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mL−1, respectively, followed by slight declines. Acropora 
tenuis and A. digitifera had the highest maximum fertilisa-
tion success, likely owing to beneficial evolved functional 
traits like large egg sizes. The present analysis underpins 
studies of fertilisation kinetics in natural reef populations to 
help inform management and restoration practices that assist 
population resilience and recovery.
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Introduction

Fertilisation is fundamental to sexual reproduction and is a 
key factor in the facilitation of population growth and recov-
ery in free-spawning invertebrates (Iguchi et al. 2009; Oliver 
and Babcock 1992). When eggs and sperm are shed into 
the sea following spawning, the likelihood that they interact 
and successfully fertilise is dependent on conditions acting 
on varying scales and intensities including population level 
dynamics, gametic interactions, and external environmental 
influences.

Two of the major factors influencing fertilisation suc-
cess on a population level are the density of fecund indi-
viduals in an area and the level of synchrony in spawning 
within those populations (Himmelman et al. 2008; Levitan 
et al. 1992). Consequently, reproductive success is highly 
density dependent, making spawners vulnerable to Allee 
effects (Allee 1931; Courchamp et al. 1999; Odum and 
Odum 1955). This can affect sessile organisms such as cor-
als since they cannot aggregate for spawning (Lasker et al. 
1996; Oliver and Babcock 1992). Allee effects occur where 
low population sizes or densities directly influence popu-
lation growth, thus potentially inhibiting individual fitness 
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and local demographics (Gascoigne et al. 2009; Keya et al. 
2021; Oliver and Babcock 1992; Stephens et al. 1999). The 
strength of the relationship is variable across systems, but 
is generally stronger at low densities of conspecifics, and 
may lead to reproductive isolation or extinction if severe 
(Berec et al. 2007; Gascoigne and Lipcius 2004; Keya et al. 
2021; Stephens et al. 1999). Pennington (1985) found that 
fertilisation success of the echinoid Strongylocentrotus droe-
bachiensis decreased from 60–95% to 15% when distance 
between conspecifics was > 20 cm apart. Such declines in 
reproductive success will directly impact population growth 
rate, recovery, and persistence.

Mass spawning systems have evolved to maximise ferti-
lisation success of many free spawning invertebrates (Bab-
cock et al. 1986; Harrison et al. 1984) using mechanisms 
of synchronisation (Coma and Lasker 1997; Levitan et al. 
2011), which often combat Allee effects. For example, Coma 
and Lasker (1997) found that the degree of spawning syn-
chronisation explained 80% of the variation in fertilisation 
success for the gorgonian Pseudoplexaura porosa, with 
maximum fertilisation occurring at high levels of synchrony. 
Similarly, Levitan et al. (2004) observed that populations of 
the scleractinian Orbicella annularis achieved optimal ferti-
lisation success with the peak levels of spawning synchrony, 
while corals that spawned at off-peak times had relatively 
low fertilisation success. The success of spawning synchro-
nisation as a mechanism to maximise fertilisation is inhib-
ited by large intercolonial distances, which can occur at low 
population densities (Teo and Todd 2018). Fertilisation of 
eggs following spawning cannot occur if sperm concentra-
tions are below a certain threshold (Claereboudt 1999), or 
if there is insufficient time for sperm and eggs to interact 
(Nozawa et al. 2015).

One of the most notable examples of spawning synchro-
nisation occurs during the annual mass coral spawning event 
on the Great Barrier Reef (GBR), with over 130 species 
participating (Babcock et al. 1986; Baird et al. 2009; Har-
rison et al. 1984; Willis et al. 1985). However, this process 
likely becomes compromised in disturbed populations 
as corals experience stress and mortality due to cumula-
tive and intensified disturbances such as cyclones, crown 
of thorns starfish (CoTS) outbreaks, bleaching events, and 
coral disease outbreaks (De’Ath et al. 2012; Hughes et al. 
2019; Hughes and Tanner 2000; Ortiz et al. 2018; Willis 
et al. 2004). Such unnatural stress levels can lead to coral 
cover and density loss following individual events (Condie 
et al. 2018; Edmunds 2019), and impaired recovery rates in 
response to the accumulation of disturbances (Doropoulos 
et al. 2022; Gouezo et al. 2019; Ortiz et al. 2018; Speare 
et al. 2021). Disturbances can also cause physical or physi-
ological harm which may interfere with gamete production 
(Kai and Sakai 2008; Ward 1995) and spawning synchrony 
(Fogarty and Marhaver 2019; Shlesinger and Loya 2019). 

Thus, it is important to understand the implications of such 
widespread ecosystem changes on fundamental processes 
like reproduction.

On a gametic level, sperm limitation is the major restric-
tive factor during fertilisation (Benzie and Dixon 1994; 
Levitan 1998; Levitan and McGovern 2005; Levitan et al. 
1991), due to sperm dilution (Lasker et al. 1996; Levitan and 
Petersen 1995). Low sperm concentrations generally occur 
when densities of fecund adults are reduced (Oliver and Bab-
cock 1992), or when sperm is mixed by the hydrodynamic 
environment (Crimaldi and Browning 2004), causing lack 
of adequate contact between sperm and eggs (Benzie and 
Dixon 1994) during the period of time that the gametes are 
viable. Fertilisation rates in corals generally follow a posi-
tive relationship with increasing sperm concentration (Chui 
et al. 2014; dela Cruz and Harrison 2020; Nozawa et al. 
2015; Willis et al. 1997); however, the intricacies of these 
relationships appear to be species-specific. For example, 
Nozawa et al. (2015) found that Acropora gemmifera and A. 
hyacinthus each had fertilisation success of < 30% at sperm 
concentrations of around 104 sperm mL−1 and increased 
steadily to > 75% fertilisation success at > 105 sperm mL−1. 
While dela Cruz and Harrison (2020) found similar trends 
of increased fertilisation with greater sperm concentrations 
for A. millepora and A. tenuis, a lower sperm concentration 
was required (~ 103 mL−1) to achieve fertilisation success 
rates > 50%.

The degree to which gamete contact time influences fer-
tilisation is likely variable across sperm concentrations. In 
other words, reproduction can be effective at lower sperm 
concentrations if eggs are exposed to sperm for longer 
periods, thus ensuring more opportunities for fertilisa-
tion to occur. This has been quantified for some spawning 
invertebrates (Babcock and Keesing 1999; Gribben et al. 
2014), but has not been examined in corals. For the geo-
duck, Panopea zelandica, Gribben et al. (2014) reported 
significantly higher fertilisation success at lower sperm 
conditions when gametes were exposed for 30 min, com-
pared to shorter interactions of 1 min and 10 min. As in 
other free spawners, coral gametes have a specific amount 
of time to mix and fertilise before they become too diluted 
to interact (Omori et al. 2001) or they are no longer viable 
(Chui et al. 2014; dela Cruz and Harrison 2020). Nowaza 
et al. (2015) found that at a constant sperm concentration, 
fertilisation success increased as contact time increased 
from 10 to 30 to 60 min for four of their study species, A. 
gemmifera, Favites abdita, F. pentagona, and F. valensien-
nesi, but had no influence on fertilisation success for A. 
papillare and Platygyra ryukyuensis (Nozawa et al. 2015). 
There is capacity for fertilisation success at shorter contact 
times, but this is variable across species (Nozawa et al. 
2015). Contact time thresholds are likely a function of 
the distance between spawning colonies and the degree 
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of water flow experienced to mix the gametes (Denny 
and Shibata 1989; Nozawa et al. 2015). Quantification of 
adequate contact times is needed to understand fertilisa-
tion kinetics and to develop and parameterise mechanistic 
models of sperm-egg interactions across a range of eco-
logical contexts.

The goal of this study was to fill key knowledge gaps 
about how two main limiting factors of fertilisation, sperm 
concentration and gamete contact time, interact to influ-
ence coral reproduction. Previous studies have evaluated 
relevant parameters in isolation (dela Cruz and Harrison 
2020; Morita et al. 2006; Nozawa et al. 2015; Oliver and 
Babcock 1992), but it is important to gather more com-
prehensive results that highlight their collective influences 
on fertilisation kinetics. Trials were conducted using four 
species of spawning corals: two branching Acroporidae—
Acropora digitifera and A. tenuis—and two submassive 
Merulinidae—Platygyra daedalea and Coelastrea aspera. 
Results have improved understanding of fertilisation kinet-
ics across diverse and functionally distinct species. Further, 
knowledge gained from this study will inform management 
and restoration decisions aiming to safeguard natural recov-
ery processes that are under threat as coral densities across 
the GBR continue to decline (Dietzel et al. 2020).

Materials and methods

Study sites

Laboratory trials for Acropora cf. digitifera were conducted 
in Western Australia in 2017 at Coral Bay Research Station. 
Five colonies of A. cf. digitifera were collected from shallow 
reef flat in Coral Bay (23.1423° S, 113.7723° E). Trials for 
A. cf. tenuis and Coelastrea cf. aspera were conducted in 
October 2021 at the National Sea Simulator (SeaSIM) facil-
ity in Townsville, Australia. Six A. cf. tenuis and six C. cf. 
aspera colonies were collected from reefs surrounding Mag-
netic Island (19.1385° S, 146.8339° E) in the central GBR, 
implying that the A. cf. tenuis individuals used were geneti-
cally distinct from others known by the same name in dif-
ferent regions of the Indo-Pacific (Cooke et al. 2020). Work 
with Platygyra cf. daedalea was conducted in November 
2021 at Heron Island Research Station (HIRS). Six colonies 
were collected from the reefs on the southern side of Heron 
Island (23.4423° S, 151.9148° E) in the southern GBR. For 
all corals, while species were identified using Veron (2000) 
and Wallace (1999), we recognise the cf. nomenclature to 
note uncertainty in species identification due to the constant 
revision and changes in Indo-Pacific coral taxonomy (Bridge 
et al. 2023; Huang et al. 2011), but do not apply it in the text 
from hereon for simplicity.

Gamete collection

At all locations, gravid adult colonies were collected using a 
hammer and chisel in the days prior to the full moon during 
the anticipated spawning month (12 March 2017 at Coral 
Bay, 21 October 2021 at SeaSIM, 19 November 2021 at 
HIRS). Gravid colonies were assessed in the field by taking 
a sample and examining whether pigmented eggs were pre-
sent (Harrison et al. 1984) and colonies > 5–10 m apart were 
collected to minimise the likelihood of selecting clonemates 
(Ayre and Hughes 2000). At Coral Bay, A. digitifera colo-
nies were transported to the local jetty, isolated in 60-L con-
tainers at sunset, and spawned at 21:45–22:15 on the 22nd 
of March. At SeaSIM and HIRS, colonies were collected 
and housed in large, free flowing laboratory aquaria with 
ambient lighting for the duration of the spawning period. 
On spawning nights, colonies were isolated into individual 
60-L containers with no flowing water and observed for set-
ting and spawning (Babcock et al. 1986). At SeaSIM, A. 
tenuis spawned at 18:20–18:45 on the 22nd of October and 
C. aspera spawned at 21:20–21:55 on the 24th of October. 
At HIRS, P. daedalea spawned at 18:39–18:46 on the 24th 
of November. Once spawning occurred, egg-sperm bundles 
were collected from four colonies, separated into their egg 
and sperm components using a 125 µm mesh sieve, and kept 
isolated to prevent cross-contamination. Eggs from two of 
the four colonies were used for experimentation and were 
separated into clusters of 200 eggs to prepare for each treat-
ment. Sperm is the major limiting factor of fertilisation and 
egg-sperm incompatibility is common. Therefore, sperm 
from each of the four donor colonies was pooled to max-
imise the functional interactions across gametes (6 total: 3 
sperm donors for each egg donor) while minimising bias 
from biological factors like individual variability (Johnson 
et al. 2013) or conspecific incompatibilities (Willis et al. 
1997). Homogenised sperm samples were counted using a 
haemocytometer (Babcock and Keesing 1999; Oliver and 
Babcock 1992; Willis et al. 1997); then, a serial dilution 
was performed to obtain a 200 mL sample of each sperm 
concentration.

Trials included eight sperm concentrations (0, 102–108 
sperm mL−1) for A. digitifera, seven (0, 102–107 sperm 
mL−1) for A. tenuis and C. aspera, and six (0, 102–106 
sperm mL−1) for P. daedalea, but these concentration values 
were reduced by 25% when reporting the results to remove 
each individuals own sperm from the comparison, assum-
ing no self-fertilisation occurred. Despite some evidence of 
self-fertilisation in Platygyra spp. (Willis et al. 1997), it is 
unlikely that this would occur in the presence of other con-
specific sperm, or on such short time scales (Miller 1994). 
Therefore, values were shifted with the other taxa that have 
little evidence of self-fertilisation (Hatta et al. 1999; Wil-
lis et al. 1997), to maintain consistency because there were 
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no self-fertilisation controls to explicitly test otherwise. All 
sperm concentrations were tested at five contact times (10 
s, 30 s, 1 min, 10 min, 30 min). The maximum sperm con-
centration used for each species varied based on the gamete 
quantity during spawning and gamete separation processing.

Experimental methods

Conditions and methodologies throughout the gamete col-
lection, preparation, experimentation, and fixation process 
were standardised as much as possible despite the apparent 
spatial and temporal variability across assays for each spe-
cies. Gamete viability and compatibility vary with time after 
spawning (dela Cruz and Harrison 2020; Miller and Babcock 
1997), so experiments for all species commenced < 2 h since 
the beginning of spawning and were completed within 4 h to 
ensure that gametes remained viable. Salinity, and water and 
air temperatures, were maintained to mimic ambient condi-
tions of the natal reef in each region (25 °C at Coral Bay and 
HIRS, 27 °C at SeaSIM). All seawater was filtered to prevent 
external influences on fertilisation dynamics; however, the 
degree of filtration was dependent on the capacity of each 
research facility and the water quality at each intake site, 
ranging from 0.2 µm to 5.0 mm. At all locations, seawater 
was collected in the afternoons prior to anticipated spawning 
nights to remove any possibility of sperm contamination in 
the water.

Coral eggs were exposed to each sperm concentration in 
respective sperm baths of 200 mL for a precise contact time. 
The order that each contact time was tested was randomised 
for each trial to minimise bias. Following exposure, eggs 
were rinsed with a sodium lauryl sulphate (SLS) solution 
of 0.01 g L −1 filtered seawater (FSW) to deactivate sperm 
and prevent additional interactions, then were rinsed twice  
with FSW. SLS is a detergent and surfactant that can be 
used to denature proteins such as those in sperm (Allen and 
Hagström 1955). Six replicates, three from each egg donor 
colony, were conducted simultaneously per sperm concen-
tration and contact time interaction by attaching replicate 
groups to an apparatus which allowed movement in and out 
of their respective sperm baths at once (Fig. 1). Following 
experimentation, samples were fixed at the ~ 4-cell stage, 
3–4 h after exposure to sperm, using a 4% buffered forma-
lin solution in filtered seawater containing 10 g L−1 sodium 
β-glycerophosphate at a ratio of 1:4 fixative to sample, to 
prevent further embryogenesis. All samples were counted 
using a dissecting microscope to assess the proportion of 
fertilisation success at each level of interaction.

Statistical analyses

In the experiment, we used multiple replicates across a 
range of sperm concentrations, which were examined 
using replicated regressions in the statistical analyses 
(Cottingham et al. 2005). To estimate the relationships 
between proportional fertilisation success and sperm con-
centration and contact time, binomial generalised linear 
mixed models (GLMMs) were applied to each species, 
with the corrected sperm concentration treated as a contin-
uous numeric predictor and contact time as a categorical 
predictor. Individual egg donor colony number and obser-
vation number were each included as random variables to 
account for any additional variability caused by differences 
in individual reproductive capabilities, or individual treat-
ment meshes used in the experiment. Fertilisation success 
was examined as proportion data by binding the number of 
successes—i.e. fertilised eggs—and failures—i.e. unfer-
tilised eggs (Crawley 2007). Each species was analysed 
separately to evaluate any species-specific gamete inter-
actions during reproduction. Models were conducted in 
RStudio version 2022.07.2 (RStudio 2022) under R ver-
sion 4.2.2 (RCoreTeam 2022). The glmmTMB function 
was used from the glmmTMB package (Brooks et al. 2022) 
with diagnostics examined using the DHARMa package 
(Hartig and Lohse 2022).

Acropora digitifera and P. daedalea exhibited signs of 
nonlinearity which resulted in poor fits under the glm-
mTMB model framework. Therefore, binomial generalised 
additive mixed models (GAMMs) were applied to each 
with the corrected sperm concentration as a continuous 
numeric predictor, contact time as a categorical predictor, 
and a t2 smooth function to account for the interaction 
between them. Knot values were determined based on sen-
sitivity analyses of model fit and smoother accuracy com-
pared to the observed data. Individual egg donor colony 
number and observation number were included as random 
variables. The gamm4 function was used from the gamm4 
package (Wood and Scheipl 2022) with diagnostics exam-
ined using the gam.check function from the mgcv package 
(Wood 2023).

Mean values of GLMM and GAMM model fits and 
upper and lower limits were derived using the predict 
function for each species across the five contact time 
treatments. Effective Concentration values are commonly 
used in concentration–response modelling and were used 
to predict the sperm concentration that promoted fertilisa-
tion success of absolute 50% (EC50) (Albright and Mason 
2013; Nozawa et al. 2015). EC50s and 95% confidence 
intervals were derived from the predicted data by inter-
polation to aid in comparisons within and between spe-
cies. Replicated regressions were preferred because they 
provided more quantitative output metrics, such as EC50s, 
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that can also be used later downstream in ecological and 
risk-assessment modelling (Cottingham et al. 2005).

Results

For each species, fertilisation success significantly increased 
as sperm concentration and contact time increased (Fig. 2, 
Online Resource 1,2). Yet, the degree of change varied 
among species, denoted by the different slopes and func-
tional forms of each set of curves. In general, A. digitif-
era (Fig. 2c) and P. daedalea (Fig. 2d) had more nonlinear 
trends exhibited by steep slopes of increased fertilisation 
success once sperm concentration surpassed threshold val-
ues of 104 sperm mL−1 and 102 sperm mL−1, respectively. 

Fertilisation success increased predictably as contact times 
increased across all sperm concentrations in C. aspera 
(Fig. 2b) and A. digitifera (Fig. 2c). Similar trends in fer-
tilisation success were observed in A. tenuis (Fig. 2a) and 
P. daedalea (Fig. 2d) as contact times increased, although 
in most cases, fertilisation success converged on a similar 
range of values at sperm concentrations > 105 sperm mL−1 
and > 104 sperm mL−1, respectively.

For A. digitifera, fertilisation was minimal across the 
lower sperm concentrations < 104 sperm mL−1, increased 
slightly from 104 sperm mL−1 and peaked at < 105 sperm 
mL−1 with > 95% fertilisation success in the longest con-
tact time of 30 min (Fig. 2c). A. digitifera also exhibited 
gradual declines in fertilisation success at the highest sperm 
concentration (106 sperm mL−1) and longer contact times 

Fig. 1   Procedural flow chart outlining the spawning protocol and 
experimental design. Gamete bundles were first collected from the 
four spawning corals (1), then separated and rinsed (2). Sperm was 
counted using a haemocytometer and a serial dilution was performed 
to prepare treatments (3). Eggs from two donor colonies were pipet-
ted into treatment vials and attached to an experimental apparatus (4) 
where they were exposed to sperm for an explicit contact time (5). 

Following treatment, eggs were thoroughly rinsed with sodium lauryl 
sulphate (SLS), then twice with filtered seawater (FSW), to deactivate 
and remove sperm (6). Samples were fixed with a buffered formalin 
solution to preserve gametes and prevent additional cell division (7), 
then counted using a dissecting microscope to evaluate fertilisation 
success across treatments (8)
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(1 min, 10 min, 30 min). Similar trends were observed for 
P. daedalea with very low fertilisation at the lowest sperm 
concentrations, increasing from ~ 103 sperm mL−1, and 
reaching maximum fertilisation success at 104.5 sperm mL−1 
with > 75% fertilisation success observed in long and short 
contact times (Fig. 2d). At concentrations < 104 sperm mL−1, 
there is a clear distinction in fertilisation success between the 
shorter (≤ 1 min) and longer (≥ 10 min) contact times. There 
also appears to be a slight declining trend of fertilisation 
developing at higher sperm exposure for P. daedalea, but 
there is insufficient data at the upper sperm concentrations 
to disentangle this.

Acropora tenuis achieved the most fertilisation across 
contact times and had the largest variation in fertilisation 
values at each treatment (Figs. 2a, 3a). At shorter contact 
times, higher sperm concentrations (> 103 sperm mL−1) 
were required to promote fertilisation success, but greater 
increases in fertilisation were also observed as sperm 
concentrations increased. At the longest contact times, 

fertilisation success of 10–30% occurred at very low sperm 
concentrations, < 102 sperm mL−1, and steadily increased 
and stabilised at higher sperm concentrations of > 104 sperm 
mL−1 (Fig. 2a). For C. aspera, fertilisation was low at lower 
sperm concentrations and accelerated once sperm concen-
tration surpassed ~ 103 sperm mL−1. However, a more linear 
trend was observed during the 10 min contact time with 
roughly 5–10% fertilisation success at the lowest sperm 
concentration < 102 sperm mL−1, and marginally increasing 
in a cumulative fashion as sperm concentration increased. 
Maximum fertilisation was achieved at the highest sperm 
concentration tested, ~ 105 sperm mL−1, reaching a maxi-
mum of > 75% success in the longest two contact times of 
10 min and 30 min (Fig. 2b).

When comparing EC50 values across species, A. tenuis 
and P. daedalea required the least sperm to fertilise eggs, 
only requiring 103 sperm mL−1 to reach 50% fertilisation 
success at their longest contact times (Fig. 3a, d, Online 
Resource 3). Coelastrea aspera and A. digitifera both 

Fig. 2   Fertilisation success as a function of the interaction between 
sperm concentration and contact time for the four study species: (a) 
A. tenuis, (b) C. aspera, (c) A. digitifera and (d) P. daedalea. Each 
point signifies one replicate of the treatment at each level of interac-
tion (n = 6 per sperm concentration and contact time cross). The solid 

lines represent the mean of generalised linear mixed model fits at 
each contact time for (a) and (b), and the mean of generalised addi-
tive mixed model fits at each contact time for (c) and (d). Confidence 
intervals of 95% are visualised by the shaded regions
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required more sperm, > 104 sperm mL−1, to reach the 50% 
threshold at longer contact times and failed to reach this 
critical point at their shortest contact times of 10 and 30 s 
(Fig. 3b, c).

Discussion

Our analysis examined the complex interactions between 
sperm concentration and contact time on fertilisation success 
across four coral species common to the Indo-Pacific. Sperm 
concentration and contact time are critical factors which 
drive fertilisation success in corals, yet there is little previous 
information on how they collectively influence fertilisation 
kinetics across species. As predicted, our results show that 
when sperm concentration is low, more time is required for 
sperm to find eggs and fertilise successfully. Conversely, 
when sperm concentrations are higher, fertilisation is more 
likely to occur at shorter contact times due to the higher like-
lihood of gamete interactions at higher densities. However, 
reproductive relationships were nonlinear in some cases 
and differed across taxa, demonstrating species-specific 
nuances. Thus, the complex functional relationships defined 
will improve the overall understanding of fertilisation kinet-
ics across taxa and help inform in situ spawning outcomes 
to establish species-specific management and out-planting 

strategies (Boström-Einarsson et al. 2020), as well as ex situ 
spawning and nursery facilities (O’Neil et al. 2021), which 
promote coral resilience and conservation. Specialised man-
agement plans can be developed based on the coral density 
of a given reef or the target density of a proposed restoration 
project with the local hydrodynamic conditions to safeguard 
reproductive success and combat Allee effects.

Current findings for A. tenuis suggest that the species is 
more fertile than the other species examined due to higher 
fertilisation across contact times. Further, our results ech-
oed previous observations in the literature (Albright and 
Mason 2013; dela Cruz and Harrison, 2020; Ricardo et al. 
2015), with EC50 values ranging from 103–3.8 sperm mL−1. 
However, our results for A. tenuis had less drastic sigmoidal 
shaped curves at longer contact times compared to previous 
studies. One study has previously examined fertilisation of 
P. daedalea, and observed fertilisation success > 50% at 103 
sperm mL−1, similar to what was observed at 10 and 30 
min contact times in our study, but specific EC50 thresholds 
are unknown due to different experimental methods (Miller 
and Babcock 1997). Others using P. ryukyuensis (Nozawa 
et al. 2015), P. sinensis (Oliver and Babcock 1992), and P. 
acuta (Chui et al. 2014; Lam et al. 2015), observed similar 
overall trends, but variable EC50 values and higher maxi-
mum fertilisation success compared to this study. P. acuta 
from Hong Kong had low EC50 values of 102.5–3.8 sperm 

Fig. 3   The effective concentration (EC50) values at each contact 
time for the four study species: (a) A. tenuis, (b) C. aspera, (c) A. 
digitifera and (d) P. daedalea. Points represent the mean EC50 value 
and line length signifies  the 95% confidence intervals for each esti-

mate derived from model predictions based on the corresponding 
generalised linear mixed model fits at each contact time for (a) and 
(b) and the generalised additive mixed model fits at each contact time 
for (c) and (d)
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mL−1 (Chui et al. 2014; Lam et al. 2015), similar to P. dae-
dalea studied presently. Platygyra sinensis from the central 
GBR had a higher EC50 value of 104 sperm mL−1 (Oliver 
and Babcock 1992), while P. ryukyuensis from Taiwan had 
the highest EC50 value of 105.6 sperm mL−1 (Nozawa et al. 
2015) suggesting lower reproductive potential. However, it 
is important to note that few of the preceding studies have 
documented the explicit time that sperm and eggs were in 
contact prior to reporting, and it is likely that most interac-
tions were longer than our maximum exposure time. The 
longest contact time of 30 min from the present study was 
used to standardise the comparisons, but different method-
ologies across studies may contribute to apparent variation 
among species.

Similar to previous studies, our results indicate appar-
ent species-specific differences in fertilisation kinetics (dela 
Cruz and Harrison 2020; Nozawa et al. 2015). Differences 
in fertilisation kinetics across species are likely caused by 
varied traits that contribute to overall fecundity (Harrison 
and Wallace 1990; Kojis and Quinn 1984; Ward and Har-
rison 2000). For example, egg traits like size (Levitan 1993; 
Marshall et al. 2000) and quantity (Hall and Hughes 1996), 
sperm characteristics, like swimming speed (Morita et al. 
2006) and quantity (Teo et al. 2016) per bundle, and gamete 
longevity (Chui et al. 2014; dela Cruz and Harrison, 2020), 
are parameters known to influence fertilisation success and 
vary across species. Levitan (1993) found that species of 
sea urchins that produced larger eggs had higher fertilisa-
tion success at a given sperm concentration, but trade-offs 
existed because larger eggs require more energy, thus fewer 
can be produced. This trend is also observed in spawning 
corals when comparing acroporids to merulinids, where the 
former produce fewer eggs (n = 3–20 per egg-sperm bundle) 
that are larger (400–800 µm), while the latter produce sig-
nificantly more (n = 30–250 per egg-sperm bundle) smaller 
eggs (200–400 µm) (Álvarez-Noriega et al. 2016; Babcock 
et al. 2003; Madin et al. 2016). Such a dichotomy has likely 
evolved to benefit each group, respectively, while also delin-
eating their fertilisation kinetics and reproductive potential.

Our results suggest that larger egg sizes may promote 
higher fertilisation success in corals, since the acroporids 
A. tenuis and A. digitifera had higher maximum observed 
fertilisation success compared to the merulinids C. aspera 
and P. daedalea. However, the relationship between egg 
size and sperm concentration is complex and heavily reliant 
on many other interacting parameters, which likely explain 
more nuanced differences in fertilisation between the con-
geners A. tenuis and A. digitifera at lower sperm concentra-
tions. For example, such divergence in reproductive capacity 
of A. tenuis and A. digitifera may be a result of differences 
in evolved gamete compatibility or recognition faculties at 
low sperm concentrations. Similar congeneric variation has 
been observed among three sympatric species of sea urchins 

where gamete traits, species density and spatial distribu-
tion, seawater advection, and historical demographic traits 
all influenced fertilisation success (Levitan 1993). Under 
conditions of sperm limitation and sperm competition, fer-
tilisation kinetics and gamete traits in these species are likely 
to have evolved in response to demographic and ecological 
factors (Levitan et al. 2004). A more complete understanding 
of how gamete traits such as egg size affect fertilisation will 
require both modelling and in situ studies of fertilisation in 
corals (Levitan 2006).

Gamete recognition factors further complicate under-
standing of patterns in coral fertilisation among different 
species. Intra-specific sperm chemoattraction has been 
observed in several species, promoting the movement of 
sperm in the presence of conspecific eggs (Morita et al. 
2006). Sperm-egg recognition and binding abilities likely 
evolved across species in parallel based on localised con-
ditions (Levitan et al. 2004; Willis et al. 1997); thus, the 
efficiency of such mechanisms to promote fertilisation is 
expected to be variable.

Our results also demonstrate reproductive variability 
within species and treatments. This was most evident for A. 
tenuis, with high variability in fertilisation success at each 
contact time and sperm concentration interaction. Previous 
studies have observed high variability within P. daedalea 
(Miller and Babcock 1997), A. gemmifera, A. hyacinthus, 
F. abdita, and F. valensiennesi (Nozawa et al. 2015). Intra-
species differences in fertilisation are likely driven by vari-
ability in key gamete properties like egg size, sperm swim-
ming speed, and sperm binding capabilities (Babcock et al. 
2003; Morita et al. 2006; Moy et al. 2008). For example, 
the ranges of conspecific egg diameters have been observed 
to vary by > 100 µm for many species (Babcock et al. 2003) 
and similar variability has been observed for sperm swim-
ming speed (Morita et al. 2006). Such differences across 
individuals are expected to influence gamete interactions and 
fertilisation outcomes.

Declines in fertilisation success at the highest sperm 
concentrations observed for A. digitifera and P. daedalea 
are likely a result of polyspermy (dela Cruz and Harrison 
2020; Ritson-Williams et al. 2009) or low dissolved oxy-
gen (Oliver and Babcock 1992). Polyspermy occurs when 
multiple sperm fertilise an egg, resulting in developmental 
abnormalities or death (Brawley 1987; Fogarty et al. 2012; 
Gribben et al. 2014; Levitan et al. 2007). Polyspermy is less 
likely in acroporids due to specialised polyspermy blocks 
in eggs (Morita et al. 2006), therefore low dissolved oxygen 
may be a more probable explanation for the declines in ferti-
lisation in A. digitifera due to the high maximum sperm con-
centration examined in the respective trials. Polyspermy has 
been observed in the literature for P. sinensis, with declining 
fertilisation success starting > 106 sperm mL−1 (Oliver and 
Babcock 1992), so a similar trend may exist in P. daedalea. 



1359Coral Reefs (2023) 42:1351–1363	

1 3

More data at higher sperm concentrations and direct demon-
strations of polyspermy are required to establish the robust-
ness of these observations.

It is also well documented that fertilisation is particu-
larly vulnerable to external pressures like changes in pH 
(Leuchtenberger et al. 2022), thermal stress (Albright and 
Mason 2013; Bouwmeester et al. 2022; Henley et al. 2022; 
Humanes et al. 2017), nutrients (Harrison and Ward 2001; 
Lam et al. 2015; Ward and Harrison 2000), sedimentation 
(Erftemeijer et al. 2012; Humanes et al. 2017; Ricardo et al. 
2015), and local hydrodynamic mixing (Babcock 1995; Teo 
and Todd 2018). For ease of comparisons across study sites 
and species, some parameters, like pH, temperature, and 
salinity, have been controlled for by mimicking natal reef 
conditions. While others, like hydrodynamic mixing and 
water quality, have been eliminated by conducting experi-
ments in controlled laboratory settings. However, due to the 
spatial and temporal variability in natal reef characteristics, 
there were likely some minor differences across sites and 
spawning months that could influence reproduction and reef 
recovery in wild populations, thus potentially affecting out-
comes of laboratory trials.

At the population level, reproduction is highly sensitive 
to different types of disturbances and external influences, 
which can act on varying scales. Disturbances, like coral 
bleaching, can lower fecundity by reducing egg size and 
quantities and testes volume per polyp, as well as reduc-
ing the number of gravid, gamete-producing polyps in adult 
corals (Baird and Marshall 2002; Levitan et al. 2014; Ward 
et al. 2000). The latter could cause partial mortality that 
may force re-allocation of resources away from gamete pro-
duction (Kai and Sakai 2008), or full mortality across indi-
viduals during more serious events (Harriott 1985). Such 
circumstances have been observed on the GBR in the past 
four decades, owing to unprecedented disturbance regimes. 
Specifically, over 50% of coral cover has been lost between 
1985 and 2012 (De’Ath et al. 2012; Hughes et al. 2015), 
and coral recovery rates have fallen by an average of 84% 
from 1992 to 2010 (Ortiz et al. 2018). Recent reports by 
the Australian Institute of Marine Science (2022) highlight 
rapid post-bleaching recovery at many reef sites. Yet, this 
has been primarily observed from fast-growing acroporids 
(AIMS 2022), which suggests that species diversity and 
structural complexity may still be affected long term at many 
sites. Coral size frequency and density distributions have 
also been affected, which has significant repercussions for 
coral demographics (Dietzel et al. 2020; Edmunds and Riegl 
2020; Pisapia et al. 2020), specifically relating to reproduc-
tion and Allee effects.

Understanding the processes that promote and limit 
successful reproduction is crucial for informing manage-
ment decisions and potential restoration strategies that aim 
to maximise reef recovery. Informed metrics like optimal 

sperm concentrations and time required for insemination to 
occur are important for developing and optimising mass lar-
val culturing methods and laboratory systems that promote 
fertilisation (dela Cruz and Harrison 2020). These data are 
also required for the parameterisation of fertilisation kinetics 
models (Vogel et al. 1982) and larger scale coral spawning 
models (Teo and Todd 2018), which act as useful predictors 
of reproductive processes that are generally difficult to meas-
ure in situ. Further, upscaling these findings to determine 
a projected coral density that may optimise reproduction 
in situ could also act as a guide for restoration out-planting 
strategies to combat detrimental Allee effects.
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