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seasons, despite significant fluctuations in canopy structure 
and biomass. The resulting refinement of foraging speciali-
sations allows us to identify the functional roles of inver-
tivorous fishes and afford greater protection to individual 
species that might otherwise be considered functionally 
redundant. Our results will help to inform knowledge of the 
functional impact of particular species and their ecological 
specialisations and improve our understanding of trophic 
flows in marine food webs for appropriate management and 
conservation.

Keywords  Invertivore · Canopy forager · Abiotic 
forager · Canopy-forming macroalgae · Ecosystem 
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Introduction

In marine ecosystems, invertivorous fishes (i.e. species that 
primarily feed on invertebrates) can represent one of the 
dominant feeding guilds (Longo et al. 2019; Parravicini et al. 
2020). For example, nearly 70% of fish species on the Great 
Barrier Reef, Australia, have been classified as feeding pre-
dominantly on invertebrates (Randall et al. 1997; Kramer 
et al. 2015; Froese and Pauly 2021). The overall guild of 
invertivorous fishes comprises a diverse range of families, 
many of which are commonly fished (Sumner et al. 2002; 
Fulton et al. 2020; Froese and Pauly 2021). Invertivorous 
fishes have been shown to connect energy flows between 
primary producers and higher-order consumers, as they are 
predators that feed on invertebrates supported by primary 
production, but are themselves also the target prey of meso-
predatory piscivores and apex predators (Edgar and Aoki 
1993; Newcombe and Taylor 2010; Ashworth et al. 2014; 
Bergström et al. 2016; Froese and Pauly 2021). The trophic 
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links facilitated by invertivorous fishes therefore underpin 
fundamental processes of marine ecosystem functioning 
that can influence global recreational and commercial fish-
ery stocks (Lewis and Anderson 2012; Fulton et al. 2020; 
Froese and Pauly 2021).

The identification of essential habitats used by fishes 
is a critical step in the process of ecosystem-based fishery 
management of commercially and recreationally important 
species (Beck et al. 2001; Thrush and Dayton 2010; Wilson 
et al. 2017). Foraging behaviour is a key aspect of habitat use 
by fishes and can be documented as preferences relating to 
particular microhabitat types (Krajewski and Floeter 2011; 
Fulton et al. 2016; Kramer et al. 2016). For example, strong 
dependency on preferred microhabitats can lead to dramatic 
changes in the temporal and spatial dynamics of fish popu-
lations or communities following shifts in the availability 
of those preferred microhabitats. Local extinction of some 
coral reef fish species can occur when the corals they exclu-
sively prey on are no longer available (Westmacott et al. 
2000; Pratchett et al. 2018), and carnivorous fishes can also 
be vulnerable to the loss of preferred foraging microhabitats 
(Munday 2004; Wilson et al. 2008a; Wenger et al. 2018). In 
addition to that, documenting species’ microhabitat speciali-
sations is fundamental to defining their ‘ecosystem function’ 
in terms of positioning along the feeding niche resource axis 
(MacArthur 1958; Hutchinson 1959). The monitoring and 
management of marine ecosystems is increasingly based 
around the protection of critical functional groups (Green 
and Bellwood 2009; Graham et al. 2013; Villéger et al. 
2017), where a species’ ecosystem function is defined based 
on its ecological traits (Bellwood et al. 2019). This approach 
has led to the recognition that members of particular trophic 
groupings are not ecological equivalents. For example, on 
coral reefs, the group of fishes previously defined collec-
tively under the trophic status of ‘herbivore’ has now been 
carved up into many different ecosystem functions, based on 
factors such as mode of feeding (‘scrapers’ versus ‘excava-
tors’ (Bellwood and Choat 1990), ‘grazers’ versus ‘brows-
ers’ (Choat et al. 2002; Fox and Bellwood 2008; Green and 
Bellwood 2009; Hoey and Bellwood 2009) and ‘croppers’ 
(Green and Bellwood 2009) or on microhabitat preferences 
(‘crevice feeders’ versus ‘open matrix feeders’ (Fox and 
Bellwood 2013; Brandl and Bellwood 2014), ‘leaf-biters’ 
versus ‘thallus biters’ (Streit et al. 2015). This process of 
trophic group refinement into functional groupings can help 
to provide a more accurate assessment of ecosystem resil-
ience, by identifying species that perform unique ecosystem 
functions and yielding a more conservative estimate of the 
level of functional redundancy associated with the biodiver-
sity present within a particular community structure (Cheal 
et al. 2010, 2012; Rasher et al. 2013).

Within tropical seascapes, invertivorous fishes have the 
potential to exploit heterogeneous microhabitats to feed on 

epifaunal and infaunal invertebrates (Kwak et al. 2015; van 
Lier et al. 2018; Sambrook et al. 2019). Although strong 
microhabitat preferences of tropical invertivorous fishes 
driven by specific dietary targets have previously been doc-
umented (Lukoschek and McCormick 2001; Wilson et al. 
2008b; Wenger et al. 2018), most studies to date on the 
microhabitat utilisation of these invertivorous fishes either 
have focused on well-studied habitats, such as coral reefs, 
or have looked only at the microhabitat preferences of a sin-
gle species of invertivore (Layton and Fulton 2014; Brandl 
et al. 2015; Kramer et al. 2016; Wenger et al. 2018). Current 
knowledge of how the overall collective trophic grouping 
of invertivorous fish species demonstrate niche partitioning 
of their foraging microhabitats in non-reef habitats is lim-
ited. Theory would predict, however, that within the overall 
invertivore assemblage, individual species exploit different 
portions of the habitat space, exhibiting niche partitioning 
at a finer scale (Floeter et al. 2007; Berkström et al. 2012; 
Asher et al. 2017; Brandl et al. 2020). Knowledge of these 
microhabitat specialisations is therefore an important first 
step in defining the ecosystem function of species within the 
invertivore trophic guild.

One of the most common and productive non-reef habi-
tats within tropical seascapes is macroalgal meadows, com-
prised of canopy-forming macroalgae (Tano et al. 2016; Ful-
ton et al. 2020). These macroalgal meadows can extend over 
significant portions of shallow tropical marine habitats (esti-
mated between 16 and 46% of some shallow coastal areas, 
Fulton et al. 2019), forming complex habitat structures and 
contributing a large amount of areal primary production. 
This primary production supports communities of epifau-
nal invertebrates, which, in turn, provide nutrition for inver-
tivorous fishes (Edgar and Aoki 1993; Wenger et al. 2018). 
Recent studies have highlighted the fact that these macroal-
gal meadows and their associated epifaunal communities are 
important foraging grounds for invertivorous fishes (Chaves 
et al. 2013; Chen et al. 2020). Macroalgal meadows can, 
however, exhibit strong temporal shifts in canopy size (in 
terms of either overall biomass or the length of macroal-
gal thalli). In tropical regions, one of the typical temporal 
canopy shifts is canopy growth in summer and detachment 
in winter (Leite and Turra 2003; Wong and Phang 2004; 
Lefevre and Bellwood 2010; Fulton et al. 2014). Seasonal 
fluctuations in macroalgal canopy size therefore influence 
the availability of habitat, impacting the abundance and 
availability of associated epifaunal invertebrate communities 
(Taylor 1998; Leite and Turra 2003; Ba-Akdah et al. 2016), 
and the invertivorous fishes that prey on epifauna (Edgar and 
Aoki 1993; Fulton et al. 2019; Froese and Pauly 2021). How-
ever, we lack a basic understanding of the microhabitat pref-
erences of macroalgal-associated invertivorous fishes while 
foraging within macroalgal meadows, and how such foraging 
microhabitat preferences of individual invertivorous species 
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might respond to seasonal fluctuations in canopy size that 
are likely to affect the availability of epifaunal prey. This 
hinders our ability to understand spatial niche partitioning 
within this trophic group and the potential for within-group 
functional complementarity versus redundancy. The aims 
of this study were therefore: (1) to document the foraging 
microhabitat preferences of the dominant invertivorous fish 
species within macroalgal meadows of the world heritage 
Ningaloo Marine Park, Western Australia, and determine 
the potential for functional complementarity based on the 
microhabitat resource axis within this trophic group and (2) 
to examine how these microhabitat preferences respond to 
seasonal shifts in macroalgal canopy structure (summer to 
winter).

Methods

Study region

This study was conducted within the Maud Recreation 
Region of Ningaloo Marine Park near Coral Bay, situated 
in the north-west of Western Australia (Fig. 1). As Aus-
tralia’s largest fringing coral reef (~ 290 km long), shallow 
waters (3–5 m depth) in this area are dominated by canopy-
forming fucoids chiefly belonging to the genus Sargassum. 
These canopies form extensive macroalgal meadow patches 
covering over 300 km2, which exhibit strong seasonal fluc-
tuations in macroalgal biomass (Kobryn et al. 2013; Fulton 
et al. 2014; van Lier et al. 2018; Chen et al. 2020). A total of 

eight Sargassum meadow patches (size: 28,893 ± 11,627 m2) 
were surveyed during late austral summer (February–March) 
2018 to confirm the presence of invertivorous fishes and 
determine habitat composition (Fig. 1). Only four of these 
Sargassum meadow patches were reinvestigated during the 
austral winter (August–September) 2018 due to the dramatic 
seasonal decline of Sargassum canopy biomass (Fig. 1).

Habitat composition of macroalgal meadows

Habitat composition of each Sargassum meadow patch in 
summer and winter was documented via underwater vis-
ual censuses conducted by divers on SCUBA, following 
Lim et al. (2016). At each meadow patch, we haphazardly 
deployed six replicate 10-m transect tapes and recorded the 
distance along each transect (to the nearest 5 cm) occupied 
by three distinct habitat categories: (1) canopy macroalgae 
(leathery macrophytes with the canopy height can reach 
around 10–50 cm, and up to 1–2 m, e.g. Sargassum, Sar-
gassopsis), (2) understory macroalgae (foliose macrophytes 
without canopies, occupying the floor of meadows, e.g. 
Lobophora, Dictyota, Padina) and (3) abiotic components 
(e.g. pavement, sand, dead coral, rubble). Converting these 
distances to a proportion of the 10-m transect length gave us 
a percentage composition of the three habitat types within 
each meadow.

Foraging microhabitat preferences of invertivorous 
fishes

The use of individual foraging microhabitats by species of 
invertivorous fishes was recorded using underwater visual 
observations by divers on SCUBA. At each meadow patch 
during summer and winter, at least three instantaneous focal 
surveys were conducted (following Fulton et al. 2001) over 
8 days in summer and 5 days in winter. In brief, a single 
diver swam a random, non-overlapping path starting from 
the centre of each meadow patch out to the patch edge. Sur-
veys commenced 5 min after the diver had reached the patch 
centre to allow for fish to acclimate to diver presence. For 
each invertivorous fish observed to show direct foraging 
behaviour (following Wenger et al. 2018), we recorded the 
species identity, total length (TL, to the nearest cm), forag-
ing behaviour (searching/feeding) and microhabitat location 
(e.g. canopy macroalgae). Within these focal observations 
of direct foraging behaviour, ‘searching’ was strictly defined 
as the fish having its head inclined towards the particular 
microhabitat but without touching, while ‘feeding’ was 
defined by its mouth being in contact with the microhabi-
tat. Subsequently, ‘searching’ and ‘feeding’ in each season 
were pooled together for further analysis. To avoid problems 
associated with inferences based on low sample sizes/sites, 
during summer, only invertivorous species represented by 

Fig. 1   Map of study region and surveyed Sargassum meadow 
patches within Maud Recreation Zone of Ningaloo Marine Park near 
Coral Bay, Western Australia
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more than ten individuals per meadow patch and present on 
at least three meadow patches were included in subsequent 
analyses. During winter, we adjusted this rule to species rep-
resented by more than ten individuals per meadow patch and 
present on at least two of the four meadow patches surveyed. 
Foraging microhabitat preferences of each invertivorous fish 
species were determined using the electivity index formula 
of Vanderploeg and Scavia (1979):

where Ei
* is the electivity for microhabitat category i, n is 

the number of microhabitat categories and Wi is the selective 
coefficient for microhabitat category i calculated as:

where ri is the proportional use of the microhabitat category 
i and pi is the proportional availability of the microhabitat 
category i. Values of electivity indices (Ei*) range from −1 
to 1, with indication of avoidance (negative value), neutral-
ity (Ei* = 0) and preference (positive value) for a particular 
microhabitat. Electivity index of each species was averaged 
across patches within a given season to determine the pat-
terns of season-specific foraging microhabitat associations 
of individual invertivorous fishes in the Maud Recreation 
Region of Ningaloo Marine Park.

Results

Invertivorous fish communities

Based on 3207 individual foraging behaviour recorded 
(2538 in summer and 669 in winter, Supplemental 
Table S1), we observed a total of 36 invertivorous fish spe-
cies foraging within macroalgal meadows in the summer 
(34 species) and winter (24 species). Of these 36 species, 
12 species in summer and 5 in winter (Table 1) met our 
criterion for the analysis of foraging microhabitat prefer-
ences (Table 2). The majority of invertivorous fishes for 
whom we recorded foraging abundance (the number of 
individuals exhibiting foraging behaviour) belonged to 
the family Labridae (71% in summer, 75% in winter), fol-
lowed by Lethrinidae (17% in summer, 10% in winter) and 
Mullidae (11% in summer, 15% in winter). The 12 most 
abundant species were as follows: (1) Labridae: Anampses 
geographicus, Cheilio inermis, Coris caudimacula, Hali-
choeres nebulosus, Pseudojuloides elongatus, Stethoju-
lis bandanensis, Stethojulis interrupta and Thalassoma 
lunare; (2) Lethrinidae: Lethrinus atkinsoni and Lethrinus 
nebulosus; and (3) Mullidae: Parupeneus barberinoides 

(1)E∗
i
=

[

Wi− (1∕n)
]

∕
[

Wi + (1∕n)
]

,

(2)Wi =
(

ri∕pi
)

/(

∑

i

ri∕pi

)

,

and Parupeneus spilurus (Table 1). The number of spe-
cies and/or the total number of foraging individuals of 
each species declined in winter, which changed the com-
munity composition (in terms of foraging abundance) at 
each meadow patch (Table 2).

Table 1   Invertivorous fish species observed foraging within macroal-
gal meadows in the Maud Recreation Zone of Ningaloo Marine Park 
near Coral Bay, Western Australia. Species with a sufficient number 
of cases (see text) to calculate foraging microhabitat preferences dur-
ing each season are in bold

Family Species Number 
in sum-
mer

Number 
in winter

Balistidae Rhinecanthus aculeatus 4
Carangidae Gnathanodon speciosus 2
Labridae Anampses caeruleopunctatus 1 1

Anampses geographicus 135 56
Bodianus bilunulatus 1
Cheilinus bimaculatus 1
Cheilinus chlorourus 2 1
Cheilinus trilobatus 6
Cheilio inermis 221 93
Choerodon rubescens 1
Coris auricularis 2 2
Coris aygula 7
Coris caudimacula 360 90
Epibulus insidiator 1
Halichoeres nebulosus 165 67
Hemigymnus melapterus 1
Hologymnosus annulatus 2
Macropharyngodon ornatus 10 2
Pseudojuloides elongatus 160 15
Pteragogus enneacanthus 30 3
Pteragogus flagellifera 38 2
Stethojulis bandanensis 127 21
Stethojulis interrupta 182 33
Stethojulis strigiventer 3
Thalassoma lunare 264 87
Thalassoma lutescens 67 15
Xenojulis margaritaceus 30 10

Lethrinidae Lethrinus atkinsoni 216 16
Lethrinus nebulosus 181 20
Lethrinus variegatus 37 29

Mullidae Parupeneus barberinoides 110 13
Parupeneus indicus 10 6
Parupeneus spilurus 160 83
Upeneus australiae 1
Upeneus tragula 1

Nemipteridae Scolopsis bilineata 3
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Habitat availability and microhabitat use

Habitat composition in each meadow patch showed that 
canopy macroalgae was the dominant microhabitat in 
summer (Fig. 2a). In winter, patches shifted to be domi-
nated by the abiotic component due to the dramatic sea-
sonal decline in Sargassum canopy biomass (Fig. 2b). 
Invertivorous fishes used distinct microhabitats while for-
aging (Figs. 3, 4). During the summer, five invertivorous 

fishes (Anampses geographicus, Cheilio inermis, Coris 
caudimacula, Pseudojuloides elongatus and Thalassoma 
lunare) were observed foraging primarily within the can-
opy macroalgae compared with the understory macroal-
gae or abiotic components (Fig. 3a–e). The proportional 
use of canopy macroalgae was higher than its availability 
for these species, suggesting a strong foraging microhabi-
tat preference for canopy macroalgae. The opposite pat-
tern, which suggested a strong microhabitat preference for 

Table 2   Foraging abundance and community composition (%) of the 12 valid invertivorous fish species within each macroalgal meadow patch 
in the Maud Recreation Zone of Ningaloo Marine Park near Coral Bay, Western Australia, during summer and winter

Species MD01 MD06 MD10 MD17 MD18 MD20 MD21 MD26

(a) Summer
Anampses geographicus 12 (3%) 15 (4%) 4 (2%) 19 (8%) 18 (7%) 24 (9%) 16 (6%) 27 (11%)
Cheilio inermis 30 (9%) 36 (9%) 32 (13%) 23 (9%) 14 (6%) 27 (10%) 44 (17%) 15 (6%)
Coris caudimacula 54 (16%) 63 (16%) 53 (21%) 31 (12%) 45 (18%) 42 (15%) 35 (13%) 37 (15%)
Halichoeres nebulosus 20 (6%) 31 (8%) 12 (5%) 17 (7%) 15 (6%) 31 (11%) 20 (8%) 19 (8%)
Lethrinus atkinsoni 39 (11%) 41 (10%) 31 (12%) 22 (9%) 23 (9%) 13 (5%) 27 (10%) 20 (8%)
Lethrinus nebulosus 40 (12%) 27 (7%) 22 (9%) 20 (8%) 23 (9%) 14 (5%) 19 (7%) 16 (6%)
Parupeneus barberinoides 24 (7%) 44 (11%) 13 (5%) 8 (3%) 6 (2%) 0 (0%) 14 (5%) 0 (0%)
Parupeneus spilurus 29 (8%) 19 (5%) 24 (10%) 20 (8%) 21 (9%) 8 (3%) 18 (7%) 21 (8%)
Pseudojuloides elongatus 22 (6%) 32 (8%) 18 (7%) 12 (5%) 17 (7%) 13 (5%) 22 (8%) 24 (10%)
Stethojulis bandanensis 10 (3%) 26 (7%) 14 (6%) 21 (8%) 18 (7%) 16 (6%) 11 (4%) 11 (4%)
Stethojulis interrupta 22 (6%) 33 (8%) 12 (5%) 19 (8%) 15 (6%) 35 (13%) 19 (7%) 27 (11%)
Thalassoma lunare 44 (13%) 28 (7%) 15 (6%) 39 (16%) 32 (13%) 52 (19%) 20 (8%) 34 (14%)

Species MD01 MD06 MD18 MD21

(b) Winter
Cheilio inermis 13 (13%) 25 (27%) 19 (17%) 36 (30%)
Coris caudimacula 15 (15%) 21 (23%) 23 (20%) 31 (26%)
Halichoeres nebulosus 4 (4%) 15 (16%) 19 (17%) 29 (24%)
Parupeneus spilurus 13 (13%) 29 (31%) 28 (25%) 23 (19%)
Thalassoma lunare 58 (56%) 3 (3%) 25 (22%) 1 (1%)

Fig. 2   Habitat composition of 
each macroalgal meadow patch 
during a summer and b winter 
in 2018
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abiotic components, was found for Halichoeres nebulosus, 
Parupeneus barberinoides, Parupeneus spilurus, Stetho-
julis bandanensis and Stethojulis interrupta (Fig. 3h–l). 
Interestingly, these patterns of disproportionately using 

certain microhabitats were consistent for the four species 
(Cheilio inermis, Coris caudimacula, Halichoeres nebu-
losus and Parupeneus spilurus) observed in both seasons, 
with Thalassoma lunare as the only exception (Fig. 4).

Fig. 3   Foraging microhabitat use by invertivorous fishes in summer, 
as indicated by the proportional use relative to the proportional avail-
ability of three microhabitat categories: a Anampses geographicus, b 
Cheilio inermis, c Coris caudimacula, d Pseudojuloides elongatus, e 

Thalassoma lunare, f Lethrinus atkinsoni, g Lethrinus nebulosus, h 
Halichoeres nebulosus, i Parupeneus barberinoides, j Parupeneus 
spilurus, k Stethojulis bandanensis and l Stethojulis interrupta 
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Foraging microhabitat preferences of invertivorous 
fishes

Electivity indices revealed that invertivorous fishes forag-
ing within macroalgal meadows can be chiefly grouped into 

three categories of foraging specialisations: ‘canopy for-
ager’, ‘generalist’ and ‘abiotic forager’ (Figs. 5, 6). ‘Canopy 
foragers’ (i.e. those fish that search for prey and feed within 
macroalgal canopies) were overwhelmingly represented by 
Labridae, specifically the species Anampses geographicus, 

Fig. 4   Foraging microhabitat use by invertivorous fishes in winter, 
as indicated by the proportional use relative to the proportional avail-
ability of three microhabitat categories: a Cheilio inermis, b Coris 

caudimacula, c Thalassoma lunare, d Halichoeres nebulosus and e 
Parupeneus spilurus 

Fig. 5   Foraging preferences of common invertivorous fishes for three 
microhabitat categories (canopy macroalgae, understory macroalgae 
and abiotic components) averaged (± standard error) across eight 
meadow patches within Maud Recreation Zone of Ningaloo Marine 

Park near Coral Bay, during summer season 2018. Values of 0 indi-
cate neutrality, while positive and negative values indicate preference 
and avoidance, respectively
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Cheilio inermis, Coris caudimacula, Pseudojuloides elonga-
tus and Thalassoma lunare in summer (Fig. 5) and Cheilio 
inermis and Coris caudimacula in winter (Fig. 6). Notably, 
this positive preference for canopy macroalgae was consist-
ent across seasons, even in winter when there was signifi-
cantly lower availability of macroalgal canopy (Figs. 5, 6). 
The only exception was Thalassoma lunare, which showed 
foraging preferences for both canopy and understory mac-
roalgae in winter, indicating a shift from canopy forager 
to being a generalist when canopy macroalgae were less 
available (Fig. 6). Species belonging to the family Mullidae 
(Parupeneus barberinoides and Parupeneus spilurus in sum-
mer; Parupeneus spilurus in winter) as well as the labrid 
species (Halichoeres nebulosus, Stethojulis bandanensis and 
Stethojulis interrupta in summer; Halichoeres nebulosus in 
winter) were found to be ‘abiotic foragers’ (fish that search 
for prey and feed on pavement, sand, dead coral, rubble) 
(Figs. 5, 6). Finally, during summer, species belonging to 
the family Lethrinidae (Lethrinus atkinsoni and Lethrinus 
nebulosus) were found to be ‘generalists’, showing a posi-
tive electivity for foraging within both canopy macroalgae 
and on abiotic substrates (Fig. 5). However, none of these 
lethrinid generalist species were observed in sufficient num-
ber during the winter surveys. Interestingly, almost all the 
fish species (excluding Thalassoma lunare in winter) in this 
study showed a strong tendency to avoid foraging within 
understory macroalgae, despite its high availability within 
the macroalgal patches (Figs. 5, 6).

Discussion

This study presents the seasonal foraging abundance and 
foraging microhabitat utilisation of invertivorous fish com-
munities within tropical macroalgal meadows of Coral Bay, 
Ningaloo Marine Park, Western Australia. The family Labri-
dae were the most abundant invertivorous taxa that foraged 
within the macroalgal meadows, making up over 70% of 
our foraging observations, followed by the families Mullidae 
and Lethrinidae. Our study revealed that fishes categorised 
as ‘invertivores’ have distinct foraging microhabitat pref-
erences in canopy-forming macroalgal meadows and that 
individual species have different functional impacts within 
these systems. The invertivorous fish communities in this 
study can be divided into three categories of foraging spe-
cialists: ‘canopy forager’, ‘abiotic forager’ and ‘generalist’, 
based on their microhabitat preferences, highlighting a pre-
viously unappreciated aspect of functional complementarity 
within this particular trophic group. Surprisingly, almost all 
the invertivorous fish species avoided understory macroal-
gae while foraging, and this pattern was consistent between 
summer and winter, even though understory macroalgae are 
proportionally more available in winter.

Invertivorous fishes categorised as ‘canopy foragers’ in 
both summer and winter were from the family Labridae, 
whereas ‘generalists’ were from the family Lethrinidae in 
summer and a single labrid species in winter. The ‘abiotic 
foragers’ were from the families Labridae and Mullidae, 

Fig. 6   Foraging preferences of 
common invertivorous fishes for 
three microhabitat categories 
(canopy macroalgae, understory 
macroalgae and abiotic com-
ponents) averaged (± standard 
error) across four meadow 
patches within Maud Recrea-
tion Zone of Ningaloo Marine 
Park near Coral Bay, during 
winter season 2018. Values of 0 
indicate neutrality, while posi-
tive and negative values indicate 
preference and avoidance, 
respectively
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with the mullids exclusively recorded under this category, 
suggesting that the division of the microhabitat niche axis 
is likely to be based on sharing similar morphological traits. 
For example, for labrids that are canopy foragers, their char-
acteristically pointed snout and protruding canine teeth make 
it possible to flip the macroalgal blades to expose hidden 
epifaunal prey (Choat and Bellwood 1998; Froese and Pauly 
2021), whereas labrids, which are considered to have good 
swimming abilities (higher fin aspect ratio to body size), 
are more capable of escaping from potential predators that 
use canopies as ambush sites (Fulton et al. 2001; Willis and 
Anderson 2003; Hoey and Bellwood 2011). However, the 
potential relationships between morphological traits and 
behavioural specialisation need to be further investigated, 
as morphology traits such as fin aspect ratio and body size, 
are not necessarily related to taxonomy.

Recent studies have compared epifaunal communities 
between neighbouring habitats across latitudes and sea-
sons and found that epifaunal community structure can 
vary between habitats across microhabitat and seascapes, 
with strong seasonal fluctuations in their biomass driven 
by the availability of microhabitat (Chen et al. 2020, 2021; 
Fraser et al. 2020). In principle, this allows for assessment 
of whether differences in community composition between 
habitats translate either into differences in dietary target or 
nutritional quality. It is likely that particular dietary targets 
are more within communities at certain locations, driving 
specialisations in foraging microhabitat preferences of inver-
tivorous fishes. In our study, we were unfortunately unable to 
collect specimens for gut content analysis to verify potential 
dietary targets that might drive the division of the foraging 
habitat resource axis. However, this represents a profitable 
future direction of research to test whether the prey selection 
and dietary targets of invertivorous fish species vary with 
microhabitat in macroalgal meadows.

Although the taxonomic composition of foraging inver-
tivorous fishes in our survey varied seasonally, four of the 
five fish species which were observed foraging within the 
winter meadow patches showed consistent foraging micro-
habitat preferences in both seasons (Figs. 5, 6). This suggests 
that the observed microhabitat niche partitioning is likely 
to be based on real foraging specialisations, rather than just 
resulting from microhabitat crowding and resource competi-
tion in a given season. In our study, the foraging abundance 
of invertivorous fishes (in terms of individual or species) 
underwent dramatic declines in winter, associated with the 
extent of Sargassum canopy loss (Fig. 2, Tables 1, 2), indi-
cating that canopy foragers may move to adjacent habitats 
due to the local absence of preferred microhabitats. Previous 
studies have shown the periodical migration of fish assem-
blages within marine macrophytal habitats which undergo 
systematic and predictable seasonal fluctuations (Green et al. 
2009; Wilson et al. 2014; Lim et al. 2016). However, two 

canopy foraging labrid species ‘Cheilio inermis’ and ‘Coris 
caudimacula’ with large home range (72,000 m and 320 m, 
respectively, van Lier et al. 2018) continued to forage within 
the winter meadows, without moving to adjacent coral reefs, 
suggesting they are stronger habitat specialists than the other 
canopy foragers. Notably, one of the summer canopy forag-
ers, Thalassoma lunare, shifted to being a generalist that 
utilised both canopy and understory macroalgae in winter, 
indicating that this species changed its foraging microhabi-
tat preferences in response to fluctuations in the availability 
of favoured resources. However, this finding requires cor-
roboration as only two of the four surveyed meadow patches 
in winter were included in our analysis (Supplemental Fig. 
S1h).

Surprisingly, only two abiotic foraging species ‘Halicho-
eres nebulosus’ and ‘Parupeneus spilurus’ were observed in 
sufficient numbers to measure their foraging preferences in 
the winter meadow patches despite there being no equiva-
lent reduction in abiotic components compared with canopy 
macroalgae (so we did not expect to see a significant reduc-
tion in the foraging abundance of ‘abiotic foragers’ and ‘gen-
eralists’). This suggests that, for such non-canopy foraging 
species, macroalgal canopies may provide other important 
functions including nurseries for recruitment, or refuge from 
predators (Tano et al. 2017; Wilson et al. 2017). Once mac-
roalgal canopies start to dieback, these satellite functions 
might be lost, meaning that generalists and abiotic foragers 
are forced to move to adjacent habitats.

Almost all the fish species documented in the current 
study showed a strong tendency to avoid foraging on 
understory macroalgae. This accords with previous studies 
of the foraging behaviour of individual fish species within 
macroalgal meadows (herbivorous Leptoscarus vaigiensis: 
Lim et al. 2016; invertivorous Xenojulis margaritaceus: 
Wenger et al. 2018). Potential factors that may discour-
age invertivores from foraging in the understory include: 
(1) nutritional differences and/or differences in taxonomic 
structure of epifaunal prey communities between the two 
microhabitats and (2) differential predation threat in the 
two microhabitats. Previous studies have suggested that 
canopy macroalgae are able to harbour a greater biomass 
of epifaunal invertebrates and/or to provide better qual-
ity of shelters than non-canopy species due to their more 
complex structure (Taylor and Cole 1994; Cacabelos et al. 
2010; Carvalho et al. 2018; O’Brien et al. 2018). Hence, 
the understory macroalgae at Ningaloo Reef may represent 
a poorer dietary resource for invertivorous fishes. Interest-
ingly, this pattern of avoidance of understory macroalgae 
was weaker in winter (Figs. 6, Supplemental Fig. S1), sug-
gesting that understory macroalgae are a less undesirable 
habitat when canopy macroalgae are scarce.

Previous studies have already shown that environmental 
changes (either seasonal fluctuations or climate anomalies) 
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can lead to the extensive loss of macroalgal canopy cover 
and can be replaced by less-complex algal species (Feng 
et al. 2013; Graba-Landry et al. 2020; Figueiredo et al. 
2020; Chen et al. 2021). Given that future disturbance 
induced by climate change (e.g. extreme weather events, 
thermal anomalies) will become more frequent and more 
intense, a reduction in invertivorous fish abundance within 
canopy macroalgal meadows can be expected. This could 
dramatically reduce fishery production underpinned by 
the trophic links facilitated by invertivorous fishes, and 
an overall decline in trophic interactions by invertivorous 
fishes across all latitudes due to climate-driven thermal 
events has been predicted (Inagaki et al. 2020).

The refinement of foraging specialisations of invertivo-
rous fishes based on foraging microhabitat preferences that 
we have presented here will aid future studies to iden-
tify the specific functional roles of invertivorous fishes 
and how these relate to ecosystem functioning, to yield 
a more conservative estimate of the level of functional 
redundancy within the ecosystem. This information will 
be important for management actions going forward. For 
example, over-exploitation of species that all fall within 
the ‘canopy forager’ role is likely to have consequences for 
top-down control of epifaunal invertebrate communities 
and cascading effects on primary producers. Moreover, as 
the foraging microhabitat preferences of invertivorous fish 
species are unravelled further, particular species may be 
found to play a unique role in facilitating particular trophic 
links between organisms. For example, previous studies of 
invertivorous fishes in the canopy macroalgal meadows 
of Ningaloo have tended to focus on fishery or recrea-
tional targets, especially fishes from the family Lethrinidae 
(Westera 2003; Wilson et al. 2010, 2014, 2017). However, 
due to the consistency of their abundance and foraging 
microhabitat preferences across seasons, canopy foragers 
such as the labrids are also likely to be vital components 
of macroalgal meadow ecosystems. As these ecosystems 
come under pressure from climate change (Smale and 
Wernberg 2013; Straub et al. 2019; Graba-Landry et al. 
2020), the predicted range contractions of canopy mac-
roalgal meadows will impact on associated invertivorous 
fish communities, especially on canopy specialists. Future 
research should examine the potential implications of loss 
of macroalgal meadow habitats for ecosystem dynamics, 
based on the refinements to functional specialisations of 
the species presented here.
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