Skip to main content
Log in

The art of Bernard Palissy (1510–1590): influence of firing conditions on the microstructure of iron-coloured high-lead glazes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

During the French Renaissance, a well-known ceramist, Bernard Palissy (1510–1590), succeeded to create amazing lead-glazed ceramics, the recipe of which he kept totally secret. The present study is a first step to try to understand the process of manufacture of Palissy’s honey iron-coloured high-lead aluminosilicate glazes through examination of both ancient glazes—discovered in Palissy’s workshop (Paris, garden of Tuileries), during archaeological excavations—and replicate glazes of similar composition prepared in the laboratory from raw materials mixtures under controlled conditions (different firing temperatures \(T_p\) and cooling rates). These replicate glazes were characterised by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM–EDS). According to laboratory experimentations, three iron-rich crystalline phases are likely to be formed in the glaze after firing (hematite \({\mathrm{Fe}_{2}\mathrm{O}_{3}}\), melanotekite \({\mathrm{Pb}_{2}\mathrm{Fe}_{2}\mathrm{Si}_{2}\mathrm{O}_{9}}\) and magnetoplumbite \(\mathrm{PbFe}_{12}\mathrm{O}_{19}\)) and their nature, abundance and microstructure strongly depend on both temperature \(T_p\) and cooling rate. Comparing the microstructures of replicate glazes and authentic Palissy’s glazes allowed to better understand the artist technique in terms of firing process: he would have probably fired most of his production around \(1000\,^{\circ }\mathrm{C}\), above liquidus temperature, and would have used a reasonably fast cooling rate (faster than \(5\,^{\circ }\mathrm{C}\)/h), which enables both to melt all raw materials and to prevent crystallisation during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \({\mathrm{Fe}_{2}\mathrm{O}_{3}}\) can be present in a glass (around 1 wt%) as an impurity coming from other ores—sand for example.

  2. These temperatures correspond to the real temperatures of the sample (measured with a thermocouple located close to the crucible in the furnace).

  3. Palissy’s glazes are around 100 microns thick.

References

  1. M.S. Walton, M.S. Tite, Archaeometry 52(5), 733 (2010)

    Article  Google Scholar 

  2. M.S. Tite, I. Freestone, R. Mason, J. Molera, M. Vendrell-Saz, N. Wood, Archaeometry 40(2), 241 (1998)

    Article  Google Scholar 

  3. B. Palissy, Discours Admirables (M. le Jeune, Paris, 1580)

  4. A. Bouquillon, F. Barbe, P. Lehuédé, J. Castaing, T. Crépin-Leblond, The Renaissance Workshop: The Materials and Techniques of Renaissance Art (Archetype Publications, London, 2013)

  5. A. Bouquillon, J. Castaing, F. Barbe, S. Paine, B. Christman, T. Crépin-Leblond, A. Heuer, Archaeometry 59(1), 69 (2017)

    Article  Google Scholar 

  6. B. Palissy, Recepte Véritable (B. Beron, La Rochelle, 1563)

  7. B. Dufay, Y. de Kisch, P.J. Trombetta, D. Poulain, Y. Roumégoux, Rev. Art 78(1), 33 (1987)

    Article  Google Scholar 

  8. S. Chen, B. Zhao, P. Hayes, E. Jak, Metall. Mater. Trans. B 32(6), 997 (2001)

    Article  Google Scholar 

  9. R.F. Geller, E.N. Bunting, J. Res. Natl. Bur. Stand. 31, 255 (1943)

  10. R.M. Smart, F.P. Glasser, J. Am. Ceram. Soc. 57(9), 378 (1974)

    Article  Google Scholar 

  11. R.F. Geller, A.S. Creamer, E.N. Bunting, J. Res. Natl. Bur. Stand. 13, 237 (1934)

  12. V. Durey, in Journées d’études du réseau ICERAMM (2013)

  13. R.L. Hallse, R.L. Cook, J. Am. Ceram. Soc. 41(9), 331 (1958)

    Article  Google Scholar 

  14. J. Pouchou, F. Pichoir, Electron Probe Quantitation (Plenum Press New York, 1991)

  15. F.P. Glasser, Am. Mineral. 52, 1085 (1967)

    Google Scholar 

  16. T. Pradell, G. Molina, S. Murcia, R. Ibáñez, C. Liu, J. Molera, A.J. Shortland, Int. J. Appl. Glass Sci. 7(1), 41 (2016)

    Article  Google Scholar 

  17. J. Molera, T. Pradell, N. Salvadó, M. Vendrell-Saz, J. Am. Ceram. Soc. 84(5), 1120 (2001)

    Article  Google Scholar 

  18. A.J. Mountvala, S.F. Ravitz, J. Am. Ceram. Soc. 45(6), 285 (1962)

    Article  Google Scholar 

  19. P. Kavouras, G. Kaimakamis, T. Ioannidis, T. Kehagias, P. Komninou, S. Kokkou, E. Pavlidou, I. Antonopoulos, M. Sofoniou, A. Zouboulis, C. Hadjiantoniou, G. Nouet, A. Prakouras, T. Karakostas, Waste Manage. 23(4), 361 (2003)

    Article  Google Scholar 

  20. T. Kehagias, P. Komninou, P. Kavouras, K. Chrissafis, G. Nouet, T. Karakostas, J. Eur. Ceram. Soc. 26(7), 1141 (2006)

    Article  Google Scholar 

  21. J.G. Iñañez, M. Madrid-Fernández, J. Molera, R.J. Speakman, T. Pradell, J. Archaeol. Sci. 40(2), 1408 (2013)

Download references

Acknowledgements

This work has been supported by the Region Ile-de-France, DIM Oxymore Network, that is gratefully acknowledged. The archaeological samples were kindly made available by the conservation department of the National Museum of the Renaissance (Ecouen, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauthier Roisine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roisine, G., Capobianco, N., Caurant, D. et al. The art of Bernard Palissy (1510–1590): influence of firing conditions on the microstructure of iron-coloured high-lead glazes. Appl. Phys. A 123, 501 (2017). https://doi.org/10.1007/s00339-017-1089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1089-9

Navigation