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Abstract
Magnesium alloys have a wide range of application values. To design and develop magnesium alloys with excellent mechani-
cal properties, it is necessary to study the deformation process. In this paper, the uniaxial compression (UC) process of AZ31 
magnesium alloy with different solute atom content is simulated by the molecular dynamics method. The effect of the solute 
atom on the uniaxial compression of magnesium alloy is investigated. It is found that solute atoms can inhibit the grain 
refinement of magnesium, can effectively improve the plastic strength of the alloy, can change the lattice distortion during 
uniaxial compression of magnesium alloy, can inhibit the generation of BCC structure, and can slow down the increase of 
FCC structure and dislocation density. The direction of the FCC structure diffusion is 90° to the grain boundary direction. 
Shockley partial dislocations are generated around the FCC structure. The direction in which the FCC structure spreads is 
consistent with the direction in which Shockley partial dislocations move.

Keywords Molecular dynamics · Magnesium alloy · Solute atom · Shockley partial dislocation

1 Introduction

As a green structural material in the twenty-first century, 
magnesium alloy has the advantages of low density, high 
specific strength, impact resistance, recyclability, and good 
heat dissipation performance. It has wide application value 
in many industries such as automobile, aerospace, medical, 
and transportation. As the alloy with the earliest develop-
ment, the most grades, and the most widely used alloys, 
AZ series magnesium alloys have medium strength and high 
plasticity. Among them, AZ31 alloy has good strength and 
ductility, but it still produces internal structural defects dur-
ing processing and deformation, which affects the mechani-
cal properties. Therefore, studying the deformation process 
of magnesium alloy to improve its properties has become 

an important research direction of magnesium alloy pro-
cessing [1–7]. Because magnesium is a hexagonal closely 
packed (HCP) structure and has less slip system, its defor-
mation mechanism is different from that of face-centered 
cubic (FCC) metal [8, 9]. Nanocrystalline metals and alloys 
show different characteristic mechanical properties from 
coarse-grained metals and alloys. Compared with coarse-
grained polycrystalline materials, nanocrystalline materials 
show higher strength, hardness, and toughness. Therefore, 
the nanostructure is an effective way to improve the strength 
and plasticity of magnesium alloys [10–15].

Most scholars study the influence of solute atoms on the 
metal matrix at the macro level. For example, Yu Daliang 
[16] used an optical microscope, scanning electron micro-
scope, and universal testing machine to study the effect of 
composite addition of trace alloying elements on the micro-
structure and mechanical properties of AZ31 magnesium 
alloy. The results showed that the composite addition of trace 
alloying elements can improve the microstructure of AZ31 
magnesium alloy, thus greatly improving the strength of 
magnesium alloy thus greatly increasing the strength. Huang 
Xiaofeng [17] studied the effect of Zn content on the as-cast 
and semi-solid microstructure of magnesium alloy through 
an optical microscope, scanning electron microscope, and 
universal mechanical testing machine. It was found that 
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with the increase of Zn content, the as-cast microstructure 
of the alloy was refined, and the grain size of the semi-solid 
structure of the alloy was fine and round. Ma Yongdong 
[18] studied the effect of zinc content on the microstruc-
ture, mechanical properties, and damping properties of cast 
magnesium–zinc–zirconium alloy by microstructure obser-
vation, mechanical, and damping test. The results show that 
the compressive strength of Mg-Zn-Zr alloy increases with 
the increase of zinc content. Hou Shuaichang [19] adjusted 
the content of Al and Zn in the AZ magnesium alloy and 
found that as the content of Al and Zn increased, the strength 
of the extruded magnesium alloy increased, but the plasticity 
decreased.

In recent decades, with the tremendous increase in com-
puting power, molecular dynamics simulation as a new com-
putational material method has been successfully used to 
study lattice distortion, grain growth, deformation, and other 
aspects [20–24]. Some scholars have used molecular dynam-
ics methods to study the influence of solute atoms [25–29] 
and found that solute atoms can affect the yield strength and 
dislocation formation of alloys. Molecular dynamics tech-
nology can effectively reproduce the mechanical behavior of 
materials at the atomic level, but few people use it to study 
the strength and deformation mechanism of nano-magne-
sium alloys [30].

In this paper, to explore the effect of solute atom content 
on AZ31 magnesium alloy, the model of AZ31 magnesium 
alloy with different solute atom content was established by 
Atomsk, the uniaxial compression (Uniaxial Compression, 
UC) process of AZ31 magnesium alloy was simulated by 
molecular dynamics method, and the mechanical properties 
and structural changes of AZ31 magnesium alloy during UC 
were analyzed by OVITO, which provides a theoretical basis 
for the design and development of nanocrystalline AZ31 
magnesium alloy with excellent mechanical properties.

2  The simulation method

First of all, the nanocrystalline Mg model with the size of 
192.6 Å × 222.395 Å × 208.4 Å is established by Atomsk. 
The number of atoms is 384020, and the initial number of 
grains is 20. The X-axis, Y-axis, and Z-axis correspond to 
the crystal directions of 

[

1210

]

 , 
[

1010

]

 and [0001] , respec-
tively. Then, the corresponding magnesium atoms are 
replaced according to Fig. 1 [31]. The polycrystalline sam-
ples of pure magnesium are named NC Mg, and the AZ31 
magnesium alloy specimens with different solute atomic 
contents are named Alloy 1 ~ 5.

The potential function is a mathematical function form 
describing the total energy E E of the model particles and 
the particle coordinates (r) (r) [32–35]. The embedded atom 

method (EAM) potential is usually used to calculate the 
pairwise interaction between metal and metal alloy. The 
improved embedded atomic method (MEAM) potential can 
not only calculate the pairwise interactions of various mate-
rials but also be suitable for modeling metals and alloys with 
FCC, BCC, HCP, and Diamond structures and covalently 
bonded materials such as silicon and carbon [33–42]. In the 
MEAM formula, the total energy E E of the atomic system is

In the formula, E E is the total energy of atomic i . F is 
the embedded energy, which is a function of atomic electron 
density � . � is atomic electron density. � and � are a pair of 
potential interactions. And i and j are element types.
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∑
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Alloy 3 96 3 1

Alloy 4 96 3.1 0.9

Alloy 5 96 3.2 0.8

Fig. 1  The content of each element in the specimens

Fig. 2  Schematic diagram of compression deformation
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The established sample model is imported into LAMMPS 
(large-scale atomic/molecular massively parallel simulator) 
[43, 44], and the Mg–Al–Zn potential function developed by 
Hyo-Sun Jang [45] is assigned to the model. This potential 
function can be used to study the deformation and recrystal-
lization properties of Mg–Al-Zn alloy in the whole process-
ing temperature range. X, Y, and Z are all periodic bound-
ary conditions, the time step is 0.001 ps and the ambient 
temperature is 300 K. First, the NPT ensemble is used to 
relax the 10 ps under constant temperature and pressure. 
After relaxation, the system uses the NPT ensemble and 
deform compression combination command to uniformly 
compress 20 ps at the strain rate of 0.01   ps−1 along the 
Z-axis ( [0001] crystal direction), and the final deformation 

of the magnesium alloy reaches 20%, that is, through the 
comparative feedback between the stress of the calculation 
system and the set stress, the unit cell length is automati-
cally adjusted, and then the strain is calculated. The process 
diagram is shown in Fig. 2.

3  Simulation results and discussion

The simulation results are imported into the visualization 
software OVITO, and the functions of common neighbor 
analysis (CNA), dislocation analysis (DXA), polyhedral 
template matching (PTM), grain segmentation (GS), 
and Wigner–Seitz defect analysis (WSDA) are used for 

Fig. 3  Grain changes of magne-
sium alloy specimens
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analysis. CNA provides visualization of common crystal 
structures in metals, such as face-centered cubic (FCC), 
body-centered cubic (BCC), hexagonal closely packed 
(HCP) structure, and other structure (grain boundary 

atoms). The grain changes in the simulation process can 
be observed by GS. WSDA can identify the crystal void 
and calculate the number of interstitial atoms [46–51].

Fig. 5  CNA snapshot of alloy
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Figure 3a–f is the grain distribution in the magnesium 
alloy specimens when ε = 20%. Figure 3g shows the grain 
number curve. It can be seen that the grain refinement of 
AZ31 decreases after the addition of solute atoms, and 
the number of grains decreases significantly after UC, so 
solute atoms can inhibit the grain refinement of Mg.

Figure 4a shows the stress–strain curve of magnesium 
alloy during compression. It can be seen that in the stage 
of elastic deformation, the stress–strain curve maintains a 
linear relationship until it reaches the tensile strength when 
the stress reaches the maximum. With the increase of the 
amount of compression, the stress decreases sharply when 
it enters the stage of plastic deformation. The addition of 
solute atoms significantly increased the yield strength and 
elastic modulus of the alloy, and the ultimate strain increased 

by 173.33%, 170%, 160%, 156.67%, and 156.67%, respec-
tively, indicating that solute atoms can effectively improve 
the plastic strength of the alloy.

Figure 4b is the volume change curve, Fig. 4c is the inter-
stitial atom quantity curve, and Fig. 4d is the dislocation 
density curve. It can be seen that with the increase of com-
pression amount, the atomic position in the alloy changes, 
the number of interstitial atoms increases gradually, the sam-
ple volume decreases gradually, and the dislocation den-
sity increases. When the amount of compression reaches 
UTS% (the ultimate strain at the maximum yield strength), 
the increasing trend of the number of interstitial atoms 
slows down, and the lattice distortion occurs in the sample. 
With the increase of the amount of compression, the lattice 
distortion becomes more severe and the volume increases 

Fig. 6  Potential energy and 
structure fraction curve
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Fig. 7  FCC structure growth law
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gradually. Compared with NC Mg, the addition of solute 
atoms delays the increase of interstitial atoms, increases the 
trend of volume change, slows down the phase transition, 
and reduces the dislocation density, so the yield strength and 
elastic modulus of magnesium alloy are higher than those 
of NC Mg.

Figure 5 shows CNA snapshots of alloys with different 
solute atomic contents at ε = 0%, UTS%, 20%, respectively 
(The atoms in the model have been colored according to 
CNA results, red is HCP structure, green is FCC structure, 
blue is BCC structure, white is Other structure), Fig. 5a is 
NC Mg, Fig. 5b ~ f is Alloy1 ~ 5, respectively. It can be seen 
that with the progress of compression, the stress increases 
gradually with the strain and reaches its tensile strength, the 
stress concentration leads to more intense thermal movement 
of atoms, a large number of atoms are out of equilibrium, 
resulting in lattice distortion, HCP structure is gradually 
destroyed, some atoms from disorder to order, some atoms 
return to the equilibrium position, forming a new ordered 
lattice structure, becoming FCC structure and BCC struc-
ture. In the process of NC Mg compression, a large number 
of FCC structure and a small amount of BCC structure are 
formed. After adding solute atoms, the BCC structure is 
almost not produced, the number of FCC structure forma-
tion is also significantly reduced, and the transformation is 
delayed, so solute atoms can change the lattice distortion of 
magnesium alloy during uniaxial compression.

Figure 6 (1)–(6) is a snapshot of the unit atomic potential 
energy. It can be seen that the atomic potential energy at 

the grain boundary is higher than that of the atoms in the 
grain. Figure 6 a is the potential energy curve, Fig. 6b is the 
intragranular atom (Grain Interior, GI) fraction curve, and 
Fig. 6c is the grain boundary atom (Grain Boundary, GB) 
fraction curve. It can be seen that when ε = 20%, when the 
atomic content of Al is more than 3%, the atomic fraction 
of the grain boundary increases and the potential energy of 
the alloy exceeds NC Mg because of the high atomic poten-
tial energy at the grain boundary. With the increase of the 
amount of compression, the position of the atom changes, 
the potential energy decreases, the lattice distortion occurs, 
the atomic fraction of the grain boundary increases and the 
grain boundary diffuses. Figure 6d–f shows the atomic frac-
tion curves of HCP, FCC, and BCC structures of the alloy 
during compression. Some of the atoms in NC Mg have a 
BCC structure, and the BCC structure increases with the 
increase of compression. When ε = UTS%, the lattice distor-
tion of HCP → FCC begins to occur, while after the addition 
of solute atoms, the BCC structure is almost not produced, 
so the solute atoms have a significant effect on the inhibition 
of BCC structure.

Since the grain boundary is relatively high, the layered 
FCC structure is first formed at the grain boundary (shown 
in the red elliptical ring shown in Fig. 7a), then grows inside 
the grain (as shown in Fig. 7b. The black arrow is shown, 
gradually throughout the grain. At I, the growth direction of 
the FCC phase is 

[

2423

]

 , the grain boundary direction is 
[

1216

]

 . At II, the growth direction of the FCC phase is 
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Fig. 9  the curve of FCC structure and Shockley partial dislocation
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[

51053

]

 , the grain boundary direction is 
[

12115

]

 . After cal-
culation, it is found that the growth direction of the FCC 
structure is 90° to the grain boundary direction.

Figure 8a shows the growth of dislocations in NC Mg, 
Fig. 8b–f shows the growth of dislocations in Alloy 1–5, 
and Fig. 8g–l shows the dislocation growth curve. It can be 
seen that with the increase of compression, the dislocation 
density increases gradually, among which the most obvious 
increases are other dislocations and 1/3 < -−100 > disloca-
tions (Shockley partial dislocations) [52] the addition of 
solute atoms slows down the increase of FCC structure and 
dislocation density.

Figure 9 shows the curve of FCC structure and Shockley 
partial dislocations. It can be found that with the increase 
of reduction, the growth rate of FCC structure is almost the 
same as that of Shockley partial dislocations, so it is specu-
lated that the changes of FCC structure and Shockley partial 

dislocations increase in positive proportion, and Shockley 
partial dislocations are attached to the FCC structure.

Figure 10 is a snapshot of the FCC structure and Shock-
ley partial dislocations. As shown by the red circle in 
Fig. 10a, Shockley partial dislocations surround the FCC 
structure. The alloy is compressed and the position of the 
atoms changes, resulting in Shockley partial dislocations. 
Dislocations form dislocation plugging, and lattice dis-
tortion occurs near this position, and the HCP structure 
is transformed into the FCC structure. As the amount 
of compression increases, the positions of more atoms 
change, some of the Shockley dislocations move, and the 
FCC structure diffuses, and the direction of the FCC struc-
ture diffusion (yellow arrow in Fig.) and the direction of 
the Shockley part of the dislocation movement (Red arrow 
in the Fig.) consistent.

Fig. 10  Snapshot of FCC structure and Shockley partial dislocations
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4  Conclusion

This paper simulates the uniaxial compression of an AZ31 
magnesium alloy of different solute atoms by molecular 
dynamics and explores the effects of solute atoms in mag-
nesium alloy single shaft compression. The following con-
clusions are obtained:

(1) The solute atom can inhibit the grain refinement of 
magnesium, effectively improve the plastic strength of 
the alloy.

(2) The solute atom can change the lattice distortion during 
the uniaxial compression of the magnesium alloy, and 
there is a significant role in the suppression of the BCC 
structure, slowing the increase of the FCC structure and 
the dislocation density.

(3) The direction of the growth of the FCC structure is 
90° in the grain boundary direction, and the Shockley 
partial dislocations are hosted around the FCC struc-
ture, and the direction of the FCC structure diffuses is 
consistent with the Shockley partial dislocations.
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