Skip to main content

Advertisement

Log in

Comparative study of frequency-dependent dielectric properties of ferrites MFe2O4 (M = Co, Mg, Cr and Mn) nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferrites ‘MFe2O4 (M = Co, Mg, Cr and Mn)’ nanoparticles were successfully synthesized by chemical co-precipitation method. X-ray diffraction technique was used to determine the crystal structure, phase purity and average crystallite size of these ferrites nanoparticles. X-ray density and porosity were calculated by using standard relations. Sauter’s relation was also used to estimate the specific surface area of these nanoparticles. The important characteristics like morphology, size and shape of these nanoparticles were examined and estimated by scanning electron microscopy technique. The energy-dispersive X-ray spectroscopy was used to determine the elemental compositional of these ferrites nanoparticles. The vibrational modes and bond coordination among the various atoms of these ferrites nanoparticles were investigated by Fourier transform infrared spectroscopy. The frequency-dependent dielectric and impedance measurements were taken by LCR meter. The comparative analysis of dielectric parameters of these ferrites nanoparticles can help the audience to select the material having desired dielectric properties for energy storage practical applications especially lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.J. Klabunde, R.M. Richards, Nanoscale Materials in Chemistry, 2nd edn. (Wiley, New York, 2009)

    Google Scholar 

  2. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrites ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Google Scholar 

  3. M.J. Akhtar, M. Younas, Structural and transport properties of nanocrystalline MnFe2O4 synthesized by co-precipitation method. Solid State Sci. 14, 1536–1542 (2012)

    ADS  Google Scholar 

  4. M.S. Niasari, Host (nanocavity of zeolite-Y)–guest (tetraaza[14]annulene copper (II) complexes) nanocomposite materials: synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A Chem. 245, 192–199 (2006)

    Google Scholar 

  5. F. Motahari, M.R. Mozdianfard, F. Soofivand, M.S. Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye pollution wastewater treatment. RSC Adv. 4, 27654 (2014)

    Google Scholar 

  6. M.S. Niasari, M. Shaterian, M.R. Ganjali, P. Norouzi, “Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N, N-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM). J. Mol. Catal. A Chem. 261, 147–155 (2007)

    Google Scholar 

  7. F. Davar, M.S. Niasari, N. Mir, K. Saberyan, M. Monemzadeh, E. Ahmadi, Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor. Polyhedron 29, 1747–1753 (2010)

    Google Scholar 

  8. M.S. Niasari, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM). Microporous Mesoporous Mater. 95, 248–256 (2006)

    Google Scholar 

  9. M. Yousefi, F. Gholamian, D. Ghanbari, M.S. Niasari, Polymeric nanocomposite materials: preparation and characterization of star-shaped PbS nanocrystals and their influence on the thermal stability of acrylonitrile–butadiene–styrene (ABS) copolymer. Polyhedron 30, 1055–1060 (2011)

    Google Scholar 

  10. D. Ghanbari, M.S. Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)

    Google Scholar 

  11. B. Sahoo, S.K. Sahu, S. Nayak, D. Dhara, P. Pramanik, Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal. Sci. Technol. 2, 1367–1374 (2012)

    Google Scholar 

  12. F. Mohandes, F. Davar, M.S. Niasari, Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids 71, 1623–1628 (2010)

    ADS  Google Scholar 

  13. H. Farooq, M.R. Ahmad, Y. Jamil, A. Hafeez, Z. Mahmood, T. Mahmood, Structural and dielectric properties of manganese ferrite nanoparticles. J. Basic Appl. Sci. 8, 597–601 (2012)

    Google Scholar 

  14. S. Moshtaghi, D. Ghanbari, M.S. Niasari, Characterization of CaSn(OH)6 and CaSnO3 nanostructures synthesized by a new precursor. J. Nanostruct. 5, 169–174 (2015)

    Google Scholar 

  15. K.M. Batoo, Study of dielectric and impedance properties of Mn ferrites. Phys. B 406, 382–387 (2011)

    ADS  Google Scholar 

  16. U.S. Sharma, R.N. Sharma, R. Shah, Physical and magnetic properties of manganese ferrite nanoparticles. J. Eng. Res. Appl. 4, 14–17 (2014)

    Google Scholar 

  17. M.M. Arani, M.S. Niasari, A simple sonochemical approach for synthesis and characterization of Zn2SiO4 nanostructures. Ultrason. Sonochem. 29, 226–235 (2016)

    Google Scholar 

  18. K. Ashwini, H. Rajanaika, K.S. Anantharaju, H. Nagabhushanad, P.A. Reddy, K. Shetty, K.R.V. Mahesh, Synthesis and characterization of as-formed and calcined MnFe2O4 nanoparticles: a comparative study of their antibacterial activities. Mater. Today Proc. 4, 11902–11909 (2017)

    Google Scholar 

  19. S.K. Durrani, S. Naz, M. Mehmood, M. Nadeem, M. Siddique, Structural, impedance and Mossbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process. J. Saudi Chem. Soc. 21, 899–910 (2017)

    Google Scholar 

  20. M. Easwari, S. Jesurani, Synthesis & magnetic properties of magnesium ferrite (MgFe2O4) nanoparticles via sol gel method. Int. Res. J. Eng. Technol. 4, 110–113 (2017)

    Google Scholar 

  21. R.K. Panda, R. Muduli, S.K. Kar, D. Behera, Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles. J. Alloy. Compd. 615, 899–905 (2014)

    Google Scholar 

  22. E. Yilmaz, T. Gürkaynak, H. Deligöz, D. Deger, K. Ulutas, S. Yakut, Ac conductivity of CoFe2O4 nanoparticles synthesis by polyol method. IEEE Int. Conf. Nanotechnol. 2, 271–273 (2015)

    Google Scholar 

  23. C. Murugesan, M. Perumal, G. Chandrasekaran, Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route. Physica B Phys. Condens. Matter 448, 53–56 (2014)

    ADS  Google Scholar 

  24. K.S. Rao, G. Choudary, K.H. Rao, Ch. Sujatha, Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Procedia Mater. Sci. 10, 19–27 (2015)

    Google Scholar 

  25. E.V. Gopalan, I.A. Al-Omari, K.A. Malini, P.A. Joy, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites. J. Magn. Magn. Mater. 321, 1092–1099 (2009)

    ADS  Google Scholar 

  26. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, Evidence for polaron conduction in nanostructured manganese ferrite. J. Phys. D Appl. Phys. 41, 185005 (2008)

    ADS  Google Scholar 

  27. M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nano particles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118, 174–180 (2009)

    Google Scholar 

  28. R.K. Sharma, O. Suwalka, N. Lakshmi, K. Venugopalan, A. Banerjee, P.A. Joy, Synthesis of chromium substituted nano particles of cobalt zinc ferrites by coprecipitation. Mater. Lett. 59, 3402–3405 (2005)

    Google Scholar 

  29. K.V. Kumar, R. Sridhar, D. Ravinder, Dielectric properties of chromium substituted nickel nano ferrites. Int. J. Nanoparticle Res. 2(6), 0001–0008 (2018)

    Google Scholar 

  30. M.M. Kamazani, Z. Zarghami, M.S. Niasari, facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120(4), 2096–2108 (2016)

    Google Scholar 

  31. M. Sabet, M.S. Niasari, O. Amiri, Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochim. Acta 117, 504–520 (2014)

    Google Scholar 

  32. S.M. Derazkola, S.Z. Ajabshir, M.S. Niasari, Novel simple solvent-less preparation, characterization and degradation of the cationic dye over holmium oxide ceramic nanostructures. Ceram. Int. 41, 9593–9601 (2015)

    Google Scholar 

  33. M. Sajjia, M. Oubaha, M. Hasanuzzaman, A.G. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceram. Int. 40, 1147–1154 (2014)

    Google Scholar 

  34. S.K. Pradhan, S. Sain, H. Dutta, Microstructure characterization of nanocrystalline magnesium ferrite annealed at elevated temperatures by Rietveld method. Int. Sch. Res. Netw. ISRN Ceram. 124, 1–8 (2011)

    Google Scholar 

  35. P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik, K.M. Jadhav, Effect of aluminum substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol–gel auto combustion process. Phys. B 406, 4350–4354 (2011)

    ADS  Google Scholar 

  36. M. Raghasudha, D. Ravinder, P. Veerasomaiah, FTIR Studies and dielectric properties of Cr substituted cobalt nano ferrites synthesized by citrate-gel method. Nanosci. Nanotechnol. 3(5), 105–114 (2013)

    Google Scholar 

  37. S. Nasir, M.A. Rehman, Structural, electrical and magnetic studies of nickel–zinc nanoferrites prepared by simplified sol–gel and co-precipitation methods. Phys. Scr. 84, 025603–025609 (2011)

    ADS  Google Scholar 

  38. S. Singhal, T. Namgyal, S. Bansal, K. Chandra, Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol-gel route. J. Electromag. Anal. Appl. 2, 376–381 (2010)

    ADS  Google Scholar 

  39. R.S. Azis, M.S. Mustaffa, N.M.M. Shahrani, Sintering temperature effect on microstructure and magnetic evolution properties with nano- and micrometer grain size in ferrite polycrystals. Sinter. Technol. Method Appl. Intech Open 3, 45–61 (2015)

    Google Scholar 

  40. B. Nath, T.F. Barbhuiya, Studies on the density and surface area of nanoparticles from Camellia sinensis, a natural source. J. Chem. Pharm. Res. 6, 608–610 (2014)

    Google Scholar 

  41. R. Saravanan, Ferrite materials for memory applications. Millersville, PA Mater. Res. Forum 18, 145–146 (2017)

    Google Scholar 

  42. M. Gunay, H. Erdemi, A. Baykal, H. Sozeri, M.S. Toprak, Triethylene glycol stabilized MnFe2O4 nanoparticle: synthesis, magnetic and electrical characterization. Mater. Res. Bull. 48, 1057–1064 (2013)

    Google Scholar 

  43. M.S. Niasari, Z. Fereshteh, F. Davar, Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28, 126–130 (2009)

    Google Scholar 

  44. J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, Scanning electron microscopy and x-ray microanalysis. Springer Nat 4, 1–689 (2017)

    Google Scholar 

  45. S.S. Chougule, B.K. Chougule, Studies on electrical properties and the magnetoelectric effect on ferroelectric-rich (x) Ni0.8Zn0.2Fe2O4 + (1-x) PZT ME composites. Smart Mater. Struct. 16, 493–497 (2007)

    ADS  Google Scholar 

  46. M.M. Rahman, M.S. Sheak, S. Pervin, F. Nasiruddin, M.A. Ahmed, M. Hossain, M.S. Rahaman, T. Bashar, S.Akhter Hossain, Composition, temperature and frequency dependent magnetic, dielectric and electrical properties of magnesium-zinc ferrites. J. Bangladesh Acad. Sci. 36, 199–212 (2012)

    Google Scholar 

  47. G. Mathew, S.N. Swapana, M.J. Asha, P.A. Joy, M.R. Anantharaman, Structural, magnetic and electrical properties of the sol-gel prepared Li0.5Fe2.5O4 fine particles. J. Phys. D App. Phys. 39, 900–910 (2006)

    ADS  Google Scholar 

  48. A.M. Abdeen, Dielectric behaviour in Ni–Zn ferrites. J. Magn. Magn. Mater. 192, 121 (1999)

    ADS  Google Scholar 

  49. A. Kaushal, S.M. Olhero, B. Singh, D.P. Fagg, I. Bdikin, J.M.F. Ferreira, Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules. Ceram. Int. 40, 10593–10600 (2014)

    Google Scholar 

  50. A.R. Long, Frequency dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    ADS  Google Scholar 

  51. M. Tan, Y. Köseoğlu, F. Alan, E. Şentürk, Overlapping large polaron tunneling conductivity and giant dielectric constant in Ni0.5Zn0.5Fe1.5Cr0.5O4 nanoparticles (NPs). J. Alloy. Compd. 509, 9399–9405 (2011)

    Google Scholar 

  52. S.N. Khan, A.N.S. Saqib, M. Arshad, S. Atiq, S. Naseem, Structurally modulated dielectric relaxation in rhombohedral Cr2O3 mediated by Mn addition. J. Mater. Sci. Mater. Electron 3, 1–8 (2018)

    Google Scholar 

  53. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)

    ADS  Google Scholar 

  54. N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn-Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)

    ADS  Google Scholar 

  55. A. Roy, B. Dutta, S. Bhattacharya, Correlation of the average hopping length to the ion conductivity and ion diffusivity obtained from the space charge polarization in solid polymer electrolytes. RSC Adv. 6(70), 65434–65442 (2016)

    Google Scholar 

  56. F.S.H. Abu-Samaha, M.I.M. Ismail, Ac conductivity of nanoparticles CoxFe(1-x) Fe2O4 (x = 0, 0.25 and 1) ferrites. Mater. Sci. Semicond. Process. 19, 50–56 (2014)

    Google Scholar 

  57. K.L. Routray, S. Saha, D. Behera, Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices. Mater. Chem. Phys. 224, 29–35 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubasher, Mumtaz, M., Hassan, M. et al. Comparative study of frequency-dependent dielectric properties of ferrites MFe2O4 (M = Co, Mg, Cr and Mn) nanoparticles. Appl. Phys. A 126, 334 (2020). https://doi.org/10.1007/s00339-020-03529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03529-y

Keywords

Navigation