Skip to main content
Log in

Effect of characterization probes on the properties of graphene oxide and reduced graphene oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene Oxide (GO) has tremendous application potential as a functional material. However, we found GO to be extremely sensitive toward external energy in the form of heat, light, X-rays, etc. It is because the Oxygen Functional Groups (epoxide, carbonyl, carboxyl, hydroxyl, etc.) attached to the underlying monomolecular layer of carbon in GO are prone to reduction through externally supplied energy leading to the formation of reduced Graphene Oxide (rGO). Eventually, GO lacks preserving its original chemical composition, physical and chemical properties while interacting with the measurement probes. In addition, GO also undergoes a gradual reduction over a period in an ambient environment. This obvious behavior of GO compelled us to re-examine the related literature. In this report, we studied the detailed effects of various characterization tools, possible ways to minimize the side-effects while measurement, and an alternative way to use GO for its various uses. This involved the review of not only the different important parameters of the characterizing probes but also its synthesis protocols and the environment of its storing desiccator. In this direction, we report a careful set of experiments using X-ray Diffraction, X-ray Photoemission Spectroscopy, Raman Spectroscopy, UV–Visible Spectroscopy, Photoluminescence Spectroscopy, Transmission Electron Microscopy and Atomic Force Microscopy. This elucidates the precautions needed while establishing the best practices in GO synthesis and characterization for addressing the exact functional requirements related to an end application. Also, we did a similar study for reduced Graphene Oxide (rGO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Obata, K. Saiki, T. Taniguchi, T. Ihara, Y. Kitamura, Y. Matsumoto, Graphene oxide: a fertile nanosheet for various applications. J. Phys. Soc. Japan 84, 1–18 (2015)

    Article  Google Scholar 

  2. S.I. Abdullah, M.N.M. Ansari, Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J. 11, 151–156 (2015)

    Article  Google Scholar 

  3. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian, Nonlinear optical ptoperties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 94, 021902 (2009)

    Article  ADS  Google Scholar 

  4. X. Wang, J. Zhang, X. Mei, J. Miao, X. Wang, Laser-induced forward transfer of graphene oxide. Appl. Phys. A 127, 207 (2021)

    Article  ADS  Google Scholar 

  5. S. Mittal, V. Kumar, N. Dhiman, L.K.S. Chauhan, R. Pasricha, A.K. Pandey, Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci. Rep. 6, 39548 (2016)

    Article  ADS  Google Scholar 

  6. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  7. V.A. Smirnov, N.N. Denisov, M.V. Alfimov, Photochemical reduction of graphite oxide. Nanotechnologies Russ. 8, 1–22 (2013)

    Article  Google Scholar 

  8. M. Wang, L.D. Duong, N.T. Mai, S. Kim, Y. Kim, H. Seo, Y.C. Kim, W. Jang, Y. Lee, J. Suhr, J. Do Nam, All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. ACS Appl. Mater. Interfaces 7, 1348–1354 (2015)

    Article  Google Scholar 

  9. B. Li, H. Cao, ZnO@ graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21, 3346–3349 (2011)

    Article  Google Scholar 

  10. Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008)

    Article  Google Scholar 

  11. T. Al-Gahouari, P. Sayyad, G. Bodkhe, N. Ingle, M. Mahadik, S. Shirsat, M. Shirsat, Controlling reduction degree of graphene oxide-based electrode for improving the sensing performance toward heavy metal ions. Appl. Phys. A 127, 170 (2021)

    Article  ADS  Google Scholar 

  12. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalt. Trans. 42(16), 5682–5689 (2013)

    Article  Google Scholar 

  13. X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U. S. A. 113, 13953–13958 (2016)

    Article  Google Scholar 

  14. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010)

    Article  Google Scholar 

  15. O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, The use of a glucose- reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 2, 13773–13781 (2012)

    Article  Google Scholar 

  16. O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, E. Ghasemi, Accelerated differentiation of neural stem cells intoneurons on ginseng-reduced graphene oxide sheets. Carbon 66, 395–406 (2014)

    Article  Google Scholar 

  17. X. Wang, M. Yu, W. Zhang, B. Zhang, L. Dong, Synthesis and microwave absorption properties of graphene/nickel composite materials. Appl. Phys. A 118, 1053–1058 (2015)

    Article  ADS  Google Scholar 

  18. M. Goumri, J.W. Venturini, A. Bakour, M. Khenfouch, M. Baitoul, Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA. Appl. Phys. A 122, 212 (2016)

    Article  ADS  Google Scholar 

  19. N. Bano, I. Hussain, A.M. El-Naggar, A.A. Albassam, Reduced graphene oxide nanocomposites for optoelectronics applications. Appl. Phys. A 125, 215 (2019)

    Article  ADS  Google Scholar 

  20. M. Sarno, A. Senatore, C. Cirillo, V. Petrone, P. Ciambelli, Oil lubricant tribological behaviour improvement through dispersion of few layer graphene oxide. J. Nanosci. Nanotechnol. 14, 4960–4968 (2014)

    Article  Google Scholar 

  21. B.C. Brodie, On the atomic weight of graphite. Phil. Trans. R. Soc. L. 149, 249–259 (1859)

    Article  ADS  Google Scholar 

  22. F. Gottschalk, Beiträge zur kenntniss der graphitsäure. J. Prakt. Chem. 95, 321–350 (1865)

    Article  Google Scholar 

  23. L. Staudenmaier, Verfahrenzur darstellung der graphitslure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)

    Article  Google Scholar 

  24. M. Berthelot, Recherches sur lesétats du carbonne. Ann. Chim. Phys. 19, 391–417 (1870)

    Google Scholar 

  25. W. Luzi, Beiträge zur kenntnis des graphitkohlenstoffs. Z. Naturwiss 64, 224–269 (1891)

    Google Scholar 

  26. G. Charpy, Sur la formation de l’oxyde graphitique et la définition du graphite. C. R. Hebd. Seances Acad. Sci. 148, 920–923 (1909)

    Google Scholar 

  27. H. Hamdi, Zur kenntnis der kolloidchemischen eigenschaften des humus disperscoidchemische beobachtungen graphitoxid. Kolloid Beihefte 54, 554–643 (1942)

    Article  Google Scholar 

  28. E. Weinschenk, Über den graphitkohlenstoff und die gegenseitigen beziehungenzwischen graphit Graphitit and Graphitoxid. Z. Krist. 28, 291–304 (1897)

    Google Scholar 

  29. V. Kohlschutter, P. Haenni, Zur kenntnis des graphitischen kohlenstoffs und der graphitsäure. Z. Anorg. Chem. 105, 121–144 (1919)

    Article  Google Scholar 

  30. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  31. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1: high yield synthesis and flexibility of the particles. Carbon 42, 2929–2937 (2004)

    Google Scholar 

  32. H.L. Poh, F. Šaněk, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera, Graphenes prepared by staudenmaier, hofmann and hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4, 3515–3522 (2012)

    Article  ADS  Google Scholar 

  33. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of grapheme oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  34. C. Tao, J. Wang, S. Qin, Y. Lv, Y. Long, H. Zhu, Z. Jiang, Fabrication of pH-sensitive graphene oxide–drug supramolecular hydrogels as controlled release systems. J. Mater. Chem. 22, 24856–24861 (2012)

    Article  Google Scholar 

  35. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  ADS  Google Scholar 

  36. S. Peng, X. Fan, S. Li, J. Zhang, Green synthesis and characterization of graphite oxide by orthogonal experiment. J. Chil. Chem. Soc. 58, 2213–2217 (2013)

    Article  Google Scholar 

  37. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987–1992 (2009)

    Article  Google Scholar 

  38. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009)

    Article  Google Scholar 

  39. J.H. Chu, J. Kwak, S.D. Kim, M.J. Lee, J.J. Kim, S.D. Park, J.K. Choi, G.H. Ryu, K. Park, S.Y. Kim, J.H. Kim, Z. Lee, Y.W. Kim, S.Y. Kwon, Monolithic graphene oxide sheets with controllable composition. Nat. Commun. 5, 3383 (2014)

    Article  ADS  Google Scholar 

  40. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 21, 3514–3520 (2009)

    Article  Google Scholar 

  41. S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. Dotzer, M. Röckert, J. Xiao, C. Papp, O. Lytken, H.P. Steinrück, P. Müller, A. Hirsch, Wet chemical synthesis of graphene. Adv. Mater. 25, 3583–3587 (2013)

    Article  Google Scholar 

  42. N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Simple room-temperature preparation of high-yield large area graphene oxide. Int. J. Nanomed. 6, 3443–3448 (2011)

    Article  Google Scholar 

  43. H.A. Becerril, J. Mao, Z. Liu, R.R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)

    Article  Google Scholar 

  44. L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li, X. Zhao, C. Gao, An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 6, 5716 (2015)

    Article  ADS  Google Scholar 

  45. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  46. P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22, 055705 (2011)

    Article  ADS  Google Scholar 

  47. P. Ranjan, S. Agrawal, A. Sinha, T.R. Rao, J. Balakrishnan, A.D. Thakur, A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci. Rep. 8, 12007 (2018)

    Article  ADS  Google Scholar 

  48. F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014)

    Article  Google Scholar 

  49. L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537–544 (2010)

    Article  Google Scholar 

  50. O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49, 11–18 (2011)

    Article  Google Scholar 

  51. D.W. Chang, H.J. Choi, I.Y. Jeon, J.M. Seo, L. Dai, J.B. Baek, Solvent-free mechanochemical reduction of graphene oxide. Carbon 77, 501–507 (2014)

    Article  Google Scholar 

  52. S. Pei, J. Zhao, J. Du, W. Ren, H.M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48, 4466–4474 (2010)

    Article  Google Scholar 

  53. D. He, Z. Kou, Y. Xiong, K. Cheng, X. Chen, M. Pan, S. Mu, Simultaneous sulfonation and reduction of graphene oxide as highly efficient supports for metal nanocatalysts. Carbon 66, 312–319 (2014)

    Article  Google Scholar 

  54. Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl. Mater. Interfaces 2, 3461–3466 (2010)

    Article  Google Scholar 

  55. O. Akhavan, E. Ghaderi, S.A. Shirazian, R. Rahighi, Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97, 71–77 (2016)

    Article  Google Scholar 

  56. X. Chen, D. Meng, B. Wang, B.W. Li, W. Li, C.W. Bielawski, R.S. Ruoff, Rapid thermal decomposition of confined graphene oxide films in air. Carbon 101, 71–76 (2016)

    Article  Google Scholar 

  57. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon 47, 145–152 (2009)

    Article  Google Scholar 

  58. S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16, 103 (2016)

    Article  ADS  Google Scholar 

  59. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K.M. Abramski, Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 20, 19463–19473 (2012)

    Article  ADS  Google Scholar 

  60. D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, M. Chhowalla, High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413–1416 (2016)

    Article  ADS  Google Scholar 

  61. S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)

    Article  ADS  Google Scholar 

  62. A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene oxide: origin of acidity, its INSTABILITY in water, and a new dynamic structural model. ACS Nano 7, 576–588 (2013)

    Article  Google Scholar 

  63. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)

    Article  Google Scholar 

  64. H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 4, 1539 (2013)

    Article  ADS  Google Scholar 

  65. D.A. Sokolov, K.R. Shepperd, T.M. Orlando, Formation of graphene features from direct laser-induced reduction of graphite oxide. J. Phys. Chem. Lett. 1, 2633–2636 (2010)

    Article  Google Scholar 

  66. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  67. K. Krishnamoorthy, M. Veerapandian, R. Mohan, S. Kim, Investigation of raman and photoluminescence studies of reduced graphene oxide sheets. Appl. Phys. A 106, 501–506 (2012)

    Article  ADS  Google Scholar 

  68. J.J. Zhang, H. Yang, G. Shen, P. Cheng, J.J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)

    Article  Google Scholar 

  69. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  70. K.S. Suslick, N.C. Eddingsaas, D.J. Flannigan, S.D. Hopkins, H. Xu, Extreme conditions during multibubble cavitation: sonoluminescence as a spectroscopic probe. Ultrason. Sonochem. 18, 842–846 (2011)

    Article  Google Scholar 

  71. Y. Iida, T. Tuziuti, K. Yasui, T. Kozuka, A. Towata, Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrason. Sonochem. 15, 995–1000 (2008)

    Article  MATH  Google Scholar 

  72. A. Henglein, M. Gutierrez, Chemical effects of continuous and pulsed ultrasound: a comparative study of polymer degradation and iodide oxidation. J. Phys. Chem. 94, 5169–5172 (1990)

    Article  Google Scholar 

  73. G. Price, P. West, P. Smith, Control of polymer structure using power ultrasound. Ultrason. Sonochem. 1, S51–S57 (1994)

    Article  Google Scholar 

  74. J. Robertson, E.P.O. Reilly, Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, 2946–2957 (1987)

    Article  ADS  Google Scholar 

  75. T. Heitz, C. Godet, J.E. Bouree, B. Drevillon, J.P. Conde, Radiative and nonradiative recombination in polymerlike α−C: h films. Phys. Rev. B 60, 6045–6052 (1999)

    Article  ADS  Google Scholar 

  76. A. Sinha, A.D. Thakur, Experimental bandgap tuning of graphene oxide with varying degree of oxidation and reduction. AIP Conf. Proc. 2220, 140008 (2020)

    Article  Google Scholar 

  77. S.K. Cushing, M. Li, F. Huang, N. Wu, Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano 8, 1002–1013 (2014)

    Article  Google Scholar 

  78. S.K. Pal, Versatile photoluminescence from graphene and its derivatives. Carbon 88, 86–112 (2015)

    Article  Google Scholar 

  79. Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794 (2016)

    Article  ADS  Google Scholar 

  80. M. Li, S.K. Cushing, X. Zhou, S. Guo, N. Wu, Fingerprinting photoluminescence of functional groups in graphene oxide. J. Mater. Chem. 22, 23374–23379 (2012)

    Article  Google Scholar 

  81. S. Gilje, S. Dubin, A. Badakhshan, J. Farrar, S.A. Danczyk, R.B. Kaner, Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 22, 419–423 (2010)

    Article  Google Scholar 

  82. M. Kashif, E. Jaafar, P. Bhadja, F.W. Low, S.K. Sahari, S. Hussain, F.K. Loong, A. Ahmad, T.S. AlGarni, M. Shafa, H. Asghar, S.A.A. Tamrah, Effect of potassium permanganate on morphological, structural and electro-optical properties of graphene oxide thin films. Arabian J. Chem. 14, 102953 (2021)

    Article  Google Scholar 

  83. M. Rasheed, S. Shihab, O.W. Sabah, An investigation of the structural, electrical and optical properties of graphene-oxide thin films using different solvents. J. Phys. Conf. Ser. 1795, 012052 (2021)

    Article  Google Scholar 

  84. A. Arabpour, S. Dan, H. Hashemipour, Preparation and optimization of novel graphene oxide and adsorption isotherm study of methylene blue. Arabian J. Chem. 14, 103003 (2021)

    Article  Google Scholar 

  85. M.C.F. Costa, V.S. Marangoni, P.R. Ng, H.T.L. Nguyen, A. Carvalho, A.H.C. Neto, Accelerated synthesis of graphene oxide from graphene. Nanomaterials 11, 551 (2021)

    Article  Google Scholar 

  86. J. Kim, J.H. Eum, J. Kang, O. Kwon, H. Kim, D.W. Kim, Tuning the hierarchical pore structure of graphene oxide through dual thermal activation for high-performance supercapacitor. Sci. Rep. 11, 2063 (2021)

    Article  ADS  Google Scholar 

  87. G. Lu, K. Yu, Z. Wen, J. Chen, Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5, 1353–1368 (2013)

    Article  ADS  Google Scholar 

  88. F. Yin, S. Wu, Y. Wang, L. Wu, P. Yuan, X. Wang, Self-assembly of mildly reduced graphene oxide monolayer for enhanced raman scattering. J. Solid State Chem. 237, 57–63 (2016)

    Article  ADS  Google Scholar 

  89. M.A. Khaderbad, V. Tjoa, T.Z. Oo, J. Wei, M. Sheri, R. Mangalampalli, V.R. Rao, S.G. Mhaisalkarb, N. Mathews, Facile fabrication of graphene devices through metalloporphyrin induced photocatalytic reduction. RSC Adv. 2, 4120–4124 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AS thanks support from the University Grants Commission (UGC), India for financial support. The authors thank MHRD, Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay D. Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8047 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A., Ranjan, P. & Thakur, A.D. Effect of characterization probes on the properties of graphene oxide and reduced graphene oxide. Appl. Phys. A 127, 585 (2021). https://doi.org/10.1007/s00339-021-04734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04734-z

Keywords

Navigation