and evaluation of tamarind seed polysaccharide being used as a polymer in pharmaceutical dosage forms. Res. J. Pharm. Biol. Chem. Sci. 2, 274–290 (2011)

    Google Scholar 

  47. J.A. Rood, B.C. Noll, K.W. Henderson, Homochiral frameworks derived from magnesium, zinc and copper salts of l-tartaric acid. J. Solid State Chem. 123, 270–275 (2010). https://doi.org/10.1016/j.jssc.2009.11.003

    Article  ADS  Google Scholar 

  48. G. Concas, G. Spano, C. Cannas, A. Musinu, D. Peddis, G. Piccaluga, Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites. J. Magn. Magn. Mater. 321, 1893–1897 (2009). https://doi.org/10.1016/j.jmmm.2008.12.001

    Article  ADS  Google Scholar 

  49. R. Gans, Regarding the magnetic behaviour of isotropic ferromagnetic. Ann. Phys. 15, 28–34 (1932)

    Article  Google Scholar 

  50. Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017). https://doi.org/10.1038/s41598-017-09897-5

    Article  ADS  Google Scholar 

  51. S.R. Naik, A.V. Salker, S.M. Yusuf, S.S. Meena, Influence of Co2+ distribution and spin–orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals. J. Alloy Compd. 566, 54–61 (2013). https://doi.org/10.1016/j.jallcom.2013.02.163

    Article  Google Scholar 

  52. M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L. Martinez, J.S. Munoz, M. Mikhov, Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders. J. Magn. Magn. Mater. 183, 163–172 (1998). https://doi.org/10.1016/S0304-8853(97)01031-7

    Article  ADS  Google Scholar 

  53. S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, UK, 1997)

    Google Scholar 

  54. S. Xu, Y. Ma, B. Geng, X. Sun, M. Wang, The remanence ratio in CoFe2O4 nanoparticles with approximate single-domain sizes. Nanoscale Res. Let. 11, 471 (2016). https://doi.org/10.1186/s11671-016-1691-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work benefited from the support of the “Materials Science and Advanced Characterization Methods” Programme of the “Ilie Murgulescu” Institute of Physical Chemistry, financed by the Romanian Academy. C. Bartha, S. Greculeasa and N. Iacob would like to acknowledge the financial support from the Romanian Ministry of Research and Innovation through projects Core Program PN030101 (21N/2019) (C.B, S.G. and N.I.) and PN-III-P1-1.1.-PD-2019-0724 (S.G.). D. Gingasu and I. Mindru would like to thank Dr. Luminita Patron for her support and expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Gingasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gingasu, D., Mindru, I., Culita, D.C. et al. Structural, morphological and magnetic investigations on cobalt ferrite nanoparticles obtained through green synthesis routes. Appl. Phys. A 127, 892 (2021). https://doi.org/10.1007/s00339-021-05044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05044-0

Keywords

Navigation