Skip to main content
Log in

Subsurface damage and material removal of Al–Si bilayers under high-speed grinding using molecular dynamics (MD) simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By performing three-dimensional molecular dynamics (MD) simulations, the effects of the tool radius, depth of cut and grinding speed are thoroughly studied in terms of the workpiece deformation, material removal, dislocation movement, atomic trajectory, grinding temperature and average grinding force. The strength of ductile/brittle (Al/Si) bilayers is largely enhanced, because the interface can hinder the passage of dislocations. The interface in brittle/ductile (Si/Al) bilayers contributes to its ductility by increasing the movability of dislocations when gliding on it. The brittle to ductile transition of bilayers, which strongly depends on the interface debond energy, has a key role in controlling the dislocation slipping mechanism. The investigation also reveals that a larger tool radius, higher grinding speed or deeper depth of cut results in more chipping volume and higher grinding temperature in both bilayers. At the same machining parameters, the above changes in brittle/ductile (Si/Al) bilayers are more apparent than that in ductile/brittle (Al/Si) bilayers, since Si is stiffer and has a higher yield strength than Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. M. Elmadagli, T. Perry, A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262, 79–92 (2007)

    Google Scholar 

  2. M. Chen, X.M. Burany, T.A. Perry, A.T. Alpas, Micro-mechanisms and mechanics of ultra-mild wear in Al–Si alloys. Acta Mater. 56, 5605–5616 (2008)

    Google Scholar 

  3. K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino, J. Eckert, Tribological and corrosion properties of Al-12Si produced by selective laser melting. J. Mater. Res. 29, 2044–2054 (2014)

    ADS  Google Scholar 

  4. A. Mahato, A. Sachdev, S.K. Biswas, Lubricated tribology of a eutectic aluminium-silicon alloy in the ultra-mild wear and mild wear regimes for long sliding times. ACS Appl. Mater. Inter. 2, 2870–2879 (2010)

    Google Scholar 

  5. A.I. Stognij, S.A. Sharko, A.I. Serokurova, S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.A. Ketsko, V.P. Dyakonov, H. Szymczak, D.A. Vinnik, S.A. Gudkova, Preparation and investigation of the magnetoelectric properties in layered cermet structures. Ceram. Int. 45, 13030–13036 (2019)

    Google Scholar 

  6. A.I. Stognij, N.N. Novitskii, S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, S.A. Sharko, A.I. Serokurova, V.A. Ketsko, V.P. Dyakonov, H. Szymczak, C. Singh, Y. Yang, Interface magnetoelectric effect in elastically linked Co/PZT/Co layered structures. J. Magn. Magn. Mater. 485, 291–296 (2019)

    ADS  Google Scholar 

  7. S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, AnV Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, C. Singh, Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1-x-(BaTiO3)x bicomponent ceramics. Ceram. Int. 44, 21295–21302 (2018)

    Google Scholar 

  8. M. Dienwiebel, K. Pöhlmann, M. Scherge, Origins of the wear resistance of AlSi cylinder bore surfaces studies by surface analytical tools. Tribol. Int. 40, 1597–1602 (2007)

    Google Scholar 

  9. S. Goel, N.H. Faisal, X. Luo, J. Yan, A. Agrawal, Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J. Phys. D 47, 994–1004 (2014)

    Google Scholar 

  10. S. Goel, A. Kovalchenko, A. Stukowski, G. Cross, Influence of microstructure on the cutting behaviour of silicon. Acta Mater. 105, 464–478 (2016)

    Google Scholar 

  11. P. Saidi, T. Frolov, J.J. Hoyt, M. Asta, An angular embedded atom method interatomic potential for the aluminum-silicon system. Model. Simul. Mater. Sci. Eng. 22, 055010 (2014)

    ADS  Google Scholar 

  12. K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20, 305705–305713 (2009)

    Google Scholar 

  13. M.H. Wang, S.Y. You, F.N. Wang, Q. Liu, Effect of dynamic adjustment of diamond tools on nano-cutting behavior of single-crystal silicon. Appl. Phys. A 125(3), 176 (2019)

    ADS  Google Scholar 

  14. P. Zhang, H.W. Zhao, C.L. Shi, L. Zhang, H. Huang, L.Q. Ren, Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation. Appl. Surf. Sci. 280, 751–756 (2013)

    ADS  Google Scholar 

  15. N.S. Tambe, B. Bhushan, Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology 15, 1561–1571 (2004)

    ADS  Google Scholar 

  16. G.L.W. Cross, Silicon nanoparticles: isolation leads to change. Nat. Nanotechnol. 6, 467–468 (2011)

    ADS  Google Scholar 

  17. Z. Zhang, Y. Wu, D. Guo, H. Huang, Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits. Scripta Mater. 64, 177–180 (2011)

    Google Scholar 

  18. P. Zhang, L. Zhou, L. Jin, H. Zhao, X. Du, Effect of nanostructures on rapid boiling of water films: a comparative study by molecular dynamics simulation. Appl. Phys. A. 125(2), 142 (2019)

    ADS  Google Scholar 

  19. P.D. Zavattieri, P.V. Raghuram, H.D. Espinosa, A computational model of ceramic microstructures subjected to multi-axial dynamic loading. J. Mech. Phys. Solids 49, 27–68 (2001)

    MATH  ADS  Google Scholar 

  20. R. Komanduri, L.M. Chandrasekaran, L.M. Raff, Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel. Int. J. Mech. Sci. 43, 2237–2260 (2001)

    MATH  Google Scholar 

  21. S.K.D. Nath, Elastic, elastic–plastic properties of Ag, Cu and Ni nanowires by the bending test using molecular dynamics simulations. Comput. Mater. Sci. 87, 138–144 (2014)

    Google Scholar 

  22. H. Liu, M. Hao, M. Tao, Y. Sun, W. Xie, Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper. Appl. Phys. A 125(3), 214 (2019)

    ADS  Google Scholar 

  23. K. Zhou, A.A. Nazarov, M.S. Wu, Atomistic simulations of the tensile strength of a disclinated bicrystalline nanofilm. Philos. Mag. 88, 3181–3191 (2008)

    ADS  Google Scholar 

  24. L.C. Zhang, K.L. Johnson, W.C.D. Cheong, A molecular dynamics study of scale effects on the friction of single-asperity contacts. Tribol. Lett. 10, 23–28 (2001)

    Google Scholar 

  25. W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11, 173–180 (2000)

    ADS  Google Scholar 

  26. L.C. Zhang, I. Zarudi, Towards a deeper understanding of plastic deformation in mono-crystalline silicon. Int. J. Mech. Sci. 43, 1985–1996 (2001)

    MATH  Google Scholar 

  27. S. Goel, X.C. Luo, R.L. Reuben, Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol. Int. 5, 272–281 (2013)

    Google Scholar 

  28. B. Wang, Z. Zhang, K. Chang, J. Cui, A. Rosenkranz, J. Yu, N. Jiang, New deformation-induced nanostructure in silicon. Nano Lett. 18, 4611–4617 (2018)

    ADS  Google Scholar 

  29. P.Z. Zhu, F.Z. Fang, Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Appl. Phys. A 108, 415–421 (2012)

    ADS  Google Scholar 

  30. P.Z. Zhu, Y.Z. Hu, T.B. Ma, H. Wang, Study of AFM-based nanometric cutting process using molecular dynamics. Appl. Surf. Sci. 256, 7160–7165 (2010)

    ADS  Google Scholar 

  31. Z.C. Lin, M.H. Lin, Y.C. Hsu, Simulation of temperature field during nanoscale orthogonal cutting of single-crystal silicon by molecular statics method. Comput. Mater. Sci. 81, 58–67 (2014)

    Google Scholar 

  32. P.A. Romero, G. Anciaux, A. Molinari, J.F. Molinari, Insights into the thermo-mechanics of orthogonal nanometric machining. Mater. Sci. 72, 116–126 (2013)

    Google Scholar 

  33. D.K. Ward, W.A. Curtina, Y. Qi, Mechanical behavior of aluminum-silicon nanocomposites: a molecular dynamics study. Acta Mater. 54, 4441–4451 (2006)

    Google Scholar 

  34. K. Gall, M.F. Horstemeyer, M.V. Schilfgaarde, M.I. Baskes, Atomistic simulations on the tensile debonding of an aluminum-silicon interface. J. Mech. Phys. Solids 48, 2183–2212 (2000)

    MATH  ADS  Google Scholar 

  35. C.R. Dandekar, Y.C. Shin, Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics. Compos. Part A 42, 355–363 (2011)

    Google Scholar 

  36. A. Noreyan, Y. Qi, V. Stoilov, Critical shear stresses at aluminum-silicon interfaces. Acta Mater. 56, 3461–3469 (2008)

    Google Scholar 

  37. Z. Zhang, H.M. Urbassek, Indentation into an Al/Si composite: enhanced dislocation mobility at interface. J. Mater. Sci. 53, 799–813 (2018)

    ADS  Google Scholar 

  38. Z. Zhang, L.A. Alhafez, H.M. Urbassek, Scratching an Al/Si Interface: molecular dynamics study of a composite material. Tribol. Lett. 66, 86–96 (2018)

    Google Scholar 

  39. Q.X. Pei, C. Lu, H.P. Lee, Large scale molecular dynamics study of nanometric machining of copper. Comput. Mater. Sci. 41, 177–185 (2007)

    Google Scholar 

  40. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 45–48 (2002)

    ADS  Google Scholar 

  41. S.H. Mozaffari, S. Srinivasan, M.Z. Saghir, Thermo diffusion in binary and ternary hydrocarbon mixtures studied using a modified heat exchange algorithm. Therm. Sci. Eng. Pro. 4, 168–174 (2017)

    Google Scholar 

  42. J. Li, Q.H. Fang, L.C. Zhang, Y.W. Liu, Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations. Appl. Surf. Sci. 324, 464–474 (2015)

    ADS  Google Scholar 

  43. K. Zhou, M.S. Wu, A.A. Nazarov, Relaxation of a disclinated tricrystalline nanowire. Acta Mater. 56, 5828–5836 (2008)

    Google Scholar 

  44. B. Li, H.Y. Li, S.N. Luo, Molecular dynamics simulations of displacement cascades in nanotwinned Cu. Comput. Mater. Sci. 152, 38–42 (2018)

    Google Scholar 

  45. A. Sharma, D. Datta, R. Balasubramaniam, Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper. Comput. Mater. Sci. 153, 241–250 (2018)

    Google Scholar 

  46. X.W. Zhou, J.A. Zimmerman, E.D. Reedy, N.R. Moody, Molecular dynamics simulation based cohesive surface representation of mixed mode fracture. Mech. Mater. 40, 832–845 (2008)

    Google Scholar 

  47. D.K. Ward, W.A. Curtin, Y. Qi, Aluminum-silicon interfaces and nanocomposites: a molecular dynamics study. Compos. Sci. Technol. 66, 1511–1561 (2006)

    Google Scholar 

  48. V. Yamakov, E. Saether, D.R. Phillips, E.H. Glaessgen, Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. J. Mech. Phys. Solids 54, 1899–1928 (2006)

    MATH  ADS  Google Scholar 

  49. J. Li, Q.H. Fang, Y.W. Liu, L.C. Zhang, A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl. Surf. Sci. 303, 331–343 (2014)

    ADS  Google Scholar 

  50. J.J. Zhang, Z.F. Wang, Y.D. Yan, T. Sun, Interface-dependent nanoscale friction of copper bicrystals: tilt versus twist. RSC Adv. 6, 59206–59217 (2016)

    Google Scholar 

  51. J.J. Zhang, T. Sun, Y. Yan, Y. Liang, Molecular dynamics study of scratching velocity dependency in AFM-based nanometric scratching process. Mater. Sci. Eng., A 505, 65–69 (2009)

    Google Scholar 

  52. C. Wang, Z. Zhang, J. Cui, N. Jiang, J. Lyu, G. Chen, F. Ye, In Situ TEM study of interaction between dislocations and a single nanotwin under nanoindentation. ACS Appl. Mater. Inter. 9, 29451–29456 (2017)

    Google Scholar 

  53. D.K. Leung, N.T. Zhang, R.M. Mcmeeking, A.G. Evans, Crack progression and interface debonding in brittle/ductile nanoscale multilayers. J. Mater. Res. 10, 1958–1968 (1995)

    ADS  Google Scholar 

  54. X. Zhao, C. Lu, A.K. Tieu, L. Zhan, M. Huang, L. Su, L. Zhang, Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations. Comput. Mater. Sci. 142, 59–71 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate the support from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004), the NNSFC (11772122, and 51871092), State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (71865015), the Fundamental Research Funds for the Central Universities (531107051151), and the National Key Research and Development Program of China (2016YFB0700300).

Author information

Authors and Affiliations

Authors

Contributions

QF, QW, and JL designed the simulated process and carried out the simulations, the data processing and the manuscript writing. All the authors contributed to discussion of the results and declared no conflict of interest.

Corresponding authors

Correspondence to Qihong Fang or Jia Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Fang, Q., Li, J. et al. Subsurface damage and material removal of Al–Si bilayers under high-speed grinding using molecular dynamics (MD) simulation. Appl. Phys. A 125, 514 (2019). https://doi.org/10.1007/s00339-019-2778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2778-3

Navigation