Skip to main content
Log in

Impact of trap charge and temperature on DC and Analog/RF performances of hetero structure overlapped PNPN tunnel FET

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Impact of interface trap charges (ITCs) as well as temperature on the performance of a proposed dual dielectric constant spacer source/drain, overlapped double gate tunnel FET with a source pocket was investigated using two-dimensional Technology Computer-Aided Design (TCAD) device simulator. The proposed device is Si-based with Germanium as the source material, SiGe as a pocket material, and has a high-k gate dielectric. Its performance in terms of DC and analog/RF parameters vis-à-vis a conventional double gate PNPN TFET was compared. The device shows better results than the conventional one with an ON current of 1.71 × 10−3 A/µm, ON–OFF current ratio 1011, and subthreshold swing of 45 mV/decade. The study was focused on the analysis of the electric field, transfer characteristics, transconductance (gm), output conductance (gd), parasitic capacitances, gain-bandwidth product (GBP), cut off frequency (fT) for both the damaged (presence of donor/acceptor interface trap charges) and undamaged (no trap) conditions. The study revealed that the proposed structure is more immune to the interfacial trap charges as compared to the conventional device. Apart from this, the analysis shows a degradation of subthreshold swing (SS) and OFF current (IOFF) at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Abou-Allam, T. Manku, M. Ting and M. S. Obrecht, Impact of technology scaling on CMOS RF devices and circuits. Proceedings of the IEEE 2000 custom integrated circuits conference (Cat. No.00CH37044), Orlando, FL, USA 361–364 (2000)

  2. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano. Lett. 3(2), 149–152 (2003)

    ADS  Google Scholar 

  3. M. Ionescu, H. Riel, Tunnel field-effect transistors as energy efficient electronic switches. Nature 479, 329–337 (2011)

    ADS  Google Scholar 

  4. A. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE. 98(22), 2095–2110 (2010)

    Google Scholar 

  5. A. Ortiz-Conde, F.J. García-Sánchez, J. Muci, A. Sucre-González, J.A. Martino, P.G. DerAgopian et al., Threshold voltage extraction in Tunnel FETs. Solid-State. Electron. 93, 49–55 (2014)

    ADS  Google Scholar 

  6. S. Saurabh, M.J. Kumar, Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron. Devices. 58(2), 404–410 (2010)

    ADS  Google Scholar 

  7. K. Nigam, P. Kondekar, D. Sharma, Approach for ambipolar behavior suppression in tunnel FET by workfunction engineering. IET. Micro. Nano. Lett. 11(8), 460–464 (2016)

    Google Scholar 

  8. K.K. Bhuwalka, J. Schulze, I. Eisele, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE. Transaction. Electronic. Devices. 52(5), 909–917 (2005)

    ADS  Google Scholar 

  9. W.Y. Choi, W. Lee, Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron. Devices. 57(9), 2317–2319 (2010)

    ADS  Google Scholar 

  10. K. Boucart, A.M. Ionescu, Length scaling of the Double Gate Tunnel FET with a high-K gate dielectric. Solid. State. Electron. 51, 1500–1507 (2007)

    ADS  Google Scholar 

  11. H.G. Virani, R.B.R. Adari, A. Kottantharayil, Dual-k spacer device architecture for the improvement of performance of silicon n-channel tunnel FETs. IEEE. Trans. Electron. 57(10), 2410–2417 (2010)

    ADS  Google Scholar 

  12. D.B. Abdi, M.J. Kumar, Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE. J. Electron. Devices. Soc. 2(6), 187–190 (2014)

    Google Scholar 

  13. K.H. Kao, A.S. Verhulst, W.G. Vandenberghe, B. Soree, W. Magnus, D. Leonell, Optimization of gate-on-source only tunnel FET with counter doped pockets. IEEE. Transaction. Electron. Devices. 59(8), 2070–2077 (2012)

    ADS  Google Scholar 

  14. N. Damrongplasit, C. Shin, S.H. Kim, R.A. Vega, T.-J.K. Liu, Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE. Trans. Electron. Devices. 58(10), 3541–3548 (2011)

    ADS  Google Scholar 

  15. P.N. Kondekar, K. Nigam, S. Pandey, D. Sharma, Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for Analog/RF applications. IEEE. Trans. Electron. Devices. 64(2), 412–418 (2017)

    ADS  Google Scholar 

  16. B. Bhowmick, S. Baishya, A physics–based model for electrical parameters of double gate hetero-material nano scale tunnel FET. Int. J. Appl. Inform. Syst. (IJAIS) 1, 3 (2012)

    Google Scholar 

  17. H.B. Joseph, S.K. Singh, R.M. Hariharan, P.A. Priya, N.M. Kumar, D.J. Thiruvadigal, Hetero structure PNPN tunnel FET: analysis of scaling effect on counter doping. Appl. Surf. Sci. 449, 823–828 (2018)

    ADS  Google Scholar 

  18. R. Jhaveri, N.V. Nagavarapu, J.C.S. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE. Trans. Electron. Dev. 58(1), 80–86 (2011)

    ADS  Google Scholar 

  19. H. Chang, B. Adams, P. Chien, J. Li, J.C.S. Woo, Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE. Trans. Electron. Device. 60(1), 92–96 (2013)

    ADS  Google Scholar 

  20. X. Duan, J. Zhang, S. Wang, Y. Li, S. Xu, Y. hao, A high performance gate engineered InGaN dopingless tunnel FET. IEEE. Trans. Electron. Device. 65(3), 1223–1229 (2018)

    ADS  Google Scholar 

  21. M. Sharma, R. Narang, M. Saxena, M. Gupta, Comparative study on InGaN and InGaAs based dopingless TFET with different gate engineering techniques. Adv. Nat. Sci. Neurosci. Nanotechnol. 10(3), 035009 (2019)

    ADS  Google Scholar 

  22. V. Nagavarapu, R. Jhaveri, J.C.S. Woo, The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE. Trans. Electron. Devices. 55(4), 1013–1019 (2008)

    ADS  Google Scholar 

  23. A. Chauhana, G. Sainia, P.K. Yerur, Improving the performance of dual-k spacer underlap double gate TFET. Superlattices. Microstruct. 124, 79–91 (2018)

    ADS  Google Scholar 

  24. R. Ranjan Mallikarjunarao, K.P. Pradhan, P.K. Sahu, Dielectric engineered symmetric underlap double gate tunnel FET (DGTFET): an investigation towards variation of dielectric materials. Superlattice. Microst. 96, 226–233 (2016)

    ADS  Google Scholar 

  25. H.R. Ebrahimi, M. Heydari, B. Bahraminejad, Highly sensitive Ni0.5Cu0.5Fe2O4 nano particles as an ethanol gas sensor. Sensor. Lett. 13, 1–5 (2015)

    Google Scholar 

  26. H.R. Ebrahimi, M. Parish, G.R. Amiri, B. Bahraminejad, S. Fatahian, Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles. J. Magn. Magn. Mater. 414, 55–58 (2016)

    ADS  Google Scholar 

  27. H.R. Ebrahimi, H. Usefi, H. Emami, G.R. Amiri, Synthesis, characterization, and sensing performance investigation of copper cadmium ferrite nanoparticles. IEEE. Trans. Magn. 54(10), 4000905 (2018)

    Google Scholar 

  28. S. Nosohiyan, H.R. Ebrahimi, A.A. Nourbakhsh, G.R. Amiri, Synthesis, characterization, and sensing performance investigation of nickel ferrite nanoparticles for ammonia detection. IEEE. Trans. Magn. 55(12), 100506 (2019)

    Google Scholar 

  29. A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, C. Huyghebaert, Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction Tunnel-FETs. Solid-State. Electron. 83, 50–55 (2013)

    ADS  Google Scholar 

  30. J. Franco et al., Intrinsic robustness of TFET subthreshold swing to interface and oxide traps: a comparative PBTI study of InGaAs TFETs and MOSFETs. IEEE. Electron. Device. Lett. 37(8), 1055–1058 (2016)

    ADS  Google Scholar 

  31. G.F. Jiao et al., New degradation mechanisms and reliability performance in tunneling field effect transistors. 2009 IEEE. Int. Electron. Devices. Meet. (IEDM). Baltim. MD. 2009, 1–4 (2009)

    Google Scholar 

  32. M. G. Pala, D. Esseni, and F. Conzatti, Impact of interface traps on the IV curves of InAs tunnel-FETs and MOSFETs: a full quantum study (IEEE, San Francisco, CA, USA, 2012)

    Google Scholar 

  33. J. Madan, R. Chaujar, Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE. Trans. Device. Mater. Rel. 16(2), 227–234 (2016)

    Google Scholar 

  34. P. Venkatesh, K. Nigam, S. Pandey, D. Sharma, P.N. Kondekar, Impact of interface trap charges on performance of electrically doped tunnel FET with heterogeneous gate dielectric. IEEE. Trans. Device. Mater. Reliab. 17, 245–252 (2017)

    Google Scholar 

  35. J. Madan, R. Chaujar, Numerical simulation of N+ source pocket PIN-GAA-Tunnel FET: impact of interface trap charges and temperature. IEEE. Transactions. Electron. Devices. 64(4), 1482–1488 (2017)

    ADS  Google Scholar 

  36. S. Gupta, K. Nigam, S. Pandey, D. Sharma, P.N. Kondekar, Effect of interface trap charges on performance variation of heterogeneous gate dielectric junctionless-TFET. IEEE. Transactions. Electron. Devices. 64(11), 4731–4737 (2017)

    ADS  Google Scholar 

  37. S.O. Koswatta, M.S. Lundstrom, Influence of phonon scattering on performance of p-i-n band-to-band tunneling transistor. Appl. Phys. Lett. 92(4), 043–125 (2008)

    Google Scholar 

  38. S. Mookerjea, D. Mohata, T. Mayer, V. Narayanan, S. Datta, Temperature-dependent I-V characteristics of a vertical In0.53Ga0.47As tunnel FET. IEEE. Electron. Device. Lett. 31(6), 564–566 (2010)

    ADS  Google Scholar 

  39. P.-F. Wang et al., Complementary tunneling transistor for low power application. Solid-State. Electron. 48(12), 2281–2286 (2004)

    ADS  Google Scholar 

  40. M. Liu, M. Cai, B. Yu, Y. Taur, Effect of gate overlap and source/drain doping gradient on 10-nm CMOS performance. IEEE. Transactions. Electron. Devices. 53(12), 3146–3149 (2006)

    ADS  Google Scholar 

  41. A. Chattopadhyay, A. Mallik, Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor. IEEE Trans. Electron. Dev. 58, 677–683 (2011)

    ADS  Google Scholar 

  42. Sentaurus Device User Guide, Version G-2012.06, (2012)

  43. T. Chiang, A compact model for threshold voltage of surrounding gate MOSFETs with localized interface trapped charges. IEEE. Trans. Electron. Devices. 58(2), 567–571 (2011)

    ADS  Google Scholar 

  44. S. Sant et al., Lateral InAs/Si p-type tunnel FETs integrated on Si— Part 2: simulation study of the impact of interface traps. IEEE. Trans. Electron. Devices. 63(11), 4240–4247 (2016)

    ADS  Google Scholar 

  45. Y. Qiu, R. Wang, Q. Huang, R. Huang, A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE. Trans. Electron. Devices. 61(5), 1284–1291 (2014)

    ADS  Google Scholar 

  46. A. Biswas, S.S. Dan, C.L. Royer, W. Grabinski, A.M. Ionescu, TCAD simulation of SOI TFETs and calibration of non-local band to band tunneling model. Microelectron. Eng. 98, 334–337 (2012)

    Google Scholar 

  47. A. Villalon, C. Le Royer, M. Cassé, D. Cooper, B. Prévitali, C. Tabone, J.-M. Hartmann, P. Perreau, P. Rivallin, J.-F. Damlencourt, F. Allain, F. Andrieu, O. Weber, O. Faynot and T. Poiroux, Strained tunnel FETs with record ION: first demonstration of ETSOI TFETs with SiGe channel and RSD. Symposium on VLSI Technology (VLSIT) (2012). https://doi.org/10.1109/VLSIT.2012.6242455

  48. S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On enhanced Miller capacitance effect in interband tunnel transistors. IEEE. Electron. Device. Lett. 30(10), 1102–1104 (2009)

    ADS  Google Scholar 

  49. Y. Yang, X. Tong, L.-T. Yang, P.-F. Guo, L. Fan, Y.-C. Yeo, Tunneling field-effect transistor: capacitance components and modeling. IEEE. Electron. Device. Lett. 31(7), 752–754 (2010)

    ADS  Google Scholar 

  50. B.G. Streetman, S. Banerjee, Solid State Electronic Devices (Prentice- Hall, New York, 2006), p. 144

    Google Scholar 

  51. J.H. Seo, Y.J. Yoon, S. Lee, J.H. Lee, S. Cho, I.M. Kang, Design and analysis of Si-based arch-shaped gate-all-around (GAA) tunneling field-effect transistor (TFET). Curr. Appl. Phys. 15, 208–212 (2015)

    ADS  Google Scholar 

  52. S. Ahish, D. Sharma, Y.B.N. Kumar, M.H. Vasantha, Performance enhancement of novel InAs/Si hetero double-gate tunnel FET using gaussian doping. IEEE. Trans. Electron. Devices. 63(1), 288–295 (2016)

    ADS  Google Scholar 

  53. S.H. Kim, H. Kam, C. Hu, T.J.K. Liu, Germanium Source Tunnel Field Effect Transistors with Record High ION/IOFF (Symposium on VLSI technology, IEEE, 2009), pp. 178–179

    Google Scholar 

  54. A.M. Walke, A. Vandooren, R. Rooyackers, D. Leonelli, A. Hikavyy, R. Loo, A.S. Verhulst, K.H. Kao, C. Huyghebaert, G. Groeseneken, V.R. Rao, Fabrication and analysis of a Si/Si0.55 Ge0.45 heterojunction line tunnel FET. IEEE. tansaction. Electron. Devices. 61(3), 707–715 (2014)

    ADS  Google Scholar 

  55. W. Cheng, R. Liang, G. Xu, G. Yu, S. Zhang, H. Yin, C. Zhao, T.L. Ren, J. Xu, Fabrication and characterization of a novel Si line tunneling TFET with high drive current. IEEE. J. Electron. Devices. Soc. 8, 336–340 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karabi Baruah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, K., Das, R. & Baishya, S. Impact of trap charge and temperature on DC and Analog/RF performances of hetero structure overlapped PNPN tunnel FET. Appl. Phys. A 126, 856 (2020). https://doi.org/10.1007/s00339-020-04054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04054-8

Keywords

Navigation