CORRECTION

Correction to: Effects of DL-alanine fuel and annealing on combustion derived MgFe₂O₄ powder with low carbon content and improved magnetic properties

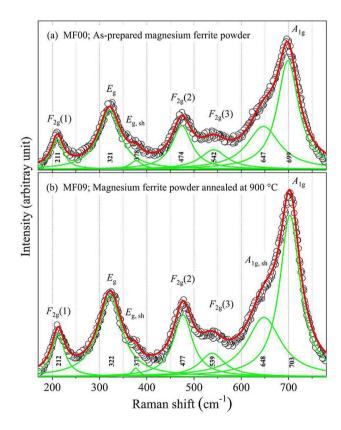
Sudhanshu Kumar¹ · K. Sreenivas¹

Published online: 20 August 2021

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Correction to: Applied Physics A (2021) 127:165 https://doi.org/10.1007/s00339-020-04246-2

In Table 3, second column, the heading was mistyped as, 'D'. The correct heading is ' r_A (Å)'.


In Fig. 4, assignment of two peaks as $E_{\rm g}$ and $E_{\rm g,sh}$ was missing. This has been corrected in the new figure given below.

Equation (28) and the related text are corrected and should be read as:

Magnetic moments per unit molecule (μ) summarized in Table 8 are calculated from the following expression [21, 27, 43],

 $\mu = \frac{MM_S}{\mu_B N_A} = \frac{MM_S}{5.585} \tag{28}$

where M (in SI unit) is the molar mass of MgFe₂O₄, M_S (in emu/g) is the observed saturation magnetization, Bohr magneton $\mu_B = 9.274 \times 10^{-24} \text{JT}^{-1}$, and $N_A = 6.022 \times 10^{23}$ is Avogadro number.

Fig. 4 Raman spectra of **a** as-prepared powders and **b** powders annealed at 900 °C for 4 h. The measured Raman spectra are shown with (black circles), the de-convoluted peaks are in green, and the fitted line is in red color

The original article can be found online at https://doi.org/10.1007/s00339-020-04246-2.

 K. Sreenivas kondepudysreenivas@gmail.com
Sudhanshu Kumar sudhanshu24july@gmail.com

Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

685 Page 2 of 2 S. Kumar, K. Sreenivas

These corrections will not affect the discussions and conclusion.

The authors apologize for this inconvenience.

The original article has been corrected.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

