Skip to main content
Log in

Influence of electrochemical reduction on the optical properties of TiO2 nanotubes under ambient conditions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titania nanotubes (TNTs) are attractive for a variety of applications. In this study, amorphous TNTs have been synthesized by anodization. Annealing of anodized TNTs has been performed to get the anatase phase. Amorphous and annealed TNTs have been electrochemically reduced using 1 M KOH solution. For characterization of amorphous, annealed, electrochemically reduced amorphous and annealed TNTs, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) techniques were used. The presence of C, F and K is detected from the full scan of X-ray photoelectron spectroscopy (XPS) analysis. The effect of electrochemical reduction on optical properties of TNTs under ambient conditions is studied using photoluminescence (PL) spectroscopy. The electrochemical reduction does not cause any appreciable morphological changes (evident from SEM images). However, XRD results show that this treatment produces strain in the anatase phase as a result of the increase in ‘d’ spacing between (101) and (202) planes. Photoluminescence spectroscopy of TNTs indicates that the defect states lie in the visible region for all the samples. These defects states have been found at 2.93 eV, 2.67 eV, 2.53 eV and 2.35 eV energies for amorphous TNTs. For annealed TNTs, these states have been observed at 2.67 eV and 2.35 eV. PL signal for amorphous TNTs is higher than the annealed TNTs. The electrochemical reduction treatment of the amorphous TNTs efficiently removes defects like F, K and C in addition to creating oxygen vacancies as compared to annealed TNTs. As these electrochemically reduced amorphous TNTs are exposed to ambient air for 7 days, the oxygen vacancies are filled. Moreover, in addition to removal of oxygen vacancies, these exposed and electrochemically reduced amorphous TNTs are devoid of other defects like F, K and C. This results in the significant reduction in PL intensity for such amorphous TNTs samples 7 days after electrochemical reduction. Due to the oxygen scavenging ability of electrochemically reduced TNTs, they could be used for vacuum improvement in various devices. This type of electrochemical reduction/recovery cycle makes these TNTs useful for the solar cell application under special (reduced/absence of oxygen) conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Nanotechnol. 19, 145605 (2008)

    Article  ADS  Google Scholar 

  2. J.C. Yu, J. Yu, J. Zhao, Appl. Catal. B 36, 31 (2002)

    Article  Google Scholar 

  3. Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Nanoletter. 2(7), 717–720 (2002)

    Article  ADS  Google Scholar 

  4. N. Wu, J. Wang, D.N. Tafen, H. Wang, J. Zheng, J.P. Lewis, X. Liu, S. S. Leonard 2, 6679 (2010)

    Google Scholar 

  5. B.S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. Leclere, G.E. Thompson, J.M. Macak, P. Schmuki, Adv. Mater. 20(21), 4135 (2008)

    Google Scholar 

  6. N.M. Deyab, P. Steegstra, A. Hubin, M.P. Delplancke, H. Rahier, N.K. Allam, J. Power Sources 280, 339 (2015)

    Article  ADS  Google Scholar 

  7. C. Longo, J. Freitas, M.A. De Paoli, J. Photochem. Photobiol., A 159, 33 (2003)

    Article  Google Scholar 

  8. Y.Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, J. Am. Chem. Soc. 131, 4230 (2009)

    Article  Google Scholar 

  9. W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, J. Am. Chem. Soc. 136, 9280 (2014)

    Article  Google Scholar 

  10. F. Ahmed, S. A. Pervez, A. Aljaafari, and A. Alshoaibi (2019). Micromachine 6.

  11. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)

    Article  ADS  Google Scholar 

  12. T. Close, G. Tulsyan, C.A. Diaz, S.J. Weinstein, C. Richter, Nat. Nanotechnol. 10, 418 (2015)

    Article  ADS  Google Scholar 

  13. Y. Suzuki, Yoshikawa, and Susumu. J. Mater. Res. 19, 982 (2004)

    Article  ADS  Google Scholar 

  14. J. Lee, H.K. Ju, J.K. Lee, H.S. Kim, J. Lee, Electrochem. Commun. 12, 210 (2010)

    Article  Google Scholar 

  15. S.I. Na, S.S. Kim, W.K. Hong, J.W. Park, J. Jo, Y.C. Nah, T. Lee, D.Y. Kim, Electrochim. Acta 53, 2560 (2008)

    Article  Google Scholar 

  16. M. Liang, X. Li, L. Jiang, P. Ran, H. Wang, X. Chen, C. Xu, M. Tian, S. Wang, J. Zhang, T. Cui, L. Qu, Appl. Catalysis B: Environ. 277, 119231 (2020)

    Article  Google Scholar 

  17. N.K. Allam, C.A. Grimes, J. Phys. Chem. C 111, 13028 (2007)

    Article  Google Scholar 

  18. N. Ahmed, A.M. Hafez, M. Salama, N.K. Allam, ChemNanoMat. 6(11), 1617–1619 (2020)

    Article  Google Scholar 

  19. S. Sreekantan, K.A. Saharudin, L.C. Wei, IOP Conf. Series: Mater. Sci. Eng. 21, 012002 (2011)

    Article  Google Scholar 

  20. T.K. Das, P. Ilaiyaraja, P.S.V. Mocherla, G.M. Bhalerao, C. Sudakar, Sol. Energy Mater. Sol. Cells 144, 194 (2016)

    Article  Google Scholar 

  21. C. Richter, C.A. Schmuttenmaer, Nat. Nanotechnol. 5, 769 (2010)

    Article  ADS  Google Scholar 

  22. J. Zhao, X. Wang, R. Chen, L. Li, Solid Sate Communications 134, 705 (2005)

    Article  ADS  Google Scholar 

  23. S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, C. Wen, Acta Biomater. 8, 2875 (2012)

    Article  Google Scholar 

  24. H. Fraoucene, V.A. Sugiawati, D. Hatem, M.S. Belkaid, F. Vacandio, M. Eyraud, M. Pasquinelli, T. Djenizian, Front. Chem. 7, 66 (2019)

    Article  ADS  Google Scholar 

  25. A.W. Tan, B. Pingguan-Murphy, R. Ahmad, S.A. Akbar, Ceram. Int. 38, 4421 (2012)

    Article  Google Scholar 

  26. A. Prusi, L. Arsov, B. Haran, B.N. Popov, J. Electrochem. Soc. 149, B491–B498 (2002)

    Article  Google Scholar 

  27. W.R. Kim, H. Park, W.Y. Choi, Nanoscale Res. Lett. 10, 1 (2015)

    Article  Google Scholar 

  28. D. Guan, C. Cai, Y. Wang, J. Nanosci. Nanotechnol. 11, 3641 (2011)

    Article  Google Scholar 

  29. Y. Bai, I.S. Park, H.H. Park, M.H. Lee, T.S. Bae, W. Duncan, M. Swain, Surf. Interface Anal. 43, 998 (2011)

    Article  Google Scholar 

  30. W.A. Abbas, I.H. Abdullah, B.A. Ali, N. Ahmed, A.M. Mohamed, M.Y. Rezk, N. Ismail, M.A. Mohamed, N.K. Allam, Nanoscale Adv. 1, 2801 (2019)

    Article  ADS  Google Scholar 

  31. N.K. Allam, C.A. Grimes, J. Phys. Chem. C 113, 7996 (2009)

    Article  Google Scholar 

  32. J.M. Macak, S. Aldabergerova, A. Ghicov, P. Schmuki, Phys. Status Solidi (A) Appl Mater. Sci. 203, 67 (2006)

    Article  ADS  Google Scholar 

  33. S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, Eur. J. Inorg. Chem. 2010(27), 4351 (2010)

    Article  Google Scholar 

  34. N.K. Allam, M.A. El-Sayed, J. Phys. Chem. C 114, 12024 (2010)

    Article  Google Scholar 

  35. B.S. Shaheen, H.G. Salem, M.A. El-Sayed, N.K. Allam, J. Phys. Chem. C 117, 18502 (2013)

    Article  Google Scholar 

  36. X. Liu, G. Zhu, X. Wang, X. Yuan, T. Lin, F. Huang, Adv. Energy Mater. 6, 1 (2016)

    Google Scholar 

  37. N.K. Allam, K. Shankar, C.A. Grimes, Adv. Mater. 20, 3942 (2008)

    Article  Google Scholar 

  38. N.K. Allam, A.J. Poncheri, M.A. El-Sayed, ACS Nano 5, 5056 (2011)

    Article  Google Scholar 

  39. N.K. Allam, N.M. Deyab, and N. Abdel Ghany, Phys. Chem. Chemical Phys. 15, 12274 (2013)

    Article  Google Scholar 

  40. N. Ahmed, M. Ramadan, W.M.A. El, A.A. Farghali, N.K. Allam, Int. J. Hydrogen Energy 43(46), 21219–21230 (2018)

    Article  Google Scholar 

  41. J.O. Tijani, O.O. Fatoba, G. Madzivire, L.F. Petrik, Water. Air, and Soil Pollution 225(9), 1 (2014)

    Google Scholar 

  42. N. Ahmed, A.A. Farghali, W.M.A. El Rouby, N.K. Allam, Int. J. Hydrogen Energy 42, 29131 (2017)

    Article  Google Scholar 

  43. N.K. Allam, C.A. Grimes, Sol. Energy Mater. Sol. Cells 92, 1468 (2008)

    Article  Google Scholar 

  44. N.T. Ly, V.C. Nguyen, T.H. Dao, L.H.H. To, D.L. Pham, H.M. Do, D.L. Vu, V.H. Le, Adv. Nat. Sci: Nanosci Nanotechnol. 5, 015004 (2014)

    ADS  Google Scholar 

  45. M. Saif, S.M.K. Aboul-Fotouh, S.A. El-Molla, M.M. Ibrahim, L.F.M. Ismail,  J Nanopart Res, 14, 1227, (2012)

  46. M.A. Rasheed, K. Ahmad, N. Khaliq, Y. Khan, M. Aftab Rafiq, A. Waheed, A. Shah, A. Mahmood, G. Ali, Curr. Appl. Phys. 18, 297 (2018)

    Article  ADS  Google Scholar 

  47. M.M. Soliman, M.H. Al Haron, M. Samir, S.A. Tolba, B.S. Shaheen, A.W. Amer, O.F. Mohammed, N.K. Allam, Phys. Chem. Chem. Phys. 20, 5975 (2018)

    Article  Google Scholar 

  48. M.A. Rasheed, R. Rahimullah, S.K. Uddin, N. Khaliq, Y. Khan, A. Waheed, A. Shah, A. Mahmood, G. Ali, Appl. Nanosci. (Switzerland) 9, 1731 (2019)

    Article  ADS  Google Scholar 

  49. M. Yurddaskal, T. Dikici, S. Yildirim, M. Yurddaskal, M. Toparli, E. Celik, J. Alloy. Compd. 651, 59 (2015)

    Article  Google Scholar 

  50. L. Zheng, C. Wang, Y. Dong, H. Bian, T.F. Hung, J. Lu, Y.Y. Li, Appl. Surf. Sci. 362, 399 (2016)

    Article  ADS  Google Scholar 

  51. G. Silversmit, H. Poelman, D. Depla, N. Barrett, G.B. Marin, R. De Gryse, Surf. Interface Anal. 38, 1257 (2006)

    Article  Google Scholar 

  52. H. Lv, N. Li, H. Zhang, Y. Tian, H. Zhang, X. Zhang, H. Qu, C. Liu, C. Jia, J. Zhao, Y. Li, Sol. Energy Mater. Sol. Cells 150, 57 (2016)

    Article  Google Scholar 

  53. I. Junkar, M. Kulkarni, B. Drašler, N. Rugelj, N. Recek, D. Drobne, J. Kovač, P. Humpolicek, A. Iglič, M. Mozetič, J. Phys. D: Appl. Phys. 49, 244002 (2016)

    Article  ADS  Google Scholar 

  54. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, J. Mater. Chem A. 1, 5766 (2013)

    Article  Google Scholar 

  55. L.B. Fen, T.K. Han, N.M. Nee, B.C. Ang, M.R. Johan, Appl. Surf. Sci. 258, 431 (2011)

    Article  ADS  Google Scholar 

  56. S.T. Nishanthi, E. Subramanian, B. Sundarakannan, D.P. Padiyan, Sol. Energy Mater. Sol. Cells 132, 204 (2015)

    Article  Google Scholar 

  57. D. Fang, K. Huang, S. Liu, J. Huang, J. Braz. Chem. Soc. 19, 1059 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of PIEAS, NCP, NILOP-C and PTPRI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamran Ahmad or Muhammad Asim Rasheed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Bilal, M., Rasheed, M.A. et al. Influence of electrochemical reduction on the optical properties of TiO2 nanotubes under ambient conditions. Appl. Phys. A 127, 624 (2021). https://doi.org/10.1007/s00339-021-04746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04746-9

Keywords

Navigation