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Abstract All 2-terminal non-volatile memory devices based
on resistance switching are memristors, regardless of the de-
vice material and physical operating mechanisms. They all
exhibit a distinctive “fingerprint” characterized by a pinched
hysteresis loop confined to the first and the third quadrants
of the v—i plane whose contour shape in general changes
with both the amplitude and frequency of any periodic “‘sine-
wave-like” input voltage source, or current source. In par-
ticular, the pinched hysteresis loop shrinks and tends to a
straight line as frequency increases. Though numerous ex-
amples of voltage vs. current pinched hysteresis loops have
been published in many unrelated fields, such as biology,
chemistry, physics, etc., and observed from many unrelated
phenomena, such as gas discharge arcs, mercury lamps,
power conversion devices, earthquake conductance varia-
tions, etc., we restrict our examples in this futorial to solid-
state and/or nano devices where copious examples of pub-
lished pinched hysteresis loops abound. In particular, we
sampled arbitrarily, one example from each year between
the years 2000 and 2010, to demonstrate that the memristor
is a device that does not depend on any particular mater-
ial, or physical mechanism. For example, we have shown
that spin-transfer magnetic tunnel junctions are examples of
memristors. We have also demonstrated that both bipolar
and unipolar resistance switching devices are memristors.
The goal of this tutorial is to introduce some fundamen-
tal circuit-theoretic concepts and properties of the memristor
that are relevant to the analysis and design of non-volatile
nano memories where binary bits are stored as resistances
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manifested by the memristor’s continuum of equilibrium
states. Simple pedagogical examples will be used to illus-
trate, clarify, and demystify various misconceptions among
the uninitiated.

1 Pinched hysteresis loops

The memristor [1] is a 2-terminal circuit element charac-
terized by a constitutive relation between two mathematical
variables g and ¢ representing the time integral of the ele-
ment’s current i (¢), and voltage v(¢); namely,

t
q(0) é/ i(t)dt (1)

t
o(t) 2 / v(r)dr 2

It is important to stress that “q”” and “¢” are defined math-
ematically and need not have any physical interpretations.
Nevertheless, we call g the charge and ¢ the flux of the
memristor since (1) and (2) coincide with the formula relat-
ing charge to current, and flux to voltage, respectively. We
say the memristor is charge-controlled, or flux-controlled, if
its constitutive relation can be expressed by

o =9(q) (3)
or
q=4(p) )

respectively, where ¢(g) and ¢(p) are continuous and
piecewise-differentiable functions' with bounded slopes.

1A function is piecewise-differentiable if its derivative is uniquely de-
fined everywhere except possibly at isolated points.
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Differentiating (3) and (4) with respect to time ¢, we ob-
tain

_de _do(g)dq

V=T g ar R@r ©)
where

”
R(g) 2 W@ ©)

dq

is called the memristance” at ¢, and has the unit of Ohms (£2),
and

._dq _dig)dy

T dr dg dr Glp @
where
i
Gwoé{§9 ®)
%

is called the memductance at ¢, and has the unit of Siemens
(S). Observe that (5) and (6) can be interpreted as Ohm’s law
except that the resistance R(g) at any time ¢ = fo depends

on the entire past history of i(¢) from t = —oo to t = 1.
Similarly the memductance G (¢) in (8) depends on the en-
tire past history of v(¢) from ¢ = —oo to ¢t = 1. It follows

from (5) that the charge-controlled memristor defined in (3)
is equivalent to the charge-dependent Ohm’s law

v=R(q)i ©)]

where R(q) is just the slope of the curve ¢ = ¢(g) at g. To
show that (3) and (5) are equivalent representations, we can
recover (3) by integrating both sides of (5) with respect to ¢:

t t
<péf v(r)dr:f

t
:/ R(q(r))wdr

o0 dt

R(q(r))i(r) dt

q(1)
= / R(q(1))dq(z)
q(—00)

q(0)
=/ R(q)dq
q(—00)
=¢(q) (10
It follows from (10) that
<2>(q)=/R(q)dq an

2Just as memristor is an acronym for memory resistor, memristance
is an acronym for memory resistance. Similarly memductance is an
acronym for memory conductance.
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Similarly, a flux-controlled memristor is equivalent to the
flux-dependent Ohm’s law

i=G(p (12)
where
o(t)
6?(</))=/ G(p)dey (13)
¢(—00)

Example I Consider the charge-controlled memristor shown
in Fig. 1(a) along with the memristor symbol in the upper
left corner. The memristor constitutive relation, shown in
red, is described analytically by a cubic polynomial

1
p=q+3q’ (14)
Let us apply a sinusoidal current source (blue sine wave

in Fig. 1(c)) defined by

t>0

i(t) = Asinwt,
{ 20 as

:O’

across this memristor, as shown in Fig. 1(c) for A = 1 and
o = 1. To determine the corresponding voltage response
v(t) from the constitutive relation (14), we must calculate
first the corresponding charge (shown in red in Fig. 1(c)).
Assuming the initial charge go = ¢(0) = 0, we obtain upon
integrating (15) the following equation for ¢g(¢):

t
q(1) :/ Asin(wt)dt = %[1 —coswt], t>0 (16)
0

Substituting (16) into (14), we obtain the corresponding flux
(shown in magenta in Fig. 1(d))

2

s —eman[ 14555 o —oson?
pt)=—{ —coswt)| 1+ = — (1 — coswt) (17)
w 3\ w

Differentiating (17) with respect to ¢, we obtain

2

1+ o
v(t)=A 1+—2(1—c0sa)t) sin wt (18)
w

Plotting the loci® of (i(¢), v(t)) in the v—i plane, via (15)
and (18), we obtain the pinched hysteresis loop shown in
Fig. 1(b) for A =1 and w = 1. The hysteresis occurs be-
cause the maxima and minima of the sinusoidal input current
i(¢) in Fig. 1(c) do not occur at the same time as the corre-
sponding memristor voltage v(¢) in Fig. 1(d). The pinching
at the origin in Fig. 1(b) occurs because both i(¢) and v(z)
become zero at the same time. To show that the hysteresis

3 Also known as a Lissajous figure.
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Fig. 1 Memristor symbol, i
constitutive relation, and
pinched hysteresis loop + 3
associated with (v(¢),i(7)) F.p v

plotted for A=1and w=1. N 3
(a) Memristor symbol and -
@ = ¢(q) characteristic curve.

(b) Pinched hysteresis loop: 3
double-valued Lissajous figure
of (v(t),i(t)) for all times ¢
except when it passes through
the origin, where the loop is
pinched. (¢) Periodic waveforms a 5
associated with i (¢) and

q(t) = [y i(v)dr plotted with
A =1 and w = 1. (d) Periodic
waveforms associated with v(r)
and ¢(1) = [y v(v)dt

Lo -1, -0.5, f N
2 ' : 0 0.5 r 7
qg= Iidt 14
24
. +1 3 5l i(t) =sint
P=q+31 b v(£) =[1+(1—cost)*Isin¢
v, @

loop is always pinched at the origin (v,i) = (0, 0), let us
calculate the memristance R(g) from (6) and (14):

do(q) _

7 _ 1442 19
dq +4q (19)

R(q) =

Substituting ¢ (¢) from (16) into (19), we obtain

A 2
R(g)) =1+ [g(l —cosa)t)] , t>0 (20)
Observe from (19) and Fig. 2(c) that
R(g) >0 (21)

Substituting (20) and (15) in (9), we obtain the same expres-
sion for the memristor voltage v(¢) derived earlier in (18).
Now since R(q) is finite for all finite ¢, it follows that
v(t) =0 wheneveri(t) =0 (22)
for any input current i(¢). Similarly, for any ¢-controlled
memristor whose memductance G(¢) is finite for all fi-
nite ¢, we have
i(t)=0 wheneverv(t) =0 (23)
for any input voltage v(t).
The waveform of R(¢) given by (20) is shown in Fig. 2(d)
for A =1 and w = 1. The loci traced out by (R(¢), i(t)) is

3n\/4n ~t

i(t)=sint v(t) =[1+ (1—cost)*]sint

q(t) =1—cost qp(t):(lfcost)(1+;(lfcost)2)

shown in Fig. 2(b). Again we obtain a hysteresis loop, but it
is not pinched since R(¢) > 0 for all times.

It is important to observe from Fig. 1(d) and Fig. 2(d)
that while v(#) and i(#) assume both positive and negative
values, both ¢(¢) and ¢(¢) are non-negative. It follows that
only the memristor g—¢g curve in the first quadrant is visited
during every period of i(¢). Observe also that the pinched
hysteresis loop in Fig. 1(b) is odd symmetric with respect to
the origin.

Finally, observe that except for the memristor constitu-
tive relation ¢ = ¢(q) in Fig. 1(a), and its associated mem-
ristance R(q) in Fig. 2(c), which remain unchanged, all
other waveforms of Figs. 1 and 2 will change when we
vary the amplitude A or the frequency w of the input sig-
nal i(t) = Asinwt. In particular, note from (16) and (17)
that ¢g(#) — 0 and ¢(¢) — 0 as w — oo. This makes perfect
sense since as we increase the frequency w of the sinusoidal
input current i(¢) = A sinwt, while keeping the amplitude
constant, the “area” accumulated from ¢ = 0 to the first half
period t = Z diminishes with w. It follows therefore that the
memristance

R(q®)—> R0)=12, asw—> o0 (24)
We can confirm this prediction via (18) by noting that
v(t) > Asinwt, asw— 0 (25)
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Fig. 2 (a) Memristor R
constitutive relation. A
(b) Resistance hysteresis loop
associated with (R(z),i(z)).
(c) Memristance plotted as a
function of ¢. (d) Periodic
waveforms of i (¢), g(t), v(t),
andR(t), plotted for A =1, >
2 1 0 1 2 i

w=1

b

g wR

R=1+(1-cost)?

R(q)=1+g?

In fact, this is one of the signature properties of a memristor,
which we formalize as follows:

Memristor pinched hysteresis loop fingerprint

The loci (Lissajous figure) in the v—i plane of any passive

memristor with positive memristance
a6
Rig) = 1D _ (26)
dq

and driven by a sinusoidal current source i () = A sinwt is
always a pinched hysteresis loop, whose area shrinks with
frequency and tends to a linear resistance equal to R(0) =
slope of the constitutive relation ¢ = ¢(g) at g =0.

We remark here that there exist degenerate cases where
the v—i Lissajous figure is a single-valued function, such as
the example shown in Fig. 3 when we drive the same mem-
ristor from Fig. 1 with the special inputi(z) = cost for¢ > 0.
In fact, we can interpret the loci shown in Fig. 3(b) as a
degenerate case where the hysteresis loop collapsed into a
single-valued function, passing through the origin. Hence,
the loci is still pinched, even in this degenerate scenario.

Another degenerate scenario can occur when the slope
R(g) = 0 at some points on ¢ = ¢(g) function, as illustrated
in Fig. 4 for the constitutive relation

1
¢=zq 27)
3
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i=sint, g=1-cost
v=[1+(1-cost)?]sint

In this case R(0) = 0. For the same input current source
i(t) = cost as in Fig. 3, we obtain a single-valued func-
tion in the v—i plane which touches the i-axis, as shown
in Fig. 4(b). This represents another degenerate situation
where the v—i Lissajous figure actually includes points on
the i-axis, as it is impossible to cross the i-axis for any pas-
sive memristor where R(g) > 0.% In such situations, the v—i
Lissajous figure must still pass through the origin (i.e., it is
pinched), but it makes contact with the i-axis as well. In ei-
ther case, the Lissajous figure (R(g) > 0) of a passive mem-
ristor must be confined to the first and the third quadrants,
including possibly the i-axis, of the v—i plane [3].

2 Continuum of non-volatile memories

A cursory examination of the charge-controlled memristor
constitutive relation ¢ = ¢(g) in Fig. 2(a) shows that its
memristance M(q) varies from? R(q1) =1 Q to oo, as
depicted in the “Resistance vs. charge” curve in Fig. 2(c),
henceforth called the Resistance vs. State map. In Fig. 2(c),
charge is the state variable.

“Note the preceding memristor fingerprint property is stated for the
case R(q) > 0.

5To avoid clutter, we will often write Memristance M (¢) and Resis-
tance R(q) interchangeably. Likewise, we will often write Conduc-
tance G (¢) for Memductance W (¢). Similarly, we use the terms mem-
ristance and resistance, as well as memductance and conductance, to
mean the same thing.
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Fig. 3 Illustration of a i
degenerate scenario where the rQ = vdt 15
: : + 154
pinched hysteresis loop
collapsed into a single-valued v 14 1
function when driven in this GD
case with i (t) = cost, with the - 0.5+ 0.5
same ¢ = ¢(g) constitutive ' ' —
relation as Fig. 1(a) 1 05 0 s = -1 0.5 17
ot g i
14
1 o+ 1 3 i(t)=cost
ST =4 3q v(t)=(1+sin*t)cost
a b
i 9 v
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-1 151
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Fig. 4 Example illustrating the
. AV
second degenerate scenario vdt 0ad
where the Lissajous figure in the '
v—i plane actually reaches the 03T
i-axis. This limiting case can 0.2¢4
occur when the memristor 014
constitutive relation has \ . >
R(g) =0 at some ¢, as in > -1 05 0 05 T
Fig. 4(a) where R(g) =0 at 04+
g=013] q:I t Al
03T
tp—lq3 0ad i(t)=cost
= -0. o
a 3 b v(f)=sin"t cost

The Resistance vs. State map is a very useful graph be-
cause it shows how to navigate from one memristance Ry
at state ¢ = go on the memristor ¢ vs. g curve to an-
other memristance R at state ¢ = g1 by simply apply-
ing a short current pulse Ai(¢#) whose area is equal to the

o
i\ =
4

0 T 2n 3n in ¢
a4
i(f) =cost
c g(t) =sint

R = 0.

v(t) =sin’ f cost

|
t)=—sin’¢
P() 3

increment Ag needed to be added to the latest value of
q(to) = qo in order to move from Ry to R;. The memris-
tance vs. state map in Fig. 2(c) therefore allows one to tune
the memristor’s resistance continuously from R =1 € to

@ Springer
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It is important to observe that if one opens or short cir-
cuits a memristor having a resistance R at ¢ = fg so that the
memristor is in equilibrium, i.e., v=0,and i =0, at t = 1o,
the memristor does not lose the value of ¢ and ¢ when both
voltage v and current i become zero at the instant when the
power is switched off, but rather holds the value unchanged
at go and ¢, forever! Hence the passive memristor exhibits
non-volatile memory.

3 ¢—q curve and memristance vs. state maps
are equivalent memristor representations

Both the ¢ vs. g constitutive relation (such as Fig. 2(a)) and
its associated resistance vs. state map (such as Fig. 2(c))
with the state equation dq/dt =i are equivalent represen-
tations of a memristor in the sense that given any applied
current source input signal i (¢) for all times from ¢ = —o0,
or equivalently, for positive times from ¢ = 0, plus the ini-
tial charge ¢(0) which represents the time integral of i ()
from t = —oo to t = 0, one can calculate the corresponding
voltage v(¢). Conversely, given any v(¢), one can calculate
the corresponding i(¢), assuming R > 0 so that the inverse
constitutive relation ¢ = ¢(¢) is a continuous function.

In contrast, all of the waveforms and hysteresis loops de-
picted in Figs. 1 and 2 are only manifestations of a memris-
tor, and cannot be used to predict the voltage response given
any other excitation waveforms different from the waveform
i = Asinwt, with A =1 and w = 1, in Fig. 1(c). The reader
should verify that changing the parameter A, or w, or chang-
ing the waveforms of i (¢#) would result in completely differ-
ent responses. For example, it follows from (16), (18) and
(19) that if we hold the amplitude A = 1 while increasing
the frequency w — oo, we would find that ¢ (¢) tends to zero,
v(t) tends to sinz, and R(¢) tends to 1 €2, as the hysteresis
loop in Fig. 1(b) shrinks until it collapses into a unit-slope
straight line through the origin. Indeed, as w tends to oo, the
charge ¢ (1), and flux ¢(¢) would both tend to the origin in
Fig. 1(a), and remain motionless thereafter. Under this lim-
iting situation, the memristor degenerates into a linear R €2
resistor where R 1is just the slope of the ¢—¢g curve at the
origin in Fig. 1(a); namely, R = 1.

Memristor lesson 1

Pinched hysteresis loops are not models!

While a pinched v—i hysteresis loop measured from an
experimental 2-terminal device implies that the device is a
memristor, the pinched loop itself is useless as a model since
it cannot be used to predict the voltage response to arbitrar-
ily applied current signals, and vice versa. The only way to
predict the response of the device is to derive either the ¢—q
constitutive relation, or the memristance vs. state map.

@ Springer

4 Resistance vs. state map and state equation

When we write, or utter, the term resistance, or conduc-
tance,® we must always subconsciously remind ourselves
that we are referring to a 2-terminal electrical device that
obeys a linear equation called Ohm’s law; namely,

Ohm’s law: v =Ri (28)
where R is a constant, called the resistance of the resis-
tor, where R has the unit of 2. It is conceptually important
to distinguish between the two words resistance and resis-
tor: resistor is a device, while resistance is the slope of the
straight line defined by Ohm’s law. No harm is done when
the device is linear-hence the sloppiness in current usage.
However, for nonlinear devices, it is crucial to distinguish
them!

The resistance vs. state map of a memristor also obeys
Ohm’s Law, except that the resistance R is not a constant, as
illustrated by the example in Fig. 2(c), but depends on a dy-
namical state variable x (x = ¢ in the ideal memristor case
considered so far) which evolves according to a prescribed
ordinary differential equation, called the state equation. An
ideal memristor is therefore defined by:’

State-dependent Ohm’s law:

v=R(x)i (29a)
Memristor state equation:

x _, (29b)
2 =g

dt

Memristor lesson 2

A memristor is defined by a state-dependent Ohm’s law.

5 Correspondence between small-signal memristance
and chord memristance

Let us apply a sinusoidal current source i(t) = Asinwt
across a charge-controlled memristor as in Fig. 1. The mem-
ristance R(q(tx)) at t = t; as calculated from (6) is equal
to the slope of the p—¢q curve at g = g(#;). The slope at
q (1) will in general vary with the time-evolution of ¢(z).

To avoid clutter, we usually write only the term resistance, or conduc-
tance, with the understanding, mutatis mutandis, that the same follows
for the dual case.

7We henceforth adopt the standard notation x to denote a state vari-
able in mathematical system theory, where x may be a vector X =
(x1,X2,...,xp). This will be the case for many non-ideal memristors
found in practice.
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However, we can keep the slope at g (#;) approximately con-
stant over time by choosing a sufficiently small amplitude A
while fixing the frequency w, assuming the ¢—g curve is
continuous at ¢ = g (#x). Under this small-signal condition,
the memristance, henceforth called the small-signal mem-
ristance, would be indistinguishable from that of a linear
resistance, which obeys Ohm’s Law with a constant resis-
tance equal to R(fx) at all times. It follows that by apply-
ing a short current pulse signal of appropriate height, we
can tune the memristance over a continuous range of values
without introducing a third terminal, and without applying
a continuous supply of power via a biasing circuit. For the
example shown in Fig. 2(c), any small-signal memristance
greater than 1 € can be easily programmed. In particular,
observe that we have aligned the vertical axis of Figs. 2(a)
and 2(c) so that the value of R (height of the resistance vs.
state map) is equal to the slope of the ¢—¢q curve in Fig. 2(a)
at the point (g (tx), ¢ (tx)), i.e., both points must fall on the
vertical projection line through g = g (#).

In other words, the memristor can be designed to func-
tion as a non-volatile and continuously tunable resistance.
Let us consider next the large-signal case where A > 0, e.g.
A =1 and w = 1, as shown in Fig. 2. In this case, a quick
calculation using (17) shows that the flux ¢(t) oscillates be-
tween ¢ = 0 and ¢ = 14/3, as shown in Fig. 1(d). The cor-
responding memristance calculated from (20) ranges from
R =1to R=5 €, as shown in Fig. 2(d). The corresponding
v—i Lissajous figure is the pinched hysteresis loop shown in
Fig. 1(b). At any time ¢ = #;, the memristance is equal to
R(ty) = ;’((t’kk)) . This number can be interpreted simply as the
slope of a straight line, i.e., a chord, connecting the origin to
the point (i (#x), v(#x)) in the i—v plane. We will henceforth
call this large-signal resistance at time ¢ = #; the “chord
memristance” at ¢ = 7.3

Observe that the chord memristance at t = f; is simply
the memristance calculated from the pinched hysteresis loop
in Fig. 1(b) at the point where ¢ = ;. This number is equal
to the slope of a corresponding point on the p—g curve in
Fig. 1(a), traversed at the same time ¢ = fz; namely, the
small-signal memristance calculated at the same point. In
fact, had we plotted Fig. 1(a) and Fig. 1(b) on the same scale,
the chord connecting the point (i (#;), v(#x)) to the origin at
t = t; will be parallel to a corresponding line drawn tangent
to the ¢—¢g curve in Fig. 1(a).

For example, at t = 7, (i(%),v(5)) = (1,2), and the
chord resistance is given by R(%) =2/1 =2 Q, and the
corresponding small-signal memristance is given by (19)
for (%) = 1, namely, R(5) = 1+ 1 =2, as predicted and
shown in Fig. 2(c). Let us summarize the above results as
follow.

8The terminology “chord resistance” had been widely used by neuro-
biologists, including Hodgkin and Huxley [5], for similar geometrical
interpretations.

Small-signal and chord memristance correspondence
property

The large-signal chord memristance calculated at any point
(i(tx), v(#)) at time t = t; of a pinched hysteresis loop in
the v—i plane is equal to the small-signal memristance at
a corresponding point on the ¢—q curve traversed at the
same time. In particular, the slope of the chord connect-
ing (0,0) to (i(tx), v(tx)) is equal to the slope of the line
drawn tangent to the p—¢g curve at the corresponding point
(g (), o (t)).

Recall that the small-signal memristance R(g(t)) re-
mains constant under any sufficiently small odd-symmetric
periodic current input signals, such as i (#) = A sin wt where
i(—t) = —i(t) because every value of the state variable x
(charge in Fig. 1) is a stable equilibrium point ° and because
the memristor is locally passive when R(g) > 0 [3]. The lo-
cal passivity property is essential for small-signal memristor
circuit analysis to make sense because a locally active mem-
ristor [3] could give rise to oscillations, and even chaos [6].

In contrast to the small-signal memristance, which does
not depend on the input waveform of i (¢) other than it being
sufficiently small, the chord memristance is always associ-
ated with a particular Lissajous figure, such as a pinched
hysteresis loop corresponding to a periodic input signal.
However, once the input current waveform is given, we can
derive the associated pinched hysteresis loop, such as that
shown in Fig. 1(b) wheni = Asinwt with A =1and w = 1.
In this case, we can interpret the two limiting chord memris-
tances associated with the two hysteretic branches through
the origin. In particular, the chord memristance of the lower
limiting branch is equal in value to the small-signal mem-
ristance at the origin of the ¢—¢ curve in Fig. 2(a), namely,
R(0) = 1. This also follows upon substitution of ¢ = 0 in
(19) at time t = 0. The second chord memristance associ-
ated with the limiting upper branch through the origin in
Fig. 2(b) is associated with the small-signal memristance at
the point ¢ = g (;r) = 2, namely, R(2) =5.

For the pinched hysteresis loop shown in Fig. 1(b),
the chord memristance will sweep from the lower limit
R(0) =1 to the upper limit R(2) =5 in a counterclockwise
direction in the first quadrant during the first half cycle, and
then reversing the sweep in a symmetrical manner in the

9 A state x = x is said to be an equilibrium point of a dynamical circuit
if 2O —garx = xo. It is said to be locally asymptotically stable if it
always returns to its original position whenever subjected to small per-
turbations, such as a small current pulse. An equilibrium point is said
to be stable if any drift from its original position due to any perturba-
tion to the state variable x is confined to a neighborhood of radius of
about the same size as that of the perturbation. In other words, it does
not diverge to infinity, as would be the case for an unstable equilibrium
point. Neither does it return to its original position, as would be the
case if the equilibrium point is asymptotically stable [3].
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third quadrant during the second half cycle, resulting in an
odd-symmetric pinched hysteresis loop. The motion of the
chord memristance in the first quadrant of Fig. 1(b) is simi-
lar to that of an automobile windshield wiper except that the
length of the blade changes continuously in accordance to
the square root of the sum of squares of i(¢) and v(¢), from
t =0to t =& in the v—i plane.

6 Ideal memristor ¢—¢ curves for binary memories

For digital computer applications requiring only two mem-
ory states, the memristor needs to exhibit only two suffi-
ciently distinct equilibrium states Ry and R; where Ry >
R1, and such that the high-resistance state Rop can be eas-
ily switched to the low resistance state Ry, and vice versa,
as fast as possible while consuming as little energy as pos-
sible. In contrast to conventional memories, the memris-
tor does not dissipate any power except during the brief
switching time intervals because v(t) = de(t)/dt =0, and
i(t) =dq(t)/dt =0 at both equilibrium states Ry and R;.
Our goal in this section is to present two ideal memristors
for mimicking two, among many, recently published resis-
tance switching memories.

Memristor switching memory 1

Figure 5 shows a charge-controlled memristor characterized
by a 3-segment odd-symmetric ¢—g curve (Fig. 5(b)). This
piecewise-linear function can be described by the equation

1
<P=R061+<E(R1—Ro)>[|q+3|—|q—3|] (30)

where R; denotes the slope of the middle segment in
Fig. 5(b), Rp denotes the slope of the outer segments in
Fig. 5(b), ¢ = —B denotes the left charge breakpoint in
Fig. 5(b), and ¢ = B denotes the right charge breakpoint
in Fig. 5(b). The corresponding memristance function R(q)
is derived by differentiating (30) with respect to ¢; namely,

1
R(g) =Ro+ 5 (Ri —Ro)[sgn(q + B) —sgn(q — B)] (31
where sgn(.) is defined by

ifx>0
ifx <0

sgnx =1,

_ L (32)

A graph of the memristance vs. state map is shown in
Fig. 5(d) for the parameter values Ry = 6000 Q2 and R| =
2500 <.

Applying the sinusoidal current source defined in (16)
with A = 2Bw across the memristor, the corresponding
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memristor charge is given by

q(t) =2B(1 —coswt),
=0,

t>0

t<0 (33)

In this case, the memristor p—¢g curve in Fig. 5(b) tra-
verses fromg =0att=0to g =4B att = 7. Observe that
starting from ¢ (0) = 0 in Fig. 5(b) at r = 0, the memristor
charge ¢(t) increases along the lower branch while main-
taining a constant memristance value of R; until it reaches
the right breakpoint at ¢ = B where it switches abruptly to
the upper branch and continues to increase, with the constant
high memristance value of Ry, until it reaches the maximum
value of (1) =4B att = Z corresponding to the end of the
first half cycle of the sinusoidal current input i (¢). The cor-
responding chord memristance also remains constant at R
before the breakpoint ¢ = B, and at R after the breakpoint.
During the next half cycle, the memristor input current i (¢)
changes sign, and so does the corresponding memristor volt-
age v(t). The loci in Fig. 5(b) then retraces the same route
from g = 4B with a constant memristance Ry at t = 7> until
it reaches the right breakpoint ¢ = B again, where the mem-
ristance switches to R, and continues to decrease until it
returns to the initial departure point ¢ = 0 at t = 27-. Since
both i(¢) and v(¢) are negative during the return trip, the
plot of the corresponding Lissajous figure in the v—i plane
is an odd-symmetric pinched hysteresis loop, as shown in
Fig. 5(c). Observe that it consists of only two chord mem-
ristances equal to R; for the lower branch, and Ry for the
upper branch. Observe also that the switching occurs instan-
taneously, in both directions, in this case in view of the dis-
continuity in slope of the p—g curve at the two breakpoints
q=Band g =—B.

The corresponding memristance vs. state map shown in
Fig. 5(d) for Ry = 2500 €2, and Rp = 6000 €2, also shows
a discontinuous jump at the same breakpoints, as expected.
If we transcribe the corresponding loci of the memristance
R(t) from the pinched hysteresis loop in Fig. 5(c) into the R
vs. i plane, we would obtain the square resistance hysteresis
loop shown in Fig. 5(e). This plot is the piecewise-linear
analog of the smooth differentiable p—g curve in Fig. 2(b).

A cursory glance at the figures from Ref. [7] reveals sim-
ilarities in the respective rectangular resistance hysteresis
loops. From a circuit-theoretic perspective, the non-volatile
resistance switching memory device reported in [7] bears
the fingerprint of a memristor, and should be modeled as
a memristor. This example suggests that spin-transfer mag-
netic tunnel junctions are memristors. Indeed, unless a mem-
ristive device is properly identified and modeled as a mem-
ristor, no deep physical understanding of the rectangular re-
sistance hysteresis mechanisms, let alone the development
of a reliable commercial product, would be possible.

So far we have chosen charge-controlled memristors for
illustrations. Let us now consider the dual case of a flux-
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Fig. 5 A two-state pinched
hysteresis loop resulting from i=q
driving a piecewise-linear

charge-controlled memristor +

with a sinusoidal current source @
i(t) = Asinwt, where A > wB,
and B denotes the numerical
value of the breakpoint in (b).
Notice the horizontal axis is “q” a

in (b) and “i” in (e), which

corresponds to the vertical axis

in Fig. 6(f) and 6(c),

respectively. Consequently, the -~
slope of the piecewise-linear
segments in (b) represents
memristance in 2. (d) Shows
the relationship between the
memristance as a function of ¢,

Q@ Ivdt

<slope =R, Q2

r S

(=]

B g = \idt
slope =R; Q

4R Ro=6000 Q
L

N
]
o
F

. N \
B0 B .
d R, =2500 Q

assuming the slopes are given by
Ro =6000 2 and R; = 2500 ©

Pinched
Hysteresis loop
C

controlled memristor where the flux ¢ is the independent
variable.!?

Memristor switching memory 2

Consider the flux-controlled memristor g—¢ curve shown
in Fig. 6(f) where g (vertical axis) is the charge in nano
Coulomb (nC), and ¢ (horizontal axis) is the flux in We-
bers (Wb). This odd-symmetric piecewise-linear function
can be described exactly by an equation involving two
absolute-value functions; namely,

1
q:§G1{2¢+I¢—BI—I<ﬂ+BI} (34)

where G| =800 nS, and B =2.5 Wb.!!
Let us apply a sinusoidal voltage source

v(t) =5sint, t>0

=0, t<0 (35)

10For a strictly-passive memristor, defined by R(g) > 0, there is no
mathematical difference between a charge-controlled memristor and
a flux-controlled memristor except for the choice of the independent
variable. However, for a locally-active memristor, defined by R(g) < 0
at some point on the p—¢g curve, the difference becomes important be-
cause the p—¢ curve in this case is no longer a single-valued function,
and therefore does not have an inverse function.

"This memristor is not charged-controlled because its memristance is
infinite at all points on the horizontal segment where the memductance
G is equal to zero.

MR

RER
2B | | 2Bw

. 2B01-05 2B/ 1-0.5°

p i

shown in Fig. 6(a), across the memristor. Integrating (35) we
obtain the flux

t>0
t<0

@(t) =5(1 — cost),

o (36)

as shown in Fig. 6(b). Substituting (36) into (34), we obtain
the corresponding charge

q(t) =400{10(1 — cost) + |S(1 — cost) — 2.5
—|5(1 = cost) +2.5]} (37)

as shown in Fig. 6(c). Differentiating ¢ (¢) from (37), we ob-
tain

i(1) =4000-sint - {1 +6(5(1 — cost) — 2.5)
—0(5(1 — cost) +2.5)} (38)

as shown in Fig. 6(d), where

1, z>0,

0, z<0O. (39)

0(z) = {

Plotting the Lissajous figure of i(#) from Fig. 6(d), or
(38), and v(¢) from Fig. 6(a), or (35), we obtain the pinched
hysteresis loop shown in Fig. 6(e). Since the current i is cho-
sen as the vertical axis, and the voltage v is chosen as the
horizontal axis, we must now use the dual terminology of
chord memductance, instead of chord memristance. Observe
that the memductance in Fig. 6(e) switches abruptly from
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Fig. 6 A two-state pinched
hysteresis loop resulting from
driving a piecewise-linear
Sflux-controlled memristor with a
sinusoidal voltage source

v = 55sin(z). The horizontal
segment has a memductance
G(¢) =0nS, and the two
parallel outer segments have a
memductance of

G (¢) =800 nS. (Reproduced
from Fig. 26 of [4], except for a
revision of the original cartoon

sketch (e) which was drawn b
distorted in order to unfold
portions of the pinched

|
hysteresis loop, as well as to 60004 — 4 =0, JQDI <25
exhibit a typical return loci for 800(¢ —2.5), p225
other periodic input signals)
[ + 4 et [, §
1 = = 3z
2 7 |
iynd |
A
4000 L
3464 T
- of 2:5
d 3 2000
L-4000
-3464 ¢ =
20003 6000

Go = 0 (horizontal segment) at the two breakpoint voltages
v=4.33V,and v=—4.33 V, to G; =800 nS. This switch-
ing is instantaneous because the slope of the g—¢ curve in
Fig. 6(f) changes abruptly at the corresponding breakpoints
at ¢ =2.5 Wb, and at ¢ = —2.5 Wb, respectively.

Observe that the pinched hysteresis loop in Fig. 6(e) has
only two chord memductances. They correspond to the two
small-signal memductances Go = 0 and G| = 800 nS of the
flux-controlled g—¢ curve in Fig. 6(f).

Let us now compare the dynamical behaviors of this
memristor with the recent non-volatile nano-wire mem-
ory device reported by Professor Lieber’s group from Har-
vard [8]. There seems to be little resemblance at first sight.
This is because Lieber’s group uses a square wave instead
of a sinusoidal voltage source in their experiments. We have
therefore repeated their experiments by applying the same
voltage source, and parameters, across the flux-controlled
memristor with the g—¢ curve shown in Fig. 6(f), and en-
larged in Fig. 7(a). Lieber’s bipolar 10-volt square-wave
input voltage v(¢) is shown in Fig. 7(b). Integrating v(¢),
we obtain the flux waveform ¢(¢#) shown in Fig. 7(c),
which is a triangular wave of the same frequency. Observe
from Fig. 7(a) that the memductance is equal to zero for
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()] < 2.5 Wb, and is equal to 800 nS elsewhere. It fol-
lows from Fig. 7(c) that the memductance G (¢) correspond-
ing to the square wave voltage v(¢) in Fig. 7(b) will be a
square wave of the same frequency, but delayed by 0.25 sec-
onds. The memductance waveform predicted from the flux-
controlled memristor constitutive relation is Fig. 7(a) is vir-
tually identical to the experimental results reported in [8].
Moreover, by massaging the g—¢ curve into a smooth func-
tion, it is easy to obtain almost the same pinched hysteresis
loop in the 1st quadrant as reported in [8]. There is one dis-
crepancy, however, between our memristor prediction, and
the experimental pinched hysteresis loop in [8]; namely,
the pinched hysteresis loop predicted from the memristor
in Fig. 7(a) is odd-symmetric, whereas that reported in [8]
is not. In the next section, we will show how to unfold our
ideal memristor model into a more general form that would
allow us to model non-symmetric pinched hysteresis loops
as well. Finally, we remark that, although not reported in [8],
a private conversation with Prof. Lieber had confirmed that
their hysteresis loop will shrink in size as the frequency of
the input voltage signal increases, consistent with one of the
fingerprints of a memristor.
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Fig. 7 Voltage and flux
waveforms associated with the
same memristor from Fig. 6(f),
but enlarged in (a). The 4
memristor is driven by a
+10-volt square wave in (b),
whose associated flux is the
triangular wave shown in (c).
The conductance waveform is a
positive 800 nS square wave of
the same frequency but shifted

q=4(9p)
/ b
slope

=800 nS

*—-rpév(_]), Wb

in time by 0.25 s. Observe that
the conductance is zero over all
times when ¢(¢) in (c) falls
below 2.5 Wb

T 2000

Memristor g-vs.-( 0
a characteristic

7 Unfolding the memristor

In order to develop a more precise quantitative model of
non-volatile resistance switching memory devices, such as
the nano-wire device cited in the preceding section, let us
unfold the memristor’s state-dependent Ohm’s Law, and its
associated state equation, defined earlier in (29a)—(29b),
by introducing additional nonlinear terms, and parameters,
while preserving the key properties of the memristor. Our
approach is based on the mathematical theory of unfoldings
of functions [9].

The foremost characteristic property of the memristor
which distinguishes it from the other basic circuit elements
defined axiomatically in [4] is its pinched hysteresis loop.
The adjective “pinched” is chosen to emphasize that the loci,
i.e., the Lissajous figure, of any bipolar current (resp., volt-
age) source waveform i(f) (resp., v(t)), including chaotic
signals, that is applied across the memristor, and its associ-
ated voltage (resp., current) response v(t) (resp., i (¢)), must
pass through the origin (v,i) = (0, 0). This mathematical
constraint can be generalized by introducing additional state
variables, and the current i, into the state-dependent Ohm
Law and its associated state equation, defined in (29a)—(29b)
as follows:

State-dependent Ohm’s law:

v=R(X,i)i (402)
State equation:

dx/dt =f(x,i) (40b)
where

R(x,0) # 00 41)

800

Y

—
-

1]

05 1 15 2 25 3 35 4

and

X=(X1,X2,...,Xp) 42)

denotes a vector with n internal state variables (xi, x3,
..., Xn). We stress here that the state variables are internal
variables associated with the device material and its phys-
ical operating mechanisms, and must not be influenced by
any external variable, such as a voltage or current applied
to a third terminal, or a magnetic field generated from an
external source. Observe that (41) is needed to ensure that
v = 0 whenever i = 0. Indeed, if R(x,i) tends to infinity
when i =0, then v = R(X, 0) (0) # 0 and the hysteresis loop
would not be pinched at the origin.

We will illustrate the mathematical concept of unfolding
with the following example of memristor (40a)—(40b) where
x is a scalar:

v=R(x)i (43a)

d
B Xt ax? 4t anx™ 4 bri + bai® 4 -+ byi"

dt
p.r
+ Z Cjkx]ik
Jjk=1

(43b)

By assigning different numerical values to the parame-
ters aj, by, ¢ jk, we can generate a very large family of dis-
tinct memristors, all of them originating from the same an-
cestor, namely, the original memristor defining (29a)—(29b).
Just like the unfolding of flower petals, different parameter
values gives rise to memristors with a different pinched hys-
teresis loops. We will henceforth call these parameters the
memristor unfolding parameters. Let us look at some spe-
cial choices of these unfolding parameters.
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Memristor unfolding example 1

aj=0, j=12,....m
bi=1, b,=0, k=2,3,....n
cik=0, j=12,....,p, k=1,2,...,r

In this case, (43b) reduces to the original memristor equation
(29a)—(29b).

Memristor unfolding example 2

Let us choose the same unfolding parameters as above ex-
cept by where

Ro
b1 =y [TN}

In this case, (43b) reduces to (6) from [10] describing the fa-
mous HP titanium-dioxide memristor reported in a seminal
paper in the May 1 2008 issue of Nature [10].

Memristor unfolding example 3

Let us choose

aj=0, j=12,....m
and
cik=0, j=12,...,p, k=12,...,r

In this case, the memristor unfolding assumes the following
form:
State-dependent Ohm’s law:

v=R(x)i (44a)
State equation:
dx/dt =m(i) (44b)

By choosing different values for the unfolding parameters
by, the resulting nonlinear scalar function m (i) in (44b) can
be used to massage the corresponding pinched hysteresis
loop into almost any shape which best approximates the ex-
perimental data. In particular, the odd-symmetric pinched
hysteresis loops shown in Figs. 1(b), 5(c), and 6(e) can be
deformed and morphed into other non-symmetrical shapes,
such as the one alluded to [8] in the previous section. We
will henceforth call the function m (i) in (44b) the “mem-
ristor morphing function” since it can be chosen to approx-
imate numerous non symmetrical pinched hysteresis loops
measured experimentally from real resistance-switching de-
vices, such as those exhibited in Figs. 8(a)-8(k), which
were sampled from the literature on non-volatile resistance
switching devices.
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Typical I-V characteristic of Ag—Ag-photodoped
amorphous As,S;-Mo diode.

An example from year |1976

Yooichi Hirose and Haruo Hirose,

“Polarity-dependent memory switching and behavior of Ag dendrite in
Ag-photodoped amorphous As,S; films ,”

J. Appl. Phys., Vol. 47, No. 6, p. 2767, 1976

a
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Current-voltage characteristics of a 300-nm-thick epitaxial SrZrO;
film deped with 0.2% Cr grown on a SrRuQOj; bottom electrode, The top Au
electrode is 200X 200 um?.

An example from year | 2000

A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer,
“Reproducible switching effect in thin oxide films for memory applications,”
APPLIED PHYSICS LETTERS, Vol. 77, No. 1, p. 140, 2000
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Sequence of EBIC images and the corresponding /— ¥ characteri:
tics for a Pt/SrZr0(0.2% Cr)/StRu0, memory cell, 175 um in diameter. 1
electrode thickness is 5 nm. V=0V, V. =25kV.

An example from year [2001

C. Rossel,G. |. Meijer, D. Bre'maud, and D. Widmer,

“Electrical current distribution across a metal-insulator-metal structure
during bistable switching,”

J. Appl. Phys., Vol. 90, No. 6, p. 2892, 2001

C

Fig. 8 A sample of 12 experimentally measured pinched hysteresis
loops extracted from dozens of similar loops published in the literature
on a large variety of resistance switching devices, made from different
materials, processes and physical mechanisms
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An example from year | 2002

Xiangfeng Duan, Yu Huang, and Charles M. Lieber,
“Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires,”
Nano Letters, Vol. 2, No. 5, p. 487, 2002
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Current—voltage characteristic of a large area sample with 200-nm
Zn, 4Cd, ¢S and Pt Schottky diode

An example from year | 2003

P.van der Sluis,
“Non-volatile memory cells based on Zn,Cd, S ferroelectric Schottky diodes,”
Appl. Phys. Lett., Vol. 82, No. 23, p. 4089, 2003
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Conduction switching behaviors of a NiO film deposited at 5%
oxygen content under different magnitudes of the compliance current from
1 to 20 mA: The inset shows the linear relation between ON state current

An example from year |2004

S.Seo, M. ). Lee et al,
“Reproducible resistance switching in polycrystalline NiO films,”
Appl. Phys. Letters, Vol. 85, No. 23, p. 5655, 2004

f

Fig. 8 (Continued)

I-V characteristics of the metal-SCES interface

An example from year [2005

Takashi Okal and Naoto Nagaosa,

“Interfaces of Correlated Electron Systems: Proposed Mechanism for
Colossal Electroresistance,”

Physical Review Letters, Vol. 95, p. 266403, 2005
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A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura,

“Interface resistance switching at a few nanometer thick perovskite
manganite active layers,”

APPLIED PHYSICS LETTERS, Vol. 88, p. 232112, 2006
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An example from year |2008

Yajie Dong, Guihua Yu, Michael C. McAlpine, Wei Lu, and Charles M. Lieber,
“Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches,”
Nano Letters, Vol. 8, No. 2, p. 386, 2008

Fig. 8 (Continued)
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An example from year |2009

Y. F. Li,T. Kaneko, and R. Hatakeyama

“High-performance negative differential resistance behavior in fullerenes
encapsulated double-walled carbon nanotubes,”

J. Appl. Phys.Vol. 106, No. 12, 124316, (2009)
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An example from year | 2010

Yoshihisa Fujisaki
“Current Status of Nonvolatile Semiconductor Memory Technology”

Japanese Journal of Appl. Phys.Vol. 49, No. 10, pp., 100001, (2010)
k

Fig. 8 (Continued)

7.1 Non-volatile memristors

A careful examination of the 12 memristor pinched hys-
teresis loops exhibited in Figs. 8(a) to 8(k) shows that ex-
cept for Figs. 8(a), 8(d), and 8(h), most of the loops can be
reproduced approximately by the preceding simpler mem-
ristor (44a)—(44b). A few of the pinched hysteresis loops,
such as Figs. 8(a), 8(d), 8(i) and 8(j) contains small oscilla-
tory or noisy signal components superimposed upon them.
Since the cited authors did not provide details on how their
pinched hysteresis loops were measured, we can only con-
jecture that these small-signal components were either arti-
facts of their measurement systems, or they may represent
genuine nonlinear dynamical phenomena. In the latter case,
it may be necessary to use the generic memristor (40a)—
(40b) to reproduce them. We wish to stress, however, that
even this seemingly complex case would represent only the
tip of an iceberg of vast nonlinear dynamical phenomena,
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such as chaos, which is not considered in this tutorial. In-
deed, to build a non-volatile resistance switching memory
exhibiting the fine details depicted in some of the pinched
hysteresis loops shown in Fig. 8, we only need to consider a
subclass of the memristor morphing function f(x, /) in (40b),
namely, the class satisfying the condition

f(x,i) =0,

whenever i =0 (45a)

Under the constraint imposed by (45a), the memristor
state equation is thereby endowed with the following non-
volatility property:

dx/dt =f(x,i) =0, wheni=0 (45b)
In other words, (X, i) = (x, 0) is an equilibrium point of the
memristor state (40b), for any value of x. Hence, we have a
continuum of stable equilibrium points, when i = 0, just as
in the case of the ideal memristor of yore. This means that
when we switch off the power at t = 0, such thati(z) = 0, for
t > 0, the state vector x in (42) does not have to tend to zero,
but is held unchanged at x(#) = x(0) for all r > 0, where
x(0) can be set by applying an appropriate input switching
signal. But since we can choose many state variables, along
with their numerous unfolding parameters, the device engi-
neer has many degrees of freedom to massage his memristor
model and optimize a memristance function R(X, i), and a
corresponding memristor morphing function f(x, i), to de-
velop a memristor model capable of reproducing almost any
fine details observed from their experiments.

7.2 Negative resistance

Let us observe next that the pinched hysteresis loops shown
in Fig. 8(h) and Fig. 8(k) contain a non-monotonic current-
controlled region with a “negative” slope (i.e., a negative
small-signal resistance), implying that the device is locally
active [3], and is capable of oscillation under dc bias. Such
a pinched hysteresis loop could not be realized by any ideal
passive memristor [1], but it can be realized by connecting
a locally active current-controlled nonlinear resistor in se-
ries with a passive memristor described by (44a), as shown
in Fig. 9(a). Note that the resulting one-port in Fig. 9(a) is
equivalent to a memristor described by the generic memris-
tor (40a)—(40b).

To prove this equivalence property, let the memristor be
described by
v] = R(X)i] (46a)
Let the locally active current-controlled nonlinear resistor be
described by

vz = h(iz) (46b)
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Fig.9 The memristor-resistor series connected circuit in (a) is equiva-
lent to another memristor with a transformed characteristic. In general,
a one-port (2-terminal black box) made of arbitrary interconnections of
arbitrary assortments of memristors and resistors is also equivalent to
a memristor characterized by a more complex constitutive relation [3]

Applying Kirchoff Current Law (KCL), we obtain

i=il=in A7)

Applying the Kirchoff Voltage Law (KVL), we obtain

v=v] 4+ v (48)

Substituting (46a)—(46b) into (48), and making use of (47),
we obtain the following equation for the one-port:

v=R(X)i +h(i) (49)

Since (49) is a special case of (40a), the composite one-port
in Fig. 9(a) is a memristor. The above example is but a spe-
cial case of the following general result.

Memristor-resistor interconnection theorem

Any one-port made of an arbitrary interconnection of mem-
ristors and passive nonlinear resistors, is equivalent to a
memristor described by either (40a)—(40b), or by an implicit
system of equations, whose behavior seen from outside the
composite one-port shown in Fig. 9(b) bears all of the fin-
gerprints of a memristor [2].

7.3 Is memristor negative resistance real or artifact?

A careful examination of Figs. 8(a), 8(d), 8(h) and 8(k) re-
veals that these pinched hysteresis loops contain a small re-
gion with a negative slope. Assuming these regions are real
measurements pertaining to the device, and not artifacts in-
troduced via the measuring instruments, and/or their inflex-
ible softwares, can we conclude that these devices are en-
dowed with a small-signal (i.e., differential) resistance op-
erating region, and hence is locally active, and can be de-
signed to amplify small signals, and/or to function as an os-
cillator [3] via an external biasing circuit?

The answer is no! Indeed, in many cases, the negative
slope is merely a manifestation of a phase-lag between the
maxima (or, peak) of the response voltage v(¢) (resp., cur-
rent i(¢)) and the peak of its excitation current waveform
i(t) (resp., voltage waveform v(¢)). This phenomenon is
best seen in Figs. 1(b), 1(c), and 1(d) where the voltage peak
in Fig. 1(d) lags behind the input current peak in Fig. 1(c).
Observe that there is a short time interval where the volt-
age v(¢) in Fig. 1(d) increases while the input current i (¢)
decreases. This phenomenon occurs after the pinched hys-
teresis loop in Fig. 1(b) reaches its peak at i = 1, and is the
sole mechanism which gives rise to the negative slope. It has
nothing to do with local activity [3]!

So how can we determine which of the pinched hystere-
sis loops in Fig. 8 with a negative-slope region is a bona
fide small-signal resistance? The generic answer is we do
not know unless we have already derived a realistic memris-
tor circuit model, such as Fig. 9, or a memristor state equa-
tion, such as (40b), where we can find a point (V, I) on the
negative-slope region of the pinched hysteresis loop which
can be proved analytically to be an equilibrium point (oth-
erwise known as a dc operating point in electronic circuit
jargon), namely,
dx/dt =1(x,I) =0, V=RxWU), DI (50"
for some state variable x = x(/), which depends on /. This
means that there exists a dc operating point (V, I') where, in
the absence of noise, there is a state variable x = x(/) where
the composite memristor-biasing circuit is in equilibrium.
This situation is usually not observable experimentally be-
cause the memristor small-signal resistance would usually
make the circuit unstable, resulting in an oscillation. This
alone suffices to conclude that the memristor is locally ac-
tive. However, for pedagogical reasons, we can design an
appropriate external stabilizing biasing circuit such that the
composite circuit is locally asymptotically stable [3], where-
upon the dc operating point (V, I') on the memristor pinched
hysteresis loop can actually be measured. Alternately, we
can determine whether the memristor is locally active by
deriving first either a memristor circuit model, or a memris-
tor state equation, and then apply standard nonlinear circuit
analysis methods to determine whether there exists a locally
active equilibrium point [3].

Observe that for an ideal memristor we have x = ¢, and
the equilibrium state equation
dg/dt=1=0 (50"
does not have a solution if 7 # 0. It follows that an ideal
memristor can have only one dc operating point; namely,
the origin (v,7) = (V,I) = (0,0). If the small-signal re-
sistance at the origin is negative, this would imply that the
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pinched hysteresis loop has a branch which crosses the ori-
gin into the 2nd and the 4th quadrants of the v—i plane, im-
plying that the memristor is not passive. It follows therefore
that an ideal memristor cannot exhibit a small-signal nega-
tive resistance unless it is locally active at the origin, which
is possible only if the memristor has an internal source of
power, such as light, chemical or nuclear reactions, or bat-
teries, as demonstrated in Fig. 4(f), page 511 of [1], where
a locally active memristor exhibiting a negative slope at the
origin of the g vs. ¢ curve was built using transistors and op
amps (see Fig. 2, p. 509 of [1]), powered by batteries. We
can conclude therefore that if the pinched hysteresis loop of
a physical device without internal power source exhibits a
bona fide small-signal negative resistance, then that device
cannot be an ideal memristor, and must therefore be an un-
folded memristor sibling, characterized by (40a)—(40b).

8 Switching and sensing resistance memory

We have presented in the preceding section a very special
subclass, albeit of great interests to the theme of this special
issue, of memristors whose members are endowed with the
priceless, and timeless, gift of non-volatile memories. This
subclass is defined by the memristor constitutive relation

v=R(X,i)i (50)

dx/dt =1(x, i) 51D

where the memristance function R(X, i) satisfies the mem-
ristor passivity condition

R(x,i)>0 (52)

and where the memristor dynamical function f(x, i) satisfies
the following condition.

Continuous non-volatility condition

f(x,i)=0, ifi=0 (53)
The non-volatility condition (53) ensures that any state vari-
able x is a stable, non-isolated, equilibrium point of the
memristor state equation (51) when i = 0, or equivalently,
when the power is switched off. In other words, (53) is the
genesis of the memristor’s memory non-volatility. Observe
that since every X is an equilibrium state of (51) when i =0,
the subclass of memristors defined by (53) has a continuum
of equilibrium states, where every equilibrium state is sta-
ble, but not asymptotically stable [3] in the sense that while
small perturbations around each equilibrium state may per-
turb its location slightly, it will never diverge beyond its per-
turbed boundary [3]. Hence, in principle, every memristor

@ Springer

satisfying (53) is endowed with an infinite memory store. In
the context of this special issue, we will consider only the
special case of hinary memory where only two sufficiently
distant memory states are of interest because they will be
used to store the “0” and “1” states for digital electronics.
In this case, the ideal memristor ¢ vs. g curve only needs
to have two approximately linear regions, where one region
should have as small a slope as possible, while the other re-
gion should have as large a slope as possible.

The Continuous non-volatility condition (53) guaran-
tees a continuum of tunable resistances, which is essential
for synaptive learning applications. For non-volatile binary
memory applications, we can replace (53) by the following
less restrictive condition.

Discrete non-volatility condition
f(x',00=0 and f(x",0)=0 (53)

where x' and x” denote two locally asymptotically stable
equilibrium points of the memristor state equation (40b)
withi =0, i.e.,

dx/dt =f(x, 0) (40b")
As an example, consider the state equation:
dx/dt=x — x> —i (40b”)
Here, x = x" =1 and x = x” = —1 are two isolated locally
asymptotically stable equilibrium points of
dx(t)/dt =x — x° (40v”)

obtained by setting i = 0 in (40b”).

Let us now pause to consider some examples.'?

Any device capable of non-volatile memory is useless un-
less it is relatively easy and inexpensive to sense its memory
state. One of the great virtues of the memristor is that since
its memristance function in (44a) is a state-dependent resis-
tance obeying Ohm’s law, one only needs to inject a small
sensing voltage (resp., current), and observe its response.
Since in practice, the two resistance memory states Rofpr
and Ron are chosen so that their ratio is sufficiently large,
one can easily determine the memory state by observing the
magnitude of the current (resp., voltage) response, to a small
ac sensing voltage (resp., current) signal, or a small doublet-
like pulse signal with a zero average area. The reason for
requiring the sensing signal to have a zero dc average is to
prevent the location of a non-isolated memory state from
slowly drifting away.

12The two memory states are chosen sufficiently far apart in practice
to enhance robustness and reliability.
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Memristor switching example 1: bipolar switching

Let us revisit the two-state charge-controlled memristor in
Fig. 5. To switch from the low-resistance state R; corre-
sponding to the middle segment with a small slope to the
high-resistance state Ry corresponding to the upper seg-
ment with the much steeper slope, we simply apply a suf-
ficiently large current pulse so that its corresponding charge
q(t) would traverse beyond the charge breakpoint ¢ = B.
To switch back from a point on the upper segment (high-
resistance state Ry, simply apply a similar pulse of the op-
posite polarity. This method of switching is usually referred
to as bipolar resistance switching. Our next example illus-
trates how switching can be achieved by applying switching
pulses of the same polarity, but of different amplitudes, often
referred to in practice as unipolar resistance switching.

Memristor switching example 2: unipolar switching

Consider the flux-controlled memristor depicted in Fig. 10
with a 7-segment piecewise-linear p—q curve (Fig. 10(a)).
Here the three parallel red segments with a steep slope have
a high conductance state Gon, whereas the four parallel
green segments with a much smaller slope have a much
smaller conductance state Gopg. For the memristor consti-
tutive relation shown in Fig. 10(a), we can switch from a
high conductance state to a low-conductance state with a
relatively small-amplitude voltage pulse since it only needs
a small increment Ag in ¢ to cross the breakpoint Bj
into the low-conductance state. In contrast, a much larger—
amplitude voltage—pulse, but of the same polarity, and the
same pulse width, would be needed in order to reach the next
breakpoint B,, and beyond, in order to switch back to a high
conductance state Gon again. The same switching sequence
with the opposite polarity can also be executed to achieve the
same results, as illustrated in Fig. 10(b). The corresponding
switching loci plotted in the v—i plane is shown in Fig. 10(c).
Here, to prevent the excessive current jump from a small
current to a very high current, thereby damaging the device,
measuring instruments are normally programmed to clamp
the current at a maximum safe value, called the “compliance
current level” in industry, as illustrated in Fig. 10(c). The
above mode of using voltage pulses of the same polarity to
switch between low- and high-resistance states has been re-
ported in some so-called “unipolar” devices in industry [11].

9 Concluding remarks

Any electronic device with only two electrical terminals is
usually referred to in the semiconductor industry as a non-
volatile resistance-switching memory device if the device
can exhibit one of two resistance values over a sufficiently

~ q
Slope=G,, |

Slope=G
_—

B: B B, BB
0

Compliance 1% T
Current -— -]
Level \ ‘

Fig. 10 A “staircase-like” flux-controlled memristor can switch from
a high conductance to a low-conductance state using voltage pulses of
the same polarity, somewhat reminiscent of the “unipolar” switching
characteristic depicted in Fig. 1(a) of [7]

long time period, without consuming any power, and can
be switched from a low-resistance state to a high-resistance
state, and vice versa, by applying either a short voltage
pulse, or a short current pulse, of appropriate amplitude and
polarity, across the two device terminals, and such that the
resistance state at any time, either low or high, can be sensed
by applying a relatively much smaller sensing voltage pulse,
or current pulse, of some preset waveform, across the same
terminals.

Implicit in the above definition is that at any time, the de-
vice can be modeled as a linear resistor obeying Ohm’s Law,
when the sensing signal amplitude is sufficiently small, for
otherwise, the word resistance would be meaningless. The
linearity property implies that the sensing voltage, or cur-
rent, and its corresponding voltage response, or current re-
sponse, have identical waveforms, and have the same zero-
crossings in time. It follows that the loci in the v—i plane
during sensing when observed from an oscilloscope will ap-
pear as a short linear segment through the origin whose slope
will be small if the resistance being sensed is low, or much
larger, if the resistance being sensed is high. In other words,
the two resistance states can be depicted as two short straight
line segments of slopes R and R», crossing each other at the
origin of the v—i plane. These two segments can be emu-
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lated exactly by an ideal memristor having the memristance
R(q) = R atthe origin, and R(q) = R, at another point, say
q = q» of a smooth ¢ vs. g curve in the ¢ vs. q plane. By
uncovering the physical operating mechanisms taking place
internal to the device, one could construct a model that not
only exhibits these two memristances, but also faithfully re-
produces one or more pinched hysteresis loops, measured
using different large-amplitude periodic signals [12]. The
resulting mathematical expressions may be extremely com-
plex, and may often be expressible only by implicit mathe-
matical equations. Nevertheless, they would define a mem-
ristor of the generic form given by (40a)—(40b), by virtue of
the characteristic property of the memristor.

The take-home lesson from this tutorial can be summa-
rized succinctly as follow:

Any 2-terminal electronic device devoid of internal
power source and which is capable of switching be-
tween two resistances upon application of an appro-
priate voltage or current signal, and whose resistance
state at any instant of time can be sensed by applying
a relatively much smaller sensing signal, is a memris-
tor, defined either by the ideal memristor equation, or
by one of its unfolded siblings via (40a)—(40b).

Our final remark is concerned with the significance of
the pinched hysteresis loop in the modeling of non-volatile
resistance switching memories. Let us recall that while the
memristance vs. state map tells us the complete set of small-
signal memristances endowed upon a memristive device, it
is rather difficult to measure them experimentally unless the
memristor can be modeled by the ideal memristor equation
v = R(q)i, where dq/dt = i. To extract such information
from the generic memristor (40a)—(40b), we have to identify
first the relevant state variable, or state variables in cases de-
manding a higher-order memristor state space. In contrast,
the chord memristances associated with a pinched hystere-
sis loop can be readily extracted since it is simply the set
of all slopes of a straight line anchored at the origin whose
tips traces along the loci of a measured pinched hysteresis
loop. Each such chord resistance is a true resistance indis-
tinguishable from a linear resistor having the same resis-
tance. The set of all such chord memristances associated
with a pinched hysteresis loop therefore provides a sub-
set of the memristor’s endowed small-signal memristances.
Since measuring pinched hysteresis loops associated with
different periodic input voltage, or current, waveforms ap-
plied across a memristive device is a relatively simple task
that could be automated,!3 it is a useful tool for uncovering
a memristive device’s nonlinear physical operating mecha-
nisms, and for validating its memristive models. In the case

I3 Measurement instrument companies could exploit the high market
potentials of automated pinched-hysteresis-loop measuring instrumen-
tations, and their memristance extractions.
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The First 25 Circuit Elements

Four fundamental
circuit elements

Fig. 11 An enlargement of the first 25 axiomatically defined circuit
elements from the periodic table of circuit elements (Fig. 31 of [3])
where the four basic circuit elements (resistor, capacitor, inductors
and memristor) are replaced by their symbols. The memcapacitor
is located at (a,b) = (—1, —2) and the meminductor is located at
(a,b) = (=2, —1). Observe that since these two elements require dou-
ble time integrals of voltage and current, their dynamics are of a higher
order than those of the four basic circuit elements enclosed inside the
dotted red box

of an ideal memristor, it is important to bear in mind that
the small-signal memristance, and its corresponding chord
memristance, represent exactly the same information. The
main difference is that while the chord memristance is a
long vector pinned at the origin of the v—i plane, its corre-
sponding small-signal memristance is an infinitesimal tan-
gent attached at each point on an ideal memristor’s constitu-
tive relation in the ¢ vs. g plane. It is also useful to note that
unlike classical electronic circuit analysis, the small-signal
memristor voltage associated with an applied small-signal
memristor current represents the actual total solution, and
is not superimposed upon some dc bias. We end this tutor-
ial with the following terse characterization of a resistance
switching memory device:'*

Ifit’s pinched, it’s a memristor.
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