Skip to main content
Log in

Effects of annealing temperature on the structure and photoluminescence properties of the ZnO/ZnAl2O4/Ca5Al6O14/Ca3Al4ZnO10:0.1% Ce3+ mixed-phases nanophosphor prepared by citrate sol–gel process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mixed-phases of the undoped ZnAl2O4/ZnO/Ca5Al6O14 (ZZC) and Ce3+ doped ZnAl2O4/ZnO/Ca5Al6O14/Ca3Al4ZnO10 (ZZCC:0.1% Ce3+) were successfully prepared using the sol–gel method. The 0.1% Ce3+ concentration was kept constant while the annealing temperature (Ta) was varied from 500 to 1300 °C. X-ray diffraction (XRD) results showed that the prepared materials consist of the mixture of the cubic (ZnAl2O4), hexagonal wurtzite (ZnO) and orthorhombic (Ca5Al6O14 and Ca3Al4ZnO10) crystal structures, which highly depends on the Ta. Energy dispersive x-ray spectroscopy (EDS) analysis confirmed the presence of all the expected elementary compositions. Scanning electron microscopy (SEM) results showed that varying the Ta does not influence the morphology of the prepared nanophosphor material. Transmission electron microscopy confirmed that the prepared powders were in the nanoscale region. The photoluminescence (PL) results showed emission peaks located at 409, 488, 545, 589, 615, 695 and 785 nm, which were attributed to the intrinsic defects within ZZC mixed phases. There was no emission observed from the Ce3+ transition. Optimum photoluminescence intensity was observed at the Ta = 600 °C. The commission Internationale de I’Eclairage coordinates (CIE) showed that the emission colour could be tuned by varying the Ta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.H.A. Nguyen, V.T.P. Vinod, I. Vera, Č. Miroslav, Š. Alena, Nanoscale Res. Lett. 13, 159 (2018)

    ADS  Google Scholar 

  2. C. Klingshirn, Phys. Status Solidi B 244(9), 3027–3073 (2007)

    ADS  Google Scholar 

  3. A.S. Kuznetsov, Y.G. Lu, S. Turner, M.V. Shestakov, V.K. Tikhomirov, D. Kirilenko, J. Verbeeck, A.N. Baranov, V.V. Moshchalkov, Opt. Mater. Express 2(6), 723–734 (2012)

    ADS  Google Scholar 

  4. U. Ozgur, D. Hofstetter, H. Morkoc, Proc. IEEE 98(7), 1255–1268 (2010)

    Google Scholar 

  5. L. Lu, R. Li, K. Fan, T. Peng, J. Sol. Energy 84(5), 844–853 (2010)

    ADS  Google Scholar 

  6. E. Muhammad, A. Jamal, K.D. Sakthi, M.R. Anantharaman, Bull. Mater. Sci. 34(2), 251–259 (2011)

    Google Scholar 

  7. F.B. Dejene, D.B. Bem, H.C. Swart, J. Rare Earths 28, 272–276 (2010)

    Google Scholar 

  8. A. Gaki, T.-H. Perraki, G. Kakali, J. Eur. Ceram. Soc. 27(2–3), 1785–1789 (2007)

    Google Scholar 

  9. J.M. Rivas Mercury, A.H. De Aza, P. Pena, J. Eur. Ceram. Soc. 25(14), 3269–3279 (2005)

    Google Scholar 

  10. P. Li, M. Peng, X. Yin, Z. Ma, G. Dong, Q. Zhang, J. Qiu, Opt. Express 21(16), 18943–18948 (2013)

    ADS  Google Scholar 

  11. K.A. Gedekar, S.P. Wankhede, S.V. Moharil, R.M. Belekar, J. Mater. Sci. Mater. Electron. 29(8), 6260–6265 (2018)

    Google Scholar 

  12. S.K. Misra, S.I. Andronenko, J. Phys. Chem. Solids 61(12), 1913–1917 (2000)

    ADS  Google Scholar 

  13. M.G. Vincent, J.W. Jeffery, Acta Cryst. Sect. B Struct. Crystallogr. Cryst. Chem. 34(5), 1422–1428 (1978)

    Google Scholar 

  14. V.D. Barbanyagre, T.I. Timoshenko, A.M. IIyinets, Shamshurov, Powder Diffr. 12, 22 (1997)

    ADS  Google Scholar 

  15. A.H. Wako, PhD Thesis, University of the Free State Republic of South Africa, 2011

  16. J.T. Keller, D.K. Agrawal, H.A. McKinstry, J. Am. Ceram. Soc. 3(4), 420–422 (1988)

    Google Scholar 

  17. K. Petcharoen, A. Sirivat, Mater. Sci. Eng. B 177(5), 421–427 (2012)

    Google Scholar 

  18. Z. Chen, E. Shi, Y. Zheng, W. Li, N. Wu, W. Zhong, Mater. Lett. 56(4), 601–605 (2002)

    Google Scholar 

  19. M.T. Tsai, Y.X. Chen, P.J. Tsai, Y.K. Wang, Thin Solid Films 518, 5363–5367 (2010)

    ADS  Google Scholar 

  20. R.J. Wiglusz, T. Grzyb, A. Lukowiak, A. Bednarkiewicz, S. Lis, W. Strek, J. Lumin. 133, 102–109 (2013)

    Google Scholar 

  21. D. Jia, X.J. Wang, W. Jia, W.M. Yen, J. Appl. Phys. 93(1), 148–152 (2003)

    ADS  Google Scholar 

  22. S.K. Shukla, E.S. Agorku, H. Mittal, A.K. Mishra, Chem. Pap. 68(2), 217–222 (2014)

    Google Scholar 

  23. V. Singh, N. Singh, M.S. Pathak, V. Dubey, P.K. Singh, Optik 155, 285–291 (2018)

    ADS  Google Scholar 

  24. S.V. Motloung, P. Kumari, L.F. Koao, T.E. Motaung, T.T. Hlatshwayo, M.J. Mochane, Mater. Today Commun. 14, 294–301 (2018)

    Google Scholar 

  25. S.V. Motloung, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, J. Lumin. 163, 8–16 (2015)

    Google Scholar 

  26. M. Jyoti, D. Vijay, S. Radha, Int. J. Sci. Res. 3(11), 2250–3153 (2013)

    Google Scholar 

  27. S. Yang, Y. Liu, Y. Zhang, D. Mo, Bull. Mater. Sci. 33(3), 209–214 (2010)

    Google Scholar 

  28. T. Hussain, M. Junaid, S. Atiq, S.K. Abbas, S.M. Ramay, B.F. Alrayes, S. Naseem, J. Alloys Compd. 754, 940–950 (2017)

    Google Scholar 

  29. S.V. Motloung, M. Tsega, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, L.F. Koao, T.E. Motaung, M.J. Hato, J. Alloys Compd. 677, 72–79 (2016)

    Google Scholar 

  30. N. Pushpa, M.K. Kokila, B.M. Nagabhushana, H. Nagabhushana, A.J. Reddy, Bull. Mater. Sci. 38(5), 1359–1365 (2015)

    Google Scholar 

  31. S.F. Wang, G.Z. Sun, L.M. Fang, L. Lei, X. Xiang, X.T. Zu, Sci. Rep. 5, 12849 (2015)

    ADS  Google Scholar 

  32. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Hallibutton, G. Cantwell, Appl. Phys. Lett. 81, 622–624 (2002)

    ADS  Google Scholar 

  33. B. Cheng, S. Qu, H. Zhou, Z. Wang, J. Nanotechnol. 17(12), 2982 (2006)

    ADS  Google Scholar 

  34. A.A. Da Silva, A. Goncalves, M.R. Davolos, J. Sol Gel. Sci. Technol. 49, 101–105 (2009)

    Google Scholar 

  35. W.M. Jadwisienczak, H.J. Lozykowski, A. Xu, B. Patel, J. Electron. Mater. 31(7), 776–784 (2002)

    ADS  Google Scholar 

  36. N.H. Alvi, K. Ul Hasan, O. Nur, M. Willander, Nanoscale Res. Lett. 6(1), 130 (2011)

    ADS  Google Scholar 

  37. E. Musavi, M. Khanlary, Z. Khakpour, J. Lumin. 216, 116696 (2019)

    Google Scholar 

  38. V.V. Osiko, Opt. Spectrosc. 7(6), 770–775 (1959)

    Google Scholar 

  39. Y.M. Gerbshtein, Y.M. Zelikin, Opt. Spectrosc. 28, 521–522 (1970)

    Google Scholar 

  40. R. Cao, J. Zhang, W. Wang, T. Chen, Q. Gou, Y. Wen, F. Xiao, Z. Luo, Opt. Mater. 66, 293–296 (2017)

    ADS  Google Scholar 

  41. S.V. Motloung, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, J. Sol Gel. Sci. Technol. 70(3), 422–427 (2014)

    Google Scholar 

  42. H. Tang, H. Berger, P.E. Schmid, F. Levy, G. Burri, Solid State Commun. 87(9), 847–850 (1993)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the South African National Research Foundation (NRF) Thuthuka Programme (Fund number UID99266) and NRF incentive funding for rated researchers (IPRR) (Grant no 114924). Dr James Wesley-Smith and the Electron Microscopy Unit at Sefako Makgatho Health Science University is acknowledged for the SEM and TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setumo Victor Motloung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mphelane, M.N., Mhlongo, M.R., Motaung, T.E. et al. Effects of annealing temperature on the structure and photoluminescence properties of the ZnO/ZnAl2O4/Ca5Al6O14/Ca3Al4ZnO10:0.1% Ce3+ mixed-phases nanophosphor prepared by citrate sol–gel process. Appl. Phys. A 126, 821 (2020). https://doi.org/10.1007/s00339-020-04002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04002-6

Keywords

Navigation