Skip to main content
Log in

Ripple period adjustment on SiC surface based on electron dynamics control and its polarization anisotropy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the Mach Zehnder interferometer is utilized to generate a collinear dual optical path with 800-nm center wavelength, 1 kHz repetition rate, 120-fs pulse duration and an energy ratio of 1:1 to scan 6H-SiC crystal at a scanning speed of 500 μm/s, resulting in laser-induced periodic surface structure (LIPSS). From the perspective of instantaneous electron density level, variation of the period of low spatial frequency LIPSS (LSFL) with interpulse delay time and polarization angle is studied. The scanning electron microscope (SEM) characterization of the line-scanned ablation zone combined with fast Fourier transformation (FFT) spectrum analysis shows that the period of LSFL decreases with the increase of delay time, and remains stable when the delay exceeds 240 fs. Meanwhile, the period of LSFL increases with the increase of polarization angle under the same delay time, showing an anisotropy that dependent on the polarization angle. The variation trend of the maximum electron density level with delay time calculated by electron rate equation is roughly consistent with the periodic variation trend. Interaction between incident light and transient metal-like SiC surface is simulated based on finite-difference time-domain method (FDTD). The simulation results show that the surface of the sample has a periodic light field enhancement structure controlled by the transient electron density, which explains the phenomenon that the period decreases with increasing delay time. It is further confirmed that the formation of LSFL is due to the interference of incident light and surface plasmon, and the period of LSFL can be controlled by adjusting the electron density level by delay time. The periodic polarization dependence of LSFL may be related to the relative orientation change of the laser pulse front tilt (PFT) and laser polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. B Condens. Matter 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  2. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)

    Article  Google Scholar 

  3. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron 23(3), 9000615 (2017)

    Article  Google Scholar 

  4. T.Q. Jia, F.L. Zhao, M. Huang, H.X. Chen, J.R. Qiu, R.X. Li, Z.Z. Xu, H. Kuroda, Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams. Appl. Phys. Let. 88(11), 3668 (2006)

    Article  Google Scholar 

  5. X.J. Wu, T.Q. Jia, F.L. Zhao, M. Huang, N.S. Xu, H. Kuroda, Z.Z. Xu, Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation. Appl. Phys. A 86, 491–495 (2007)

    Article  ADS  Google Scholar 

  6. G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, M. Obara, Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses. Opt. Express 21, 26324–26334 (2013)

    Article  ADS  Google Scholar 

  7. G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, W. Huang, Femtosecond laser color marking stainless steel surface with different wavelengths. Appl. Phys. A 118(4), 1189–1196 (2015)

    Article  ADS  Google Scholar 

  8. N. Tagawa, M. Takada, A. Mori, H. Sawada, K. Kawahara, Development of contact sliders with nanotextures by femtosecond laser processing. Tribol. Lett. 24(2), 143–149 (2006)

    Article  Google Scholar 

  9. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Appl. Surf. Sci. 256(1), 61–66 (2009)

    Article  ADS  Google Scholar 

  10. M. Martínez-Calderon, M. Manso-Silván, A. Rodríguez, M. Gómez-Aranzadi, J.P. García-Ruiz, S.M. Olaizola, R.J. Martín-Palma, Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci. Rep. 6, 36296 (2016)

    Article  ADS  Google Scholar 

  11. H. Mustafa, M. Jalaal, W. Ya, N. Ur Rahman, D.T.A. Matthews, G.R.B.E. Römer, Short and ultrashort pulsed laser processing of zinc : resolidification morphology of ablated craters. J. of Laser Micro Nanoen. 13(3), 178–188 (2018)

    Google Scholar 

  12. M. Barberoglou, G.D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, P.A. Loukakos, The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation. Appl. Phys. A 113(2), 273–283 (2013)

    Article  ADS  Google Scholar 

  13. W. Han, L. Jiang, X. Li, Q. Wang, H. Li, Y. Lu, Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay. Opt. Express 22(13), 15820–15828 (2014)

    Article  ADS  Google Scholar 

  14. S. Xu, H. Dou, K. Sun, Y. Ye, Z. Li, H. Wang, W. Liao, H. Liu, X. Miao, X. Yuan, X. Jiang, X. Zu, Scan speed and fluence effects in femtosecond laser induced micro/nano-structures on the surface of fused silica. J. Non-Cryst. Solids 492, 56–62 (2018)

    Article  ADS  Google Scholar 

  15. J. Song, W. Tao, M. Gong, J. Ye, Y. Dai, G. Ma, J. Qiu, The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism. Appl. Phys. A 122(4), 450 (2016)

    Article  ADS  Google Scholar 

  16. J. Bonse, S. Höhm, A. Rosenfeld, J. Krüger, Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air. Appl. Phys. A 110(3), 547–551 (2013)

    Article  ADS  Google Scholar 

  17. F. Meng, J. Hu, W. Han, P. Liu, Q. Wang, Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser. Chin. Opt. Lett. 13(6), 062201–062201 (2015)

    Article  ADS  Google Scholar 

  18. K. Zhang, J. Zhang, L. Jiang, X. Li, Y. Liu, B. Li, Y. Lu, Ablation enhancement of metal in ultrashort double-pulse experiments. Appl. Phys. Lett. 112, 261906 (2018)

    Article  ADS  Google Scholar 

  19. J. Zhang, S. Wang, M. Wang, Z. Chu, Femtosecond Laser Double Pulses Nanofabrication on Silicon. IOP Conf. Ser. Mater. Sci. Eng. 565, 012018 (2019)

    Article  Google Scholar 

  20. M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses. Opt. Express 21, 18501–18508 (2013)

    Article  ADS  Google Scholar 

  21. W.J. Choyke, G. Pensl, Physical properties of SiC. MRS Bull 22, 25–29 (1997)

    Article  Google Scholar 

  22. Q.Z. Zhao, F. Ciobanu, S. Malzer, L.J. Wang, Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructuring. Appl. Phys. Lett. 91, 283 (2007)

    Article  Google Scholar 

  23. M. Deki, T. Ito, M. Yamamoto, T. Tomita, S. Matsuo, S. Hashimoto, T. Kitada, T. Isu, S. Onoda, T. Ohshima, Enhancement of local electrical conductivities in SiC by femtosecond laser modification. Appl. Phys. Lett. 98(13), 697 (2011)

    Article  Google Scholar 

  24. J. Song, Y. Dai, W. Tao, M. Gong, G. Ma, Q. Zhao, J. Qiu, Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser. Appl. Surf. Sci. 363, 664–669 (2016)

    Article  ADS  Google Scholar 

  25. F. Fraggelakis, E. Stratakis, P.A. Loukakos, Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses. Appl. Surf. Sci. 444, 154–160 (2018)

    Article  ADS  Google Scholar 

  26. F. Keilmann, Y.H. Bai, Periodic surface structures frozen into CO2 laser-melted quartz. Appl. Phys. Lett. 29, 9–18 (1982)

    Google Scholar 

  27. G. Zhou, P.M. Fauchet, A.E. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B 26(10), 5366–5381 (1982)

    Article  ADS  Google Scholar 

  28. A.Q. Wu, I.H. Chowdhury, X. Xu, Femtosecond laser absorption in fused silica: Numerical and experimental investigation. Phys. Rev. B 72(8), 085128 (2005)

    Article  ADS  Google Scholar 

  29. T.E. Tiwald, J.A. Woollam, S. Zollner, J. Christiansen, R.B. Gregory, T. Wetteroth, S.R. Wilson, A.R. Powell, Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B 60, 11464–11474 (1999)

    Article  ADS  Google Scholar 

  30. A.A. Borshch, M.S. Brodyn, V.Y. Gayvoronsky, Diagnostics of optical nonlinearities: spatial beam distortion technique and its application to semiconductors and novel materials. Proc. SPIE 5024, 128–136 (2003)

    Article  ADS  Google Scholar 

  31. K. Xie, J.H. Zhao, J.R. Flemish, T. Burke, W.R. Buchwald, G. Lorenzo, H. Singh, Electron. Device Lett. IEEE 17, 142–144 (1996)

    Article  ADS  Google Scholar 

  32. A. Galeckas, J. Linnros, V. Grivickas, U. Lindefelt, C. Hallin, Auger recombination in 4H-SiC: unusual temperature behavior. Appl. Phys. Lett. 71, 3269–3271 (1997)

    Article  ADS  Google Scholar 

  33. J.Y. Derrien, J. Krüger, T.E. Itina, S. HöHm, A. Rosenfeld, J.R. Bonse, Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon. Opt. Express 21(24), 29643 (2013)

    Article  ADS  Google Scholar 

  34. J. Song, W. Tao, H. Song, M. Gong, G. Ma, Y. Dai, Q. Zhao, J. Qiu, Laser-induced periodic surface structures on 6H-SiC single crystals using temporally delayed femtosecond laser double-pulse trains. Appl. Phys. A 122(4), 341 (2016)

    Article  ADS  Google Scholar 

  35. S. Ramo, J. Whinnery, T. Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1993), p. 684

    Google Scholar 

  36. W.J. Choyke, L. Patrick, Refractive Index and Low-Frequency Dielectric Constant of 6H-SiC. JOSA 58, 377–379 (1968)

    Article  ADS  Google Scholar 

  37. A. Collins, D. Rostohar, C. Prieto, Y. Chan, G.M. O’Connor, Laser scribing of thin dielectrics with polarized ultrashort pulses. Opt. Laser Eng. 60, 18–24 (2014)

    Article  Google Scholar 

  38. X. Li, W. Rong, L. Jiang, K. Zhang, C. Li, Q. Cao, G. Zhang, Y. Lu, Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation. Opt. Express 22(24), 30170–30176 (2014)

    Article  ADS  Google Scholar 

  39. H.P. Iwata, Determination of the in-plane anisotropy of the electron effective mass tensor in 6H–SiC. Appl. Phys. Lett. 82(4), 598–600 (2003)

    Article  ADS  Google Scholar 

  40. Y. Dai, J. Ye, M. Gong, X. Ye, X. Yan, G. Ma, J. Qiu, Forced rotation of nanograting in glass by pulse-front tilted femtosecond laser direct writing. Opt. Express 22, 28500–28505 (2014)

    Article  ADS  Google Scholar 

  41. Y. Dai, G. Wu, X. Lin, G. Ma, J. Qiu, Femtosecond laser induced rotated 3D self-organized nanograting in fused silica. Opt. Express 20(16), 18072–18078 (2012)

    Article  ADS  Google Scholar 

  42. P. Liu, L. Jiang, J. Hu, W. Han, Y. Lu, Direct writing anisotropy on crystalline silicon surface by linearly polarized femtosecond laser. Opt. Lett. 38, 1969–1971 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support from the National Natural Science Foundation of China (Grant Nos. 11974147, 11774220, 61205128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Dai or Juan Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Kong, D., Zhang, X. et al. Ripple period adjustment on SiC surface based on electron dynamics control and its polarization anisotropy. Appl. Phys. A 127, 22 (2021). https://doi.org/10.1007/s00339-020-04181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04181-2

Keywords

Navigation