Skip to main content
Log in

Effect of doping on optical properties in BiMn1−x (TE) x O3 (where x = 0.0, 0.1 and TE = Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol-gel methods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, optical, and dielectric properties of polycrystalline BiMn1−x TE x O3 (x = 0, 0.1 and TE = Cr, Fe, Co, and Zn) samples synthesized by microwave-assisted synthesis, and sol-gel techniques have been studied. It is found from the XRD data for samples synthesized by both the methods that the lattice volume and average grain size of the prepared samples decrease with doping Cr, Fe, Co, and Zn, consequently. Furthermore, the optical properties obtained from FTIR confirmed that bandgap increases and refractive index decreases on doping transition element in the same order as Cr, Fe, Co, and Zn for samples synthesized by both the methods. The grain sizes obtained for the samples in case of sol-gel method are less than the samples synthesized by microwave method. It is due to less agglomeration of particles in the samples prepared by sol-gel method. P–E loops are measured at room temperature. The variations of dielectric constant and loss tangent with the frequency are plotted. The value of dielectric constant increases for Zn doped sample and then decreases for Cr, Co, and Fe doped samples, respectively. The correlation between the observed structural, optical, and dielectric properties has been described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Graetz, C.C. Ahn, H. Ouyang, P. Rez, B. Fultz, White lines and d-band occupancy for the 3d transition-metal oxides and lithium transition-metal oxides. Phys. Rev. B 69, 235103 (2004). (1–6)

    Article  ADS  Google Scholar 

  2. K. Yadav, M.P. Singh, H.K. Singh, F.S. Razavi, G.D. Varma, Magnetic and charge ordering properties of Bi0.6−x (RE) x Ca0.4MnO3(0.0 ≤ x≤0.6) perovskite manganites. J. Appl. Phys. 111(7), 07E128-3 (2012)

    Article  Google Scholar 

  3. W. Cheikh-Rouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Effect of monovalent doping on the structural, magnetic and magnetocaloric properties in La0.7M0.2M’0.1MnO3 manganese oxides (M = Sr, Ba and M’ = Na, Ag, K). Phys. Procedia 2, 989–996 (2009)

    Article  ADS  Google Scholar 

  4. A.A. Belik, Local distortions in multiferroic BiMnO3 as a function of doping. Sci. Technol. Adv. Mater. 12(4), 044610 (2011). (1–6)

    Article  MathSciNet  Google Scholar 

  5. C. Morien, Optimizing growth conditions for BiMnO3, pp. 1–16, (2008), http://www.phys.ufl.edu/REU/2008/reports/morien.pdf

  6. D. Bensaid, N.E. Benkhettou, A. Kourdassi, Structural and electronic properties of BiXO3 (X = Mn, Fe, Cr). J. Modern Phys. 2(7), 5825 (2011). (1–9)

    Article  Google Scholar 

  7. T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, Y. Syono, Structure determination of ferromagnetic perovskite BiMnO3. J. Solid State Chem. 145(2), 639–642 (1999)

    Article  ADS  Google Scholar 

  8. A.A. Belik, S. Iikubo, T. Yokosawa, K. Kodama, N. Igawa, S. Shamoto, E. Takayama-Muromachi, Origin of the monoclinic-to-monoclinic phase transition and evidence for the centrosymmetric crystal structure of BiMnO3. J. Am. Chem. Soc. 129(4), 971–977 (2007)

    Article  Google Scholar 

  9. A. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Pan, D.G. Schlom, V. Gopalan, Bismuth manganite: a multiferroic with a large nonlinear optical response. Phys. Rev. B 69(21), 214109 (2004). (1–7)

    Article  ADS  Google Scholar 

  10. T. Tajiri, M. Harazono, T. Kitamura, H. Deguchi, S. Kohiki, M. Mito, A. Kohno, S. Takagi, Magnetic properties of BiMnO3 nanoparticles in SBA-15 mesoporous silica. J. Phys.: Conf. Ser. 150(4), 042198 (2009). doi:10.1088/1742-6596/150/4/042198

    Google Scholar 

  11. Heremans J. Multiferroic, Nano Spintronics, The Institute for Critical Technology and Applied Science a premier interdisciplinary research institute located at Virginia Tech in Blacksburg, Virginia. Core Miss. 6, 1–170 (2010)

    Google Scholar 

  12. N.A. Spaldin, Magnetic Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  13. K.B. Akram, M.S. Dar, M. Anis-ur-Rehman, Synthesis and AC electrical characterization of Co doped bismuth manganite nanoparticles. Key Eng. Mater. 510, 527–531 (2012)

    Article  Google Scholar 

  14. X. Li, Q. Wang, Effect of Cr doping on the magnetic and electrical transport properties of charge-ordered Bi0.5Ca0.5MnO3. Physica B 404(20), 3703–3708 (2009)

    Article  ADS  Google Scholar 

  15. K. Yadav, V. Vaithyanathan, S.S.R. Inbanathan, G.D. Varma, Magnetic and charge ordering properties of Bi0.2Ca0.8Mn0.9X0.1O3 (where X = Ti, Cr, Fe Co, Ni, Cu). J. Alloy. Compd. 533, 19–24 (2012)

    Article  Google Scholar 

  16. A.K. Kundu, R. Ranjith, V. Pralong, V. Caignaert, B. Raveau, Magneto-transport and magneto-dielectric effects in Bi-based perovskite manganites. J. Mater. Chem. 18, 4280–4285 (2008)

    Article  Google Scholar 

  17. I.V. Solovyev, Z.V. Pchelkina, Magnetic ground state and multiferroicity in BiMnO3. J. Exp. Theor. Phys. Lett. 89(12), 597–602 (2009)

    Article  Google Scholar 

  18. M.S. Dar, K.B. Akram, Evidence of variable range hopping (VRH) and exchange interaction in Co-doped multiferroic BiMnO3 nanoparticles. J. Supercond. Novel Magn. 27(2), 613–623 (2014)

    Article  Google Scholar 

  19. A.M. Dos Santos, S. Parashar, A.R. Raju, Y.S. Zhao, A.K. Cheetham, C.N.R. Rao, Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite BiMnO3. Solid State Commun. 122(1), 49–52 (2002)

    Article  ADS  Google Scholar 

  20. H. Chiba, T. Atou, H. Faqir, M. Kikuchi, Y. Syono, Y. Murakami, D. Shindo, Synthesis and characterization of (Bi, AE) MnO3 (AE = Ca, Sr) system. Solid State Ion. 108(1), 193–199 (1998)

    Article  Google Scholar 

  21. T.-C. Huang, M.-T. Wang, H.-S. Sheu, W.-F. Hsieh, Size-dependent lattice dynamics of barium titanate nanoparticles. J. Phys. Condens. Matter 19, 476212 (2007). (1–12)

    Article  Google Scholar 

  22. K. Ishikawa, T. Uemori, Surface relaxation in ferroelectric perovskites. Phys. Rev. B 60, 11841 (1999)

    Article  ADS  Google Scholar 

  23. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, vol. 2 (Wiley, New York, 1954)

    MATH  Google Scholar 

  24. U. Manzoor, F. Tuz Zahra, S. Rafique, M.T. Moin, M. Mujahid, Effect of synthesis temperature, nucleation time, and postsynthesis heat treatment of ZnO nanoparticles and its sensing properties. J. Nanomater. 2015, 189058 (2015). (1–6)

    Article  Google Scholar 

  25. R.D.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Crystal Phys. Diffr. Theor. Gen. Crystallogr. 32(5), 751–767 (1976)

    Article  ADS  Google Scholar 

  26. Kumar P, Kar M. Effect of Structural transition on magnetic properties of Ca and Mn co-substituted BiFeO3 Ceramics (2014). arXiv preprint. arXiv:1401.4059

  27. A.A. Yousif, A.J. Haidar, N.F. Habubi, Study of the structure properties of Co-doped ZnO thin films grown by pulsed laser deposition. Int. J. Nanoelectron. Mater. 5, 47–55 (2012)

    Google Scholar 

  28. S.J. Kim, A.Y. Kim, J.S. Kim, C.I. Cheon, S.H. Han, H.G. Kim, Multiferroic properties of Ti-doped BiFeO3 ceramics. J. Korean Phys. Soc. 56(1), 439–442 (2010)

    ADS  Google Scholar 

  29. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z.Y. Li, Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 5(7), 1237–1242 (2005)

    Article  ADS  Google Scholar 

  30. J.H. Lee, X. Ke, R. Misra, J.F. Ihlefeld, X.S. Xu, Z.G. Mei, D.G. Schlom, Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy. Appl. Phys. Lett. 96(26), 262905 (2010)

    Article  ADS  Google Scholar 

  31. L. Hannachi, N. Bouarissa, Band parameters for cadmium and zinc chalcogenide compounds. Physica B 404(20), 3650–3654 (2009)

    Article  ADS  Google Scholar 

  32. P. Chand, A. Gaur, A. Kumar, Effect of Cr and Fe doping on the structural and optical properties of ZnO nanostructures. Int. Sch. Sci. Res. Innov. 8(12), 1238–1241 (2014)

    Google Scholar 

  33. A.T. Raghavender, N.H. Hong, Effects of Mn doping on structural and magnetic properties of multiferroic BiFeO3 nanograins made by sol-gel method. J. Magn. 16(1), 19–22 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Neha Bhardwaj is grateful to the Central University of Punjab, Bathinda for the award of fellowship and providing research facilities. Kamlesh Yadav is obliged to the University Grants Commission (UGC), New Delhi, for the award of the Start-Up Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, N., Gaur, A. & Yadav, K. Effect of doping on optical properties in BiMn1−x (TE) x O3 (where x = 0.0, 0.1 and TE = Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol-gel methods. Appl. Phys. A 123, 429 (2017). https://doi.org/10.1007/s00339-017-1042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1042-y

Keywords

Navigation