Skip to main content
Log in

Fully slot-die-coated perovskite solar cells in ambient condition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid perovskite solar cells (PSCs) are developing rapidly, but most of the PSCs are prepared by spin coating process, which is not compatible with potential large-scale, high-throughput industrialization. Slot-die coating is a promising deposition technique with high precision and excellent material utilization, which can accelerate the industrial-scale production of PSCs and enhance the potential commercial value. Herein, fully slot-die-coated PSCs were achieved by subsequently slot-die coating electron transport layer, perovskite layer and hole transport layer in ambient condition, leading to a power conversion efficiency (PCE) up to 14.55%. The optimization of slot-die coating parameters for two-step deposition process can produce even PbI2 film and subsequent high-quality perovskite film. Furthermore, a mixed solvent of dimethyl sulfoxide and N, N-dimethylformamide was used to dissolve PbI2 for further enhancing the surface energy and delaying crystallization, leading to a uniform and better perovskite film. In addition, the slot-die coating properties and repeatability could be improved by adding a small quantity of cations (cesium, methylammonium and formamidinium) additives into the PbI2 precursor solution. The results suggest that efficient PSCs with good repeatability could be processed via fully slot-die coating in ambient condition, which is compatible with potentially large-scale, roll-to-roll commercial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Green, A. Baillie, H. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    Article  ADS  Google Scholar 

  2. C. Wang, C. Zhang, S. Wang, G. Liu, H. Xia, S. Tong, J. He, D. Niu, C. Zhou, K. Ding, Y. Gao, J. Yang, Low-temperature processed, efficient and highly reproducible cesium-doped triple cation perovskite planar heterojunction solar cells. Sol. RRL 2, 1700209 (2018)

    Article  Google Scholar 

  3. C. Stoumpos, C. Malliakas, M. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Article  Google Scholar 

  4. V. D'Innocenzo, G. Grancini, M. Alcocer, A. Kandada, S. Stranks, M. Lee, G. Lanzani, H. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)

    Article  ADS  Google Scholar 

  5. D. Burkitt, J. Searle, D. Worsley, T. Watson, Sequential slot-die deposition of perovskite solar cells using dimethylsulfoxide lead iodide ink. Materials 11, 2106 (2018)

    Article  ADS  Google Scholar 

  6. Y. Zhao, G. Wang, Y. Wang, T. Xiao, M. Adil, G. Lu, J. Zhang, Z. Wei, A sequential slot-die coated ternary system enables efficient flexible organic solar cells. Sol. RRL 3, 1800333 (2019)

    Article  Google Scholar 

  7. J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  ADS  Google Scholar 

  8. A. Kojima, K. Teshina, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  9. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf

  10. S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang, Q. Dong, H. Wei, J. Huang, Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017)

    Article  Google Scholar 

  11. Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 8, 1544–1550 (2015)

    Article  Google Scholar 

  12. H. Wu, C. Zhang, K. Ding, L. Wang, Y. Gao, J. Yang, Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition. Org. Electron. 45, 302–307 (2017)

    Article  ADS  Google Scholar 

  13. A. Barrows, A. Pearson, C. Kwak, A. Dunbar, A. Buckley, D. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014)

    Article  Google Scholar 

  14. S. Das, B. Yang, G. Gu, P. Joshi, I. Ivanov, C. Rouleau, T. Aytug, D. Geohegan, K. Xiao, High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics 2, 680–686 (2015)

    Article  Google Scholar 

  15. H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016)

    Article  Google Scholar 

  16. Y. Rong, Y. Ming, W. Ji, D. Li, A. Mei, Y. Hu, H. Han, Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. J. Phys. Chem. Lett. 9, 2707–2713 (2018)

    Article  Google Scholar 

  17. F. Krebs, J. Fyenbo, M. Jørgensen, Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 20, 8994–9001 (2010)

    Article  Google Scholar 

  18. F. Krebs, Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93, 465–475 (2009)

    Article  Google Scholar 

  19. J. Kim, Y. Jung, Y. Heo, K. Hwang, T. Qin, D. Kim, D. Vak, Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cells 179, 80–86 (2018)

    Article  Google Scholar 

  20. K. Hwang, Y. Jung, Y. Heo, F. Scholes, S. Watkins, D. Jones, J. Subbiah, D. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015)

    Article  Google Scholar 

  21. C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192 (2018)

    Article  Google Scholar 

  22. G. Cotella, J. Baker, D. Worsley, F. Rossi, C. Pleydell-Pearce, M. Carnie, T. Watson, One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 159, 362–369 (2017)

    Article  Google Scholar 

  23. T. Bu, J. Zheng, W. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y. Cheng, F. Huang, Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018)

    Article  ADS  Google Scholar 

  24. C. Zhang, Q. Luo, H. Wu, H. Li, J. Lai, G. Ji, L. Yan, X. Wang, D. Zhang, J. Lin, L. Chen, J. Yang, C. Ma, Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells”. Org. Electron. 45, 190–197 (2017)

    Article  Google Scholar 

  25. G. Kim, D. Shin, J. Lee, J. Park, Effect of surface morphology of slot-die heads on roll-to-roll coatings of fine PEDOT:PSS stripes. Org. Electron. 66, 116–125 (2019)

    Article  Google Scholar 

  26. Y. Galagan, F. Giacomo, H. Gorter, G. Kirchner, I. Vries, R. Andriessen, P. Groen, Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv. Energy Mater. 8, 1801935 (2018)

    Article  Google Scholar 

  27. Q. Hu, H. Wu, J. Sun, D. Yan, Y. Gao, J. Yang, Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 8, 5350–5357 (2016)

    Article  ADS  Google Scholar 

  28. Y. Heo, J. Kim, H. Weerasinghe, D. Angmo, T. Qin, K. Sears, K. Hwang, Y. Jung, J. Subbiah, D. Jones, M. Gao, D. Kim, D. Vak, Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy 41, 443–451 (2017)

    Article  Google Scholar 

  29. Y. Kim, E. Park, T. Yang, J. Noh, T. Shin, N. Jeon, J. Seo, Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. J. Mater. Chem. A. 6, 12447–12454 (2018)

    Article  Google Scholar 

  30. J. Whitaker, D. Kim, B. Larson, F. Zhang, J. Berry, K. Zhu, Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels. 2, 2242–2249 (2018)

    Article  Google Scholar 

  31. K. Huang, C. Wang, C. Zhang, S. Tong, H. Li, B. Liu, Y. Gao, Y. Dong, Y. Gao, Y. Peng, J. Yang, Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Org. Electron. 55, 140–145 (2018)

    Article  Google Scholar 

  32. C. Wang, C. Zhang, Y. Huang, S. Tong, H. Wu, J. Zhang, Y. Gao, J. Yang, Degradation behavior of planar heterojunction CH3NH3PbI3 perovskite solar cells. Syn. Met. 222, 43–51 (2017)

    Article  Google Scholar 

  33. T. Qin, W. Huang, J.E. Kim, D. Vak, C. Forsyth, C.R. McNeill, Y.B. Cheng, Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31, 210–217 (2017)

    Article  Google Scholar 

  34. C. Gong, S. Tong, K. Huang, H. Li, H. Huang, J. Zhang, J. Yang, Flexible planar heterojunction perovskite solar cells fabricated via sequential roll-to-roll microgravure printing and slot-die coating deposition Sol. RRL 4(2), 1900204 (2019)

    Article  Google Scholar 

  35. Y. Peng, Y. Cheng, C. Wang, C. Zhang, H. Xia, K. Huang, S. Tong, J. Yang, Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Org. Electron. 58, 153–158 (2018)

    Article  Google Scholar 

  36. K. Huang, Y. Peng, Y. Gao, J. Shi, H. Li, X. Mo, H. Huang, Y. Gao, L. Ding, J. Yang, High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv. Energy Mater. 9, 1901419 (2019)

    Article  Google Scholar 

  37. Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017)

    Article  Google Scholar 

  38. H. Sohrabpoor, M. Elyasi, M. Aldosari, N.E. Gorji, Modeling the PbI2 formation in perovskite solar cells using XRD/XPS patterns. Superlattices Microstruct. 97, 556–561 (2016)

    Article  ADS  Google Scholar 

  39. P. Wangyang, H. Sun, X. Zhu, D. Yang, X. Gao, Mechanical exfoliation and Raman spectra of ultrathin PbI2 single crystal. Mater. Lett. 168, 68–71 (2016)

    Article  Google Scholar 

  40. K. Huang, H. Li, C. Zhang, Y. Gao, T. Liu, J. Zhang, Y. Gao, Y. Peng, L. Ding, J. Yang, Highly efficient perovskite solar cells processed under ambient conditions using in situ substrate-heating-assisted deposition. Sol. RRL 3, 1800318 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51673214) and the National Key Research and Development Program of China (2017YFA0206600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Huang, K., Long, C. et al. Fully slot-die-coated perovskite solar cells in ambient condition. Appl. Phys. A 126, 452 (2020). https://doi.org/10.1007/s00339-020-03628-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03628-w

Keywords

Navigation