Skip to main content
Log in

Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol–gel protocol

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions (x)ZrO2–(100 − x)SiO2 were fabricated by a modified sol–gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65–5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.J. Brinker, G.W. Scherrer, S.-G. Science, The Physics and Chemistry of Sol–Gel Processing (Academic Press, San Diego, 1990), pp. 1–18

    Google Scholar 

  2. A.J. Burgraaf, K. Keizer, Synthesis of inorganic membranes, in Inorganic Membranes: Synthesis, Characteristics and Applications, ed. by R. R. Bhave (Van Nordstrand-Reinhold, New York, 1991), pp. 10–63

    Chapter  Google Scholar 

  3. A.E. Yoldas, Technological significance of sol-gel process and process-induced variations in sol-gel materials and coatings. J. Sol Gel. Sci. Technol. 1, 65–77 (1993)

    Article  Google Scholar 

  4. T. Lopez, M. Asomoza, L. Razo, R. Gomez, Study of the formation of silicoaluminates by the sol-gel method by means IR, DTA and TGA, J. Non-Cryst. Solids 108, 45–48 (1989)

    Google Scholar 

  5. T. Lopez, R. Gomez, Catalyst doped sol-gel materials, in Sol-Gel Optics: Processing and Applications, ed. by L. C. Klein (Kluwer Academic Publishers, Norwell, 1994), pp. 345–371

    Chapter  Google Scholar 

  6. C. Sanchez, J. Livage, Sol-gel chemistry from metal alkoxide precursors. New J. Chem. 4, 513–521 (1990)

    Google Scholar 

  7. T. Ahmad, O. Mamat, The development and characterization of zirconia-silica sand nanoparticles composites. World J. Nano Sci. Eng. 1, 7–14 (2011)

    Article  ADS  Google Scholar 

  8. Z.A. Omran, Crystal structure, surface acidity, surface area, catalytic activity and electrical conductivity behaviour of SiO2–ZrO2 system. Commun. Fac. Scit. Univ. Ank. Ser. C 40, 31–44 (1994)

    Google Scholar 

  9. B. Jongsomjit, S. Kittiruangrayub, P. Praserthdam, Study of cobalt dispersion onto the mixed nano-SiO2–ZrO2 supports and its application as a catalytic phase. Mat. Chem. Phys. 105, 14–19 (2007)

    Article  Google Scholar 

  10. S. Araki, Y. Kiyohara, S. Imasaka, S. Tanaka, Y. Miyake, Preparation and pervaporation properties of silica–zirconia membranes. Desalination 266, 46–50 (2011)

    Article  Google Scholar 

  11. G. Cao, Nanostructured and Nanomaterials (Imperial College Press, London, 2004), pp. 185–195

    Book  Google Scholar 

  12. L.P. Borilo, L.N. Spivakova, Synthesis and characterization of ZrO2 thin films. Am. J. Mater. Sci. 2(4), 119–124 (2012)

    Article  Google Scholar 

  13. G.T. Mamott, P. Barnes, S.E. Tarling, S.L. Jones, C.J. Norman, Dynamic studies of zirconia crystallization. J. Mater. Sci. 26, 4054–4061 (1991)

    Article  ADS  Google Scholar 

  14. D.R. Acosta, O. Novaro, T. Lopez, R. Gomez, Crystalline phases of sol–gel ZrO2 in the ZrO2-SiO2 system: differential thermal analysis and electron microscopy studies. J. Mater. Res. 10, 1397–1402 (1995)

    Article  ADS  Google Scholar 

  15. D.A. Ward, E.I. Ko, Synthesis and structural transformation of zirconia aerogels. Chem. Mater. 5, 956–969 (1993)

    Article  Google Scholar 

  16. T. Lopez, J. Navarrete, R. Gomez, O. Novaro, F. Figueras, H. Armendariz, Preparation of sol-gel sulfated ZrO2–SiO2 and characterization of its surface acidity. Appl. Catal. A 125, 217–232 (1995)

    Article  Google Scholar 

  17. R. Gomez, T. Lopez, X. Bokhimi, E. Muñoz, J.L. Boldu, O. Novaro, Dehydroxylation and the crystalline phases in sol–gel zirconia. J. Sol Gel. Sci. Technol. 11, 309–319 (1998)

    Article  Google Scholar 

  18. Q. Ge, Qinwen, Synthesis and characterization of mesoporous zirconia nanocomposite using self-assembled block copolymer template. Graduate Theses and Dissertations. 12616 (2012)

  19. A.O. Bianchi, M. Campanati, P. Maireles-Torres, E. Rodríguez Castellon, A. Jimenéz López, A. Vaccari, Si/Zr mesoporous catalysts for the vapour phase synthesis of alkylindoles. Appl. Catal. A 220, 105–112 (2001)

    Article  Google Scholar 

  20. F. Gonella, G. Matter, P. Mazzoldi, Structural and optical properties of silver-doped zirconia and mixed zirconia–silica matrices obtained by sol–gel processing. Chem. Mater. 11, 814–821 (1991)

    Article  Google Scholar 

  21. R. Gomez, F. Tzompantzi, T. Lopez, O. Navaro, ZrO2–SiO2 mixed oxides as supports for platinum catalysts. React. Kinet. Catal. Lett. 53(2), 245–251 (1994)

    Article  Google Scholar 

  22. S. Damyanova, L. Petrov, M.A. Centeno, P. Grange, Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2–Al2O3 and ZrO2–SiO2 carriers. Appl. Catal. A 224, 271–284 (2002)

    Article  Google Scholar 

  23. K. Kamiya, S. Sakka, Y. Tatemichi, Preparation of glass fibres of the ZrO2–SiO2 and Na2O–ZrO2–SiO2 systems from metal alkoxides and their resistance to alkaline solution. J. Mater. Sci. 15, 1765–1771 (1980)

    Article  ADS  Google Scholar 

  24. S. Surbhi, S. Kumar, Thermal evolution of mixed oxides of zirconia-silica prepared by sol-gel route, in Physics of semiconductor devices, (Environmental Science and Engineering, Springer International Publishing, Switzerland, 2014), pp. 749–751

    Google Scholar 

  25. S.M. Reda, Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators. Acta Mater. 56(2), 259–264 (2008)

    Article  Google Scholar 

  26. A. Samavati, Z. Samavati, A.F. Ismail, M.H.D. Othman, M.A. Rahman, A.K. Zulhairun, Efficient visible photoluminescence from self-assembled Ge QDs embedded in silica matrix. Chin. Phys. Lett. 34(6), 068102 (2017)

    Article  ADS  Google Scholar 

  27. V.S. Gorelik, Y.P. Voinov, G.A. Emel’chenko, V.M. Masalov, Optical properties of a carbon-zirconia quantum-dot photonic crystal. Inorg. Mater. 46(5), 505–509 (2010)

    Article  Google Scholar 

  28. X. Xin, Z. Lü, X. Huang, X. Sha, Y. Zhang, K. Chen, N. Ai, R. Zhu, W. Su, Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process. J. Power Sourc. 160(2), 1221–1224 (2006)

    Article  ADS  Google Scholar 

  29. S. Hao, C. Wang, T. Liu, Z. Mao, Z. Mao, J. Wang, Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell. Int. J. Hydrogen Energy 42(50), 29949–29959 (2017)

    Article  Google Scholar 

  30. W.C. Maskell, D.J.L. Brett, N.P. Brandon, Thick-film amperometric zirconia oxygen sensors: influence of cobalt oxide as a sintering aid. Meas. Sci. Technol. 25(6), 065104 (2014)

    Article  ADS  Google Scholar 

  31. N. Miura, T. Sato, S. Anggraini, H. Ikeda, S. Zhuiykov, A review of mixed-potential type zirconia-based gas sensors. Ionics 20(7), 901–925 (2014)

    Article  Google Scholar 

  32. S. Surbhi, S. Kumar, Effect of annealing temperature on structural, photoluminescence and thermal properties of nanosized zirconium silicates. Adv. Sci. Lett. 20, 1504–1508 (2014)

    Article  Google Scholar 

  33. D.H. Aguilar, L.C. Torres-Gonzalez, L.M. Torres-Martinez, T. Lopez, P. Quintana, A study of the crystallization of ZrO2 in the sol–gel system: ZrO2–SiO2. J. Solid State Chem. 158, 349–357 (2000)

    Article  ADS  Google Scholar 

  34. Y. Ma, P. Jia, X. Li, N. Liu, Y. Ma, Synthesis of the ZrO2–SiO2 microspheres as a mesoporous candidate material. J. Porous Mater. 19, 1047–1052 (2012)

    Article  Google Scholar 

  35. N. Agoudjil, N. Benmouhoub, L. Labot, Synthesis and characterization of inorganic membranes and applications. Desalination 184, 65–69 (2005)

    Article  Google Scholar 

  36. M. Popa, J.M. Claderón-Moreno, L. Popescu, M. Kakihana, R. Torecillas, Crystallization of gel-derived and quenched glasses in the ternary oxide Al2O3–ZrO2–SiO2 system. J. Non-Cryst. Solids 297, 290–300 (2002)

    Article  ADS  Google Scholar 

  37. F. Monte, W. Larsen, J.D. Mackenzie, Stabilization of tetragonal ZrO2 in ZrO2–SiO2 binary oxides. J. Am. Ceram. Soc. 83(3), 628–634 (2000)

    Article  Google Scholar 

  38. S.W. Lee, R.A. Condrate, Sr, The infrared and Raman spectra of SiO2–ZrO2 glasses prepared by a sol-gel process. J. Mater. Res. 23, 2951–2959 (1988)

    ADS  Google Scholar 

  39. J. Coates, Interpretation of infrared spectra, a practical approach, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 10815–10837

    Google Scholar 

  40. R. Hogg, T.W. Healy, D.W. Fuerstenau, Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62, 1638–1651 (1966)

    Article  Google Scholar 

  41. A. García Murillo, F.J. Carrilo Romo, A.M. Torres Huerta, M.A. Domínguez Crespo, E. Ramírez, H. Meneses, A. Terrones, Flores Vela, Microstructural evolution of the system Ni–ZrO2–SiO2 synthesized by the sol–gel process. J. Alloys Compd. 495, 574–577 (2010)

    Article  Google Scholar 

  42. J.C. Garcia, L.M.R. Scolfaro, A.T. Lino, V.N. Freire, G.A. Farias, C.C. Silva, H.W. Leite Alves, S.C.P. Rodrigues, E.F. Da Silva Jr., Structural, electronic, and optical properties of ZrO2 from ab initio calculations. J. Appl. Phys. 100, 104103 (2006)

    Article  ADS  Google Scholar 

  43. H.Q. Cao, X.Q. Qiu, B. Luo, Y. Liang, Y.H. Zhang, R.Q. Tan, M.J. Zhao, Q.M. Zhu, Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv. Funct. Mater. 14, 243–246 (2004)

    Article  Google Scholar 

  44. A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols. Langmuir 14, 5011–5022 (1998)

    Article  Google Scholar 

  45. I. Vaizoğullar, A. Balci, M. Uğurlu, Synthesis of ZrO2 and ZrO2/SiO2 particles and photocatalytic degradation of methylene blue. Indian J. Chem. 54A, 1434–1439 (2015)

    Google Scholar 

  46. A. K. Singh, U.T. Nakate, Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci. World J. 2014, Article ID. 349457 (2014)

    Google Scholar 

  47. U.K. Patel, K.H. Patel, K.V. Chauhan, A.K. Chawla, S.K. Rawal, Investigation of various properties for zirconium oxide films synthesized by sputtering. Procedia Technol 23, 336–343 (2016)

    Article  Google Scholar 

  48. S.B. Xie, E. Iglesia, A.T. Bell, Water-assisted tetragonal-to-monoclinic phase transformation of ZrO2 at low temperatures. Chem. Mater. 12(8), 2442–2447 (2000)

    Article  Google Scholar 

  49. M. Stoia, P. Barvinschi, F. Barvinschi, Structural and morphologic characterization of zirconia–silica nanocomposites prepared by a modified sol–gel method. J. Cryst. Growth 401, 462–468 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge University Grants Commission, New Delhi, Govt. of India, for financial assistance in the form of major research project (File no. 42–803/2013(SR) dated 25.03.2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surbhi Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Rani, S. & Kumar, S. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol–gel protocol. Appl. Phys. A 124, 387 (2018). https://doi.org/10.1007/s00339-018-1806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1806-z

Navigation