Skip to main content
Log in

Structural, optical and magnetic properties of pure and rare earth-doped NiO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure and a series of rare earth element (RE) (Er, Sm, Gd, Pr and Y)-doped NiO nanoparticles (NPs) were fabricated by co-precipitation method in the presence of polyvinyl alcohol as a capping agent. X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques were used to investigate the crystal structure and morphology of the prepared samples, respectively. The XRD patterns indicated that all the samples exhibited a single phase of face-centered cubic crystalline structure. TEM images displayed a spherical morphology of weakly agglomerated NPs. Furthermore, the chemical compositions were identified by proton-induced X-ray emission and Rutherford backscattering analysis. The metal oxide (Ni–O) functional group was confirmed by Fourier transform infrared spectroscopy with its observed band varying from 419.3 to 433.3 cm−1, depending on the RE doping element. The optical properties of the RE-doped NiO NPs were studied using UV–Vis absorption and photoluminescence (PL) spectroscopy. A small blueshift was obtained in the optical spectra of the RE-doped samples as compared to the undoped samples, implying an increase in the optical band gap. The study of the room temperature magnetic properties was done using the vibrating sample magnetometer, which revealed the coexistence of antiferromagnetic and weak ferromagnetic ordering in pure and RE3+-doped NiO NPs. The magnetization increased depending on the magnetic moments of RE dopant ions. Also, the origin of the anomalous ferromagnetism in the prepared samples may be mainly related to Ni vacancy defects, which were evinced from the results of PL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.M. Chavali, M.P. Nikolova, SN Appl. Sci. 1, 607 (2019)

    Google Scholar 

  2. H. Ramachandran, M.M. Jahanara, N.M. Nairab, P. Swaminathan, RSC Adv. 10, 3951 (2020)

    Google Scholar 

  3. A.C. Gandhi, S.Y. Wu, AIP Adv. 10, 015211 (2020)

    ADS  Google Scholar 

  4. M.S. Alnarabiji, O. Tantawi, A. Ramli, N.A.M. Zabidi, O.B. Ghanem, B. Abdullahad, Renew. Sustain. Energy Rev. 114, 109326 (2019)

    Google Scholar 

  5. S. Burrola, M. Horii, M.J. Gonzalez-Guerrero, J.C. Bachman, F.A. Gomez, Electrophoresis 41, 131 (2020)

    Google Scholar 

  6. N. Kaur, D. Zappa, E. Comini, Electron. Mater. Lett. 15, 743 (2019)

    ADS  Google Scholar 

  7. M. Da Rocha, A. Rougier, Appl. Phys. A 122, 370 (2016)

    ADS  Google Scholar 

  8. C. Guillén, J. Herrero, Mater. Res. Express 7, 1 (2019)

    Google Scholar 

  9. J. Massin, M. Bräutigam, S. Bold, M. Wächtler, M. Pavone, A.B. Munoz-Garcia, J. Phys. Chem. C 123(28), 17176 (2019)

    Google Scholar 

  10. P. Ravikumar, B. Kisan, A. Perumal, AIP Adv. 5, 087116 (2015)

    ADS  Google Scholar 

  11. A.C. Gandhi, T.S. Chan, J. Pant, S.Y. Wu, Nanoscale Res. Lett. 12, 207 (2017)

    ADS  Google Scholar 

  12. E. Erdem, K. Kiraz, M. Somer, R.A. Eichel, J. Eur. Ceram. Soc. 30, 289 (2010)

    Google Scholar 

  13. N. Rinaldi-Montes, P. Gorria, D. Martinez-Blanco, A.B. Fuertes, L.F. Barquin, J.R. Fernandez, I. de Pedro, M.L. Fdez-Gubieda, J. Alonso, L. Olivi, G. Aquilanti, J.A. Blanco, Nanoscale 6, 457 (2014)

    ADS  Google Scholar 

  14. A.S. Varpe, M.D. Deshpande, Pramana 89, 15 (2017)

    Google Scholar 

  15. M. Abdur Rahman, R. Radhakrishnan, SN Appl. Sci. 1, 221 (2019)

    Google Scholar 

  16. J. Chauhan, U. Chaubey, IOSRJEN 8, 88 (2018)

    Google Scholar 

  17. C. Mrabet, M. Ben Amor, A. Boukhachem, M. Amlouk, T. Manoubi, Ceram. Int. 42, 5963 (2016)

    Google Scholar 

  18. J. Junaidi, M. Yunus, H. Harsojo, E. Suharyadi, K. Triyana, Int. J. Adv. Sci. Eng. Inf. Technol. 6, 365 (2016)

    Google Scholar 

  19. J.A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, New York, 1999)

    Google Scholar 

  20. M.M. Obeid, H.R. Jappor, K. Al-Marzoki, I.A. Al-Hydary, S.J. Edrees, M.M. Shukur, RSC Adv. 9, 33207 (2019)

    Google Scholar 

  21. P. Kumar, V. Sharma, A. Sarwa, A. Kumar, Surbhi, R. Goyal, K. Sachdev, S. Annapoorni, K. Asokan, D. Kanjilal, RSC Adv. 6, 89242 (2016)

    Google Scholar 

  22. J. Al Boukhari, L. Zeidan, A. Khalaf, R. Awad, Chem. Phys. 516, 116 (2019)

    Google Scholar 

  23. M. Gomathi, P.V. Rajkumar, A. Prakasam, Results Phys. 10, 858 (2018)

    ADS  Google Scholar 

  24. M.S. Geetha, H. Nagabhushana, H.N. Shivananjaiah, J. Sci. Adv. Mater. Dev. 1, 301 (2016)

    Google Scholar 

  25. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    ADS  Google Scholar 

  26. A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 2, 154 (2012)

    ADS  Google Scholar 

  27. P.K. Giri, S. Bhattacharyya, D.K. Singh, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, J. Appl. Phys. 102, 093515 (2007)

    ADS  Google Scholar 

  28. S. Tripathy, Nanoscale Res. Lett. 3, 164 (2008)

    ADS  Google Scholar 

  29. MdM Hasan, P.P. Dholabhai, R.H.R. Castro, B.P. Uberuaga, Surf. Sci. 649, 138 (2016)

    ADS  Google Scholar 

  30. A. Janotti, C.G.V. de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    ADS  Google Scholar 

  31. A. Sahai, N. Goswami, Ceram. Int. 40, 14569 (2014)

    Google Scholar 

  32. M. El-Kemary, N. Nagy, I. El-Mehasseb, Mater. Sci. Semicond. Process. 16, 1747 (2013)

    Google Scholar 

  33. T. Anantha Kumar, S. Malathi, C.V. Mythili, M. Jeyachandran, IJCTR 11, 48 (2018)

    Google Scholar 

  34. M.N. Akhtar, T. Hussain, M.A. Khan, M. Ahmad, Results Phys. 10, 784 (2018)

    ADS  Google Scholar 

  35. V. Singh, V. Srinivas, S. Ram, Philos. Mag. 90, 1401 (2010)

    ADS  Google Scholar 

  36. A.B. Gemta, B. Bekele, A.R.C. Reddy, Int. J. Nanotechnol. Mater. Sci. 5, 44 (2018)

    Google Scholar 

  37. T.N. Soitah, Y. Chunhui, S. Liang, Sci. Adv. Mater. 2, 534 (2010)

    Google Scholar 

  38. E.G. Goh, X. Xu, P.G. McCormick, Scripta Mater. 78–79, 49–52 (2014)

    Google Scholar 

  39. A. Layek, S. Banerjee, B. Manna, A. Chowdhury, RSC Adv. 6, 35892 (2016)

    Google Scholar 

  40. S. El Whibi, L. Derbali, P. Tristant, C. Jaoul, M. Colas, R. Mayet, J. Cornette, H. Ezzaouia, J. Mater. Sci. Mater. Electron. 30, 2351 (2019)

    Google Scholar 

  41. S.M. Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad, D. Mohammadyani, Ultrason. Sonochem. 19, 841 (2012)

    Google Scholar 

  42. K. Varunkumar, R. Hussain, G. Hegde, A.S. Ethiraj, Mater. Sci. Semicond. Process. 66, 149 (2017)

    Google Scholar 

  43. N. Saha, A. Sarkar, A.B. Ghosh, A.K. Dutta, G.R. Bhadu, P. Paul, B. Adhikary, RSC Adv. 5, 88848 (2015)

    Google Scholar 

  44. B. Kisan, P.C. Shyni, S. Layek, H.C. Verma, D. Hesp, V. Dhanak, S. Krishnamurthy, A. Perumal, IEEE Trans. Magn. 50, 1 (2014)

    Google Scholar 

  45. A. Diallo, K. Kaviyarasu, S. Ndiaye, B.M. Mothudi, A. Ishaq, V. Rajendran, M. Maaza, Green Chem. Lett. Rev. 11, 166 (2018)

    Google Scholar 

  46. A.C. Gandhi, S.Y. Wu, Nanomaterials (Basel) 7, 231 (2017)

    Google Scholar 

  47. B. Karthikeyan, T. Pandiyarajan, S. Hariharan, M.S. Ollakkan, Cryst. Eng. Comm. 18, 601 (2016)

    Google Scholar 

  48. X. Liu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95, 3141 (2004)

    ADS  Google Scholar 

  49. M.V. Limaye, S.B. Singh, R. Das, P. Poddar, S.K. Kulkarni, J. Solid State Chem. 184, 391 (2011)

    ADS  Google Scholar 

  50. S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, W.-F. Hsieh, J. Cryst. Growth 287, 78 (2006)

    ADS  Google Scholar 

  51. D.F. Crabtree, Phys. Status Solidi (a) 38, 217 (1976)

    ADS  Google Scholar 

  52. W.J. Duan, S.H. Lu, Z.L. Wu, Y.S. Wang, J. Phys. Chem. C 116, 26043 (2012)

    Google Scholar 

  53. Y. Shimomura, I. Tsubokawa, M. Kojima, J. Phys. Soc. Jpn. 9, 521 (1954)

    ADS  Google Scholar 

  54. S.A. Makhlouf, F.T. Parker, F.E. Spada, A.E. Berkowitz, J. Appl. Phys. 81, 5561 (1997)

    ADS  Google Scholar 

  55. Z.-Y. Chen, Y. Chen, Q.K. Zhang, X.Q. Tang, D.D. Wang, Z.Q. Chen, P. Mascher, S.J. Wang, ECS J. Solid State Sci. Technol. 6, P798 (2017)

    Google Scholar 

  56. G. Madhu, K. Maniammal, V. Biju, Phys. Chem. Chem. Phys. 18, 12135 (2016)

    Google Scholar 

  57. I. Sugiyama, N. Shibata, Z. Wang, S. Kobayashi, T. Yamamoto, Y. Ikuhara, Nat. Nanotechnol. 8, 266 (2013)

    ADS  Google Scholar 

  58. W.-B. Zhang, N. Yu, W.-Y. Yu, B.-Y. Tang, Eur. Phys. J. B 64, 153 (2008)

    ADS  Google Scholar 

  59. S. Mandal, S. Banerjee, K.S.R. Menon, Phys. Rev. B 80, 214420 (2009)

    ADS  Google Scholar 

  60. J.T. Richardson, D.I. Yiagas, B. Turk, K. Forster, M.V. Twigg, J. Appl. Phys. 70, 6977 (1991)

    ADS  Google Scholar 

  61. Z.H. Lan, X.J. Miao, in Applied Mechanics and Materials (Trans Tech Publ, 2014), pp. 70–73

  62. A. Awadallah, S.H. Mahmood, Y. Maswadeh, I. Bsoul, M. Awawdeh, Q.I. Mohaidat, H. Juwhari, Mater. Res. Bull. 74, 192 (2016)

    Google Scholar 

  63. N.A. Spaldin, Magnetic Materials Fundamentals and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  64. M. George, A. Mary John, S.S. Nair, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006)

    ADS  Google Scholar 

  65. K.O. Moura, R.J.S. Lima, A.A. Coelho, E.A. Souza-Junior, J.G.S. Duque, C.T. Meneses, Nanoscale 6, 352 (2013)

    ADS  Google Scholar 

  66. S. Chakraverty, M. Bandyopadhyay, J. Phys. Condens. Matter 19, 216201 (2007)

    ADS  Google Scholar 

  67. R.M.H. New, R.F.W. Pease, R.L. White, IEEE Trans. Magn. 31, 3805 (1995)

    ADS  Google Scholar 

  68. S. Laureti, G. Varvaro, A.M. Testa, D. Fiorani, E. Agostinelli, G. Piccaluga, A. Musinu, A. Ardu, D. Peddis, Nanotechnology 21, 315701 (2010)

    Google Scholar 

  69. R. Tholkappiyan, K. Vishista, Appl. Surf. Sci. 351, 1016 (2015)

    Google Scholar 

  70. S. Ammar, A. Helfen, N. Jouini, F. Fiévet, I. Rosenman, F. Villain, P. Molinié, M. Danot, J. Mater. Chem. 11, 186 (2001)

    Google Scholar 

  71. S. Liu, Chinese Phys. B 28, 017501 (2019)

    ADS  Google Scholar 

  72. N.S. Kumar, K.V. Kumar, Soft Nanosci. Lett. 6, 37 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was performed in the materials science laboratory, Physics Department, Faculty of Science, Beirut Arab University, in collaboration with the Faculty of Science, Alexandria University, Alexandria, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Al Boukhari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Boukhari, J., Khalaf, A., Sayed Hassan, R. et al. Structural, optical and magnetic properties of pure and rare earth-doped NiO nanoparticles. Appl. Phys. A 126, 323 (2020). https://doi.org/10.1007/s00339-020-03508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03508-3

Keywords

Navigation