Skip to main content
Log in

Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A three-dimensional mesoscopic model, considering the powder-to-solid transition, motion of gas bubbles within molten pool and the effect of surface tension, has been established in order to investigate the evolution rule of pores and re-melting densification mechanism during selective laser melting of AlSi10Mg. The results indicated that re-melting phenomenon of previous fabricated layer induced by laser melting of current powder layer played a crucial role on the increase in densification rate. During the re-melting process, the trapped gas pores in previous layer rose up swiftly and came to the surface consequently, resulting in remarkably elevated densification in previous layer. The influences of laser scan speed on the single-track morphology, types of pores and laser penetration depth have also been studied. It showed that the maximum re-melting depth (31 µm) was attained, and meanwhile, pores left in preceding layer got eliminated completely due to the mass transfer within molten pool, when an appropriate laser scan speed (150 mm/s) was applied. In this case, reasonable laser energy per unit length and irradiation time tended to enhance the laser penetration depth for powder bed and decrease the porosity in as-fabricated layer. A series of experimental study were performed to verify the reliability of the above mesoscopic simulation, including the surface topography of single track and the types of pores. The redistribution of bubbles between the adjacent layers as well as the localized re-melting densification, which were observed from the longitudinal section of samples, was in good agreement with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Katakam, S.S. Joshi, S. Mridha, S. Mukherjee, N.B. Dahotre, J. Appl. Phys. 116, 104906 (2014)

    Article  ADS  Google Scholar 

  2. G. Çam, M. Koçak, Int. Mater. Rev. 57, 1 (2013)

    Google Scholar 

  3. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Elsevier, Amsterdam, 2013)

    Google Scholar 

  4. T. Lienert, T. Siewert, S. Babu, V. Acoff, Weld. Fundam. Process. 6, 321 (2011)

    Google Scholar 

  5. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Mater. Sci. 74, 401 (2015)

    Google Scholar 

  6. D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012)

    Article  Google Scholar 

  7. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57, 133 (2012)

    Article  Google Scholar 

  8. L.L. Parimi, G.A. Ravi, D. Clark, M.M. Attallah, Mater. Charact. 89, 102 (2014)

    Article  Google Scholar 

  9. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, Acta Mater. 58, 3303 (2010)

    Article  Google Scholar 

  10. C. Qiu, N.J.E. Adkins, M.M. Attallah, Mater. Sci. Eng. 578, 230 (2013)

    Article  Google Scholar 

  11. L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Acta Mater. 61, 1809 (2013)

    Article  Google Scholar 

  12. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1, 77 (2014)

    Article  Google Scholar 

  13. I. Maskery, N.T. Aboulkhair, M.R. Corfield, C. Tuck, A.T. Clare, R.K. Leach, R.J.M. Hague, Mater. Charact. 111, 193 (2016)

    Article  Google Scholar 

  14. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, R. Poprawe, J. Mater. Process. Technol. 221, 112 (2015)

    Article  Google Scholar 

  15. C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, H.C. Basoalto, Scr. Mater. 105, 14 (2015)

    Article  Google Scholar 

  16. C.L. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, Acta Mater. 96, 72 (2015)

    Article  Google Scholar 

  17. M.J. Xia, D.D. Gu, G.Q. Yu, D.H. Dai, H.Y. Chen, Q.M. Shi, Sci. Bull. 61, 1013 (2016)

    Article  Google Scholar 

  18. D.D. Gu, P.P. Yuan, J. Appl. Phys. 118, 233109 (2015)

    Article  ADS  Google Scholar 

  19. L.J. Wang, S.L. Jia, Y. Liu, B. Chen, D.G. Yang, Z.Q. Shi, J. Appl. Phys. 107, 113306 (2010)

    Article  ADS  Google Scholar 

  20. S. Bag, A. Trivedi, A. De, Int. J. Therm. Sci. 48, 1923 (2009)

    Article  Google Scholar 

  21. N.K. Tolochko, Y.V. Khlopkov, S.E. Mozzharov, M.B. Ignatiev, T. Laoui, V.I. Titov, Rapid Prototyp. J. 6(3), 155 (2000)

    Article  Google Scholar 

  22. M. Haag, H. Hügel, C.E. Albright, S. Ramasamy, J. Appl. Phys. 79(8), 3835 (1996)

    Article  ADS  Google Scholar 

  23. N.K. Tolochko, Y.V. Khlopkov, S.E. Mozzharov, M.B. Ignatiev, T. Laoui, V.I. Titov, Rapid Prototyp. J. 6, 155 (2000)

    Article  Google Scholar 

  24. C.D. Boley, S.A. Khairallah, A.M. Rubenchik, Appl. Opt. 54, 2477 (2015)

    Article  ADS  Google Scholar 

  25. A.V. Gusarov, I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 254, 975 (2007)

    Article  ADS  Google Scholar 

  26. S.A. Khairallah, A. Anderson, J. Mater. Process. Technol. 214, 2627 (2014)

    Article  Google Scholar 

  27. P.P. Yuan, D.D. Gu, J. Phys. D Appl. Phys. 48, 035303 (2015)

    Article  ADS  Google Scholar 

  28. G.Q. Yu, D.D. Gu, D.D. Dai, M.J. Xia, C.L. Ma, Q.M. Shi, J. Phys. D. Appl. Phys. 49(13), 135501 (2016)

    Article  Google Scholar 

  29. D.D. Gu, Laser Additive Manufacturing of High-Performance Materials (Springer, Berlin, 2015). ISBN 978-3-662-46088-7

    Book  Google Scholar 

  30. H. Qi, J. Mazumder, H. Ki, J. Appl. Phys. 100, 024903 (2006)

    Article  ADS  Google Scholar 

  31. J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Rapid Prototyp. J. 11, 26 (2005)

    Article  Google Scholar 

  32. J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, CIRP Ann. Manuf Technol. 56, 730 (2007)

    Article  Google Scholar 

  33. C.L. Chan, J. Mazumder, M.M. Chen, J. Appl. Phys. 64, 6166 (1988)

    Article  ADS  Google Scholar 

  34. S. Shabahang, J.J. Kaufman, D.S. Deng, A.F. Abouraddy, Appl. Phys. Lett. 99, 161909 (2011)

    Article  ADS  Google Scholar 

  35. C.A. Sternling, L.E. Scriven, AIChE J. 5, 514 (1959)

    Article  Google Scholar 

  36. T. Fuhrich, P. Berger, H. Hügel, J. Laser Appl. 13, 178 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51575267, 51322509), the National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing” (No. 2016YFB1100101), the Top-Notch Young Talents Program of China, the NSFC-DFG Sino-German Research Project (No. GZ 1217), the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), the Program for New Century Excellent Talents in University (No. NCET-13-0854), the Science and Technology Support Program (The Industrial Part), Jiangsu Provincial Department of Science and Technology of China (No. BE2014009-2), the 333 Project (No. BRA2015368), the Aeronautical Science Foundation of China (No. 2015ZE52051), the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2015053), the Fundamental Research Funds for the Central Universities (Nos. NE2013103, NP2015206, NZ2016108) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Gu, D., Dai, D. et al. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl. Phys. A 122, 891 (2016). https://doi.org/10.1007/s00339-016-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0428-6

Keywords

Navigation