Skip to main content

Advertisement

Log in

Novel Fe2CoNi(AlSi)x high-entropy alloys with attractive soft magnetic and mechanical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of Al and Si on microstructure evolution, mechanical, magnetic properties, and electrical resistivity of non-equimolar Fe2CoNi(AlSi)x (x = 0–0.4) high-entropy alloys (HEAs) was studied. This series of Fe2CoNi(AlSi)x HEAs has a dual-phase structure and shows an excellent combination of mechanical and soft magnetic properties. In particular, the Fe2CoNi(AlSi)0.4 HEA exhibits high compressive yield strength σ0.2 (887.6 MPa), fracture strain (39%), electrical resistivity ρ (84.8 μΩ cm), Ms (155.2 emu/g), and Hc (1.7 Oe). This work may provide a promising method of developing HEAs with an optimal balance of mechanical and soft magnetic properties under the addition of Al and Si suitable for wide-range industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Krings, A. Boglietti, A. Cavagnino, S. Sprague, IEEE Trans. Ind. Electron. 64, 2405 (2017). https://doi.org/10.1109/TIE.2016.2613844

    Article  Google Scholar 

  2. X. Yan, Y. Zhang, Scr. Mater. 187, 188 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.017

    Article  Google Scholar 

  3. G. Herzer, Acta Mater. 61, 718 (2013). https://doi.org/10.1016/j.actamat.2012.10.040

    Article  ADS  Google Scholar 

  4. T.D. Shen, S.W. Xin, B.R. Sun, J. Alloys Compd. 658, 703 (2016). https://doi.org/10.1016/j.jallcom.2015.10.260

    Article  Google Scholar 

  5. J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, K.B. Kim, J. Mater. Sci. Technol. 43, 135 (2020). https://doi.org/10.1016/j.jmst.2020.01.004

    Article  Google Scholar 

  6. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  7. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  9. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014). https://doi.org/10.1126/science.1254581

    Article  ADS  Google Scholar 

  10. Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, P.K. Liaw, Scr. Mater. 187, 202 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.022

    Article  Google Scholar 

  11. M. Wang, H. Cui, Y. Zhao, C. Wang, Na. Wei, Y. Zhao, X. Zhang, Q. Song, Mater. Des. 180, 107983 (2019). https://doi.org/10.1016/j.matdes.2019.107893

    Article  Google Scholar 

  12. E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4, 515 (2019). https://doi.org/10.1038/s41578-019-0121-4

    Article  ADS  Google Scholar 

  13. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 66, 1984 (2014). https://doi.org/10.1007/s11837-014-1085-x

    Article  Google Scholar 

  14. J. Miao, H. Liang, A. Zhang, J. He, J. Meng, Y. Lu, Tribol. Int. 153, 106599 (2021). https://doi.org/10.1016/j.triboint.2020.106599

    Article  Google Scholar 

  15. H. Liang, D. Qiao, J. Miao, Z. Cao, H. Jiang, T. Wang, J. Mater. Sci. Technol. 85, 224 (2021). https://doi.org/10.1016/j.jmst.2020.12.050

    Article  Google Scholar 

  16. M.C. Gao, D.B. Miracle, D. Maurice, X. Yan, Y. Zhang, J.A. Hawk, J. Mater. Res. 33, 3138 (2018). https://doi.org/10.1557/jmr.2018.323

    Article  ADS  Google Scholar 

  17. Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, Nature 574, 223 (2019). https://doi.org/10.1038/s41586-019-1617-1

    Article  ADS  Google Scholar 

  18. J. Cieslak, J. Tobola, M. Reissner, Intermetallics 118, 106672 (2020). https://doi.org/10.1016/j.intermet.2019.106672

    Article  Google Scholar 

  19. M.S.K.K. Nartu, A. Jagetia, V. Chaudhary, S.A. Mantri, E. Ivanov, N.B. Dahotre, R.V. Ramanujan, R. Banerjee, Scr. Mater. 187, 30 (2020). https://doi.org/10.1016/j.scriptamat.2020.05.063

    Article  Google Scholar 

  20. T.T. Zuo, R.B. Li, X.J. Ren, Y. Zhang, J. Magn. Magn. Mater. 371, 60–68 (2014). https://doi.org/10.1016/j.jmmm.2014.07.023

    Article  ADS  Google Scholar 

  21. Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, Sci. Rep. 3, 1455 (2013). https://doi.org/10.1038/srep01455

    Article  ADS  Google Scholar 

  22. T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130, 10 (2017). https://doi.org/10.1016/j.actamat.2017.03.013

    Article  ADS  Google Scholar 

  23. K.X. Zhou, B.R. Sun, G.Y. Liu, X.W. Li, S.W. Xin, P.K. Liaw, T.D. Shen, Intermetallics 122, 106801 (2020). https://doi.org/10.1016/j.intermet.2020.106801

    Article  Google Scholar 

  24. Q. Zhang, H. Xu, X.H. Tan, X.L. Hou, S.W. Wu, G.S. Tan, L.Y. Yu, J. Alloys Compd. 693, 1061 (2017). https://doi.org/10.1016/j.jallcom.2016.09.271

    Article  Google Scholar 

  25. L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Appl. Phys. A. Mater. Sci. Process. 119, 291 (2015). https://doi.org/10.1007/s00339-014-8964-4

    Article  ADS  Google Scholar 

  26. H. Zhang, Y. Yang, L. Liu, C. Chen, T. Wang, R. Wei, T. Zhang, Y. Dong, F. Li, J. Magn. Magn. Mater. 478, 116 (2019). https://doi.org/10.1016/j.jmmm.2019.01.096

    Article  ADS  Google Scholar 

  27. T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Intermetallics 100, 1 (2018). https://doi.org/10.1016/j.intermet.2018.05.014

    Article  Google Scholar 

  28. Z. Li, Y. Gu, M. Pan, C. Wang, Z. Wu, X. Hou, X. Tan, H. Xu, J. Alloys Compd. 792, 215 (2019). https://doi.org/10.1016/j.jallcom.2019.03.411

    Article  Google Scholar 

  29. P. Li, A. Wang, C.T. Liu, Intermetallics 87, 21 (2017). https://doi.org/10.1016/j.intermet.2017.04.007

    Article  Google Scholar 

  30. B. Zhang, Y. Duan, X. Wen, G. Ma, T. Wang, X. Dong, H. Zhang, N. Jia, Y. Zeng, J. Alloys Compd. 790, 179 (2019). https://doi.org/10.1016/j.jallcom.2019.03.152

    Article  Google Scholar 

  31. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, R. Banerjee, Acta Mater. 116, 63 (2016). https://doi.org/10.1016/j.actamat.2016.06.025

    Article  ADS  Google Scholar 

  32. X. Chang, M. Zeng, K. Liu, L. Fu, Adv. Mater. 32, 1907226 (2020). https://doi.org/10.1002/adma.201907226

    Article  Google Scholar 

  33. C. Liu, W. Peng, C.S. Jiang, H. Guo, J. Tao, X. Deng, Z. Chen, J. Mater. Sci. Technol. 35, 1175 (2019). https://doi.org/10.1016/j.jmst.2018.12.014

    Article  Google Scholar 

  34. C. Jung, K. Kang, A. Marshal, K.G. Pradeep, J. Seol, H.M. Lee, P. Choi, Acta Mater. 171, 31 (2019). https://doi.org/10.1016/j.actamat.2019.04.007

    Article  ADS  Google Scholar 

  35. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008). https://doi.org/10.1002/adem.200700240

    Article  Google Scholar 

  36. X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  37. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011). https://doi.org/10.1063/1.3587228

    Article  ADS  Google Scholar 

  38. Y. Zhang, M. Zhang, D. Li, T. Zuo, K. Zhou, M.C. Gao, B. Sun, T. Shen, Metals 9, 382 (2019). https://doi.org/10.3390/met9030382

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Nos. 2019YFA0209901 and 2018YFA0702901), Liao Ning Revitalization Talents Program (No. XLYC1807047), Fund of Science and Technology on Reactor Fuel and Materials Laboratory (No. 6142A06190304), and Fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, T., Wu, S., Wang, M. et al. Novel Fe2CoNi(AlSi)x high-entropy alloys with attractive soft magnetic and mechanical properties. Appl. Phys. A 127, 829 (2021). https://doi.org/10.1007/s00339-021-04988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04988-7

Keywords

Navigation