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Abstract The brooding reef-building octocoral Heliopora

is widespread on Indo-West Pacific reefs and appears to be

relatively resistant to thermal stress, which may enable it to

persist locally while scleractinians diminish under

Anthropocene conditions. However, basic physiological

measurements of ‘‘blue corals’’ are lacking and prevent

their inclusion in trait-based studies. We address this by

quantifying rates (mean ± SE) of linear extension

(0.86 ± 0.05 cm yr-1) and skeletal density

(2.01 ± 0.06 g cm-3) to estimate calcification rates

(0.87 ± 0.08 g cm-2 yr-1) for the small branch-

ing/columnar morphology of Heliopora coerulea. We

postulate that H. coerulea may become an increasingly

important reef-builder under ocean warming due to its

relative resistance to thermal stress and high skeletal den-

sity that make colonies less vulnerable to storm damage

under ocean acidification. Moreover, Heliopora corals are

likely dispersal limited suggesting they may be an under-

appreciated genus for restoration of stress-tolerant reef-

building capacity on degraded reefs.
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Introduction

Calcium carbonate production represents one of the core

functions of coral reef ecosystems (Brandl et al. 2019) and

can be approximated from estimates of benthic cover and

taxa-specific calcification rates as part of census-based

coral reef carbonate production budgets (Perry et al. 2012).

While notable efforts have advanced estimates of carbonate

production states through the aggregation of publicly

accessible coral linear extension, skeletal density, and

calcification rate data (e.g., Perry et al. 2012; Madin et al.

2016), basic physiology measurements of the reef-building

octocoral genus Heliopora are largely absent from these

databases. To the best of our knowledge, these are limited

to rates of lateral overgrowth of 2.1 ± 0.9 cm yr-1 for H.

coerulea over Porites spp. corals reported by Guzman et al.

(2019) and a solitary H. coerulea calcification rate estimate

of 0.48 g cm-2 yr-1 (by Planck et al. 1988 in Ryan et al.

2019) in the scientific literature.

Widely distributed across the Indo-Pacific, Heliopora

corals are distinct in that they represent the only known

genus of hermatypic octocorals (Zann and Bolton 1985).

Often termed ‘‘blue corals’’ owing to the incorporation of

iron salts into their skeletal aragonite, Heliopora are gen-

erally typified by their iconic blue skeletons (Hill 1960;

Richards et al. 2018). Heliopora coerulea was considered

the only extant species, but recent genetic evidence has

suggested cryptic speciation within H. coerulea between

small and flat branching morphologies (Yasuda et al. 2014)

that have asynchronous reproductive timing (Villanueva
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2016). Heliopora hiberniana was also recently described in

north Western Australia (Richards et al. 2018). Interest-

ingly, Heliopora appears to have higher optimal tempera-

ture ranges compared to many scleractinian corals as

evidenced by apparent range retractions during periods of

cooling (Zann and Bolton 1985), high degree of bleaching

resistance and resilience during recent thermal stress events

(Kayanne et al. 2002; Donner et al. 2010; Phongsuwan and

Changsang 2012; Harii et al. 2014; Richards et al. 2018;

Guzman et al. 2019; Ryan et al. 2019), apparent increasing

competitive advantage in warmer waters (Atrigenio et al.

2020), and growth rates that increase with seawater tem-

peratures up to at least 31 �C (Guzman et al. 2019). H.

coerulea also contributed to the maintenance of positive

coral reef carbonate production states following a coral

bleaching event (Ryan et al. 2019), providing further evi-

dence that H. coerulea may become increasingly important

reef-builders under ongoing ocean warming.

Owing to the absence of basic physiology data for He-

liopora corals, it remains unclear how the increasing rel-

ative abundance of Heliopora corals may impact coral reef

geo-ecological functions under ongoing ocean warming

and acidification. In this study, we quantify linear exten-

sion and skeletal density to estimate morphology-specific

calcification rates to fill these gaps in the trait-based coral

literature and speculate as to the role of Heliopora coerulea

as an emerging reef-builder and potential restoration target

in the Anthropocene.

Methods

Linear extension

Large and small Heliopora coerulea fragments (n = 100)

of mean ( ± SE) initial planar area of 22.3 ± 1.5 cm2

(n = 50 large fragments) and 5.2 ± 0.2 cm2 (n = 50 small

fragments) were used to estimate linear extension rates

from repeated measures of height through time. All

fragments represented the small branching/columnar mor-

phology sensu Yasuda et al. (2014) and Villanueva (2016)

(Fig. 1a). Fragments were sourced from 25 independent

colonies (four fragments per colony) and epoxied (Pioneer

Epoxyclay AquaTM) onto replicate calcium carbonate

substrates (locally aquacultured Tridacna gigas shells)

mounted on plastic mesh frames between mid-December

2005 and mid-January 2006 in five replicate plots at

2.9–3.4 m depth within the lagoon north of Silaqui Island,

Philippines (16�26022.000N 119�56037.800E). All linear

extension data presented here were collected as part of a

larger experiment to examine coral growth and survival

rates (e.g., see Guest et al. (2011) for further details on

study design and photographs of outplanted corals). Linear

extension was determined from repeated caliper (preci-

sion = 0.1 mm) measurements of fragment height on six

occasions in February, May, and October 2006, April and

September 2007, and finally in May 2008. Over the *
2.25 years of the study, none of the 100 fragments suf-

fered mortality, but two were either broken or became

unattached, so only prior growth was recorded. Linear

extension (cm yr-1) was estimated from the least squares

regression line slope of height (cm) vs. time (yr) from each

survey for each fragment to make use of the six repeated

height measurements for each fragment and minimize

effects of individual measurement error.

Skeletal density

In the absence of direct, contemporaneous skeletal density

measurements on the outplanted Heliopora coerulea frag-

ments, we used three specimens collected from the Fed-

erated States of Micronesia in 1967 and preserved in the

Scripps Institution of Oceanography Benthic Invertebrate

Collection (i.e., SIO-BIC Co151, Co276, Co277) (Fig. 1b)

to quantify H. coerulea skeletal density and estimate cal-

cification rates. Archimedes’ principle was used to deter-

mine bulk skeletal densities (g cm-3) from the mass of

skeletal material (g) divided by the volume of water dis-

placed (cm3) (Jokiel et al. 1978; Morgan and Kench 2012).

The mass of each skeletal fragment was determined via

direct measurement of the dry skeleton. The volume of

displaced water for each respective skeletal fragment (cm3)

was determined via the seawater equation of state (i.e.,

R package seacarb; Gattuso et al. 2020) using the mass (g),

temperature (�C), and salinity (ppt) of the displaced water

upon submergence of the skeleton in deionized water. We

assumed that H. coerulea skeletal voids were small and

poorly connected with minimal influence on bulk skeletal

density measurements and therefore did not dip the speci-

mens in paraffin wax prior to displacement in water

(Bucher et al. 1998). Mass was determined via an Ohaus

Scout SPX422 balance (precision = ± 0.01 g) that was

Fig. 1 a Heliopora coerulea from Bolinao, Philippines showing the

typical light brown coloration of living colonies. Photograph by JR

Guest. b Heliopora coerulea skeletal specimen from the Scripps

Institution of Oceanography Benthic Invertebrate Collections (SIO-

BIC Co276) showing the iconic blue skeletal coloration. Photograph

by TA Courtney
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verified for accuracy with a calibration weight prior to

measurements. A YSI Pro 2030 was used to measure

temperature (precision = ± 0.3 �C) and salinity (preci-

sion = ± 0.1 ppt). Skeletal densities were compared to

recent bulk skeletal densities of Indian Ocean scleractini-

ans determined using analogous methods (Morgan and

Kench 2012).

Calcification rates

The scaling of coral calcification rates represents a con-

siderable ongoing challenge owing to the three-dimen-

sional structural complexity of coral skeletons, so we used

methods analogous to Morgan and Kench (2012) to directly

compare our estimated calcification rates to those of that

study. The small branching/columnar H. coerulea speci-

mens in this study most closely approximated the Pocil-

lopora meandrina submassive morphology from Morgan

and Kench (2012), so we used the adjustment coefficient of

0.5 for that species to account for the open space in our

estimates of H. coerulea. We therefore estimated mean

( ± SE) H. coerulea calcification rates from the product of

linear extension, skeletal density, and the 0.5 adjustment

coefficient following Morgan and Kench (2012).

Results and discussion

Linear extension

Mean ( ± SE) linear extension did not differ significantly

between the large (0.88 ± 0.08 cm yr-1) and small

(0.83 ± 0.06 cm yr-1) fragments (two-sample t-test,

p = 0.531), so we calculated the mean ( ± SE) linear

extension rate for all H. coerulea fragments (n = 100).

This rate (0.86 ± 0.05 cm yr-1) was lower than the

extension rates of 2.1 ± 0.9 cm yr-1 reported for H.

coerulea laterally overgrowing massive Porites spp. by

Guzman et al. (2019). It is unlikely that environmental and/

or genotypic controls caused these differences in growth

rates (Pratchett et al. 2015) as the data were collected from

approximately the same study locations (Bolinao, Philip-

pines). We posit that these differences were most likely due

to measurements of linear extension of skeletal branches

(this study) versus lateral extension of a thin veneer of

encrusted skeletal material over massive Porites spp.

(Guzman et al. 2019). Our mean ( ± SE) extension rate of

0.86 ± 0.05 cm yr-1 for H. coerulea is less than the

branching, corymbose, digitate, and massive scleractinians,

similar to submassive scleractinians, and greater than

mushroom and encrusting scleractinians observed by

Morgan and Kench (2012) (Fig. 2).

Skeletal density

Mean ( ± SE) skeletal densities for Heliopora coerulea of

2.01 ± 0.06 g cm-3 in this study were higher than any of

the scleractinian skeletal densities observed by Morgan and

Kench (2012) (Fig. 2). Ocean acidification (OA) threatens

to reduce scleractinian coral skeletal density, which could

lead to increased breakage of coral skeletal materials and

decreased reef-building capacity (Hoegh-Guldberg et al.

2007). Whether distinct differences in the skeletal mor-

phology of H. coerulea may confer some resilience to OA

by these reef-building octocorals remains to be tested

(Atrigenio et al. 2020). Regardless, the comparatively

higher skeletal density of H. coerulea relative to its scler-

actinian morphological counterparts suggests that H.

coerulea skeletons could be more resistant to such physical

breakage under OA. However, we cannot rule out the

possibilities that slight differences in methodologies (i.e.,

omission of paraffin wax dip in this study) or that Helio-

pora skeletal densities were indeed higher in 1967 and

have since decreased under ongoing environmental change,

so further research remains necessary to test any hypoth-

esized resiliency of Heliopora corals and their skeletal

components to environmental change.

Calcification rates

Mean ( ± SE) estimated calcification rates for Heliopora

coerulea were 0.87 ± 0.08 g cm-2 yr-1 for the small

branching/columnar morphology investigated in this study

(Fig. 2). This rate is greater than the solitary calcification

rate estimate of 0.48 g cm-2 yr-1 for H. coerulea by

Planck et al. (1988) in Ryan et al. (2019), which may in

part be due to differences in methodologies and/or mor-

phologies between the previous measurement and this

study. Notably, H. coerulea calcification rates are less than

those for branching, corymbose, digitate, and massive

scleractinians, in general agreement with rates for sub-

massive morphologies, and are greater than mushroom and

encrusting scleractinian calcification rates by Morgan and

Kench (2012) (Fig. 2). While variability in calcification

rates through space and time (Pratchett et al. 2015) con-

found a more direct comparison of calcification rates

between taxa, these estimates nonetheless suggest that

offsetting slower linear extension and higher density

skeletal material of H. coerulea generate carbonate pro-

duction rates similar to other reef-building scleractinian

taxa.
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Implications for reef building and restoration

in the Anthropocene

Owing to their higher degree of resilience to thermal stress

anomalies and apparent increasing ability to outcompete

scleractinians under ocean warming, Heliopora corals may

become increasingly abundant reef-builders (Kayanne et al.

2002; Donner et al. 2010; Phongsuwan and Changsang

2012; Harii et al. 2014; Richards et al. 2018; Guzman et al.

2019; Ryan et al. 2019; Atrigenio et al., 2020). Interest-

ingly, Heliopora tends to form dense aggregations and may

be dispersal limited owing to benthic planulae that settle

near the parent colony (Zann and Bolton 1985; Harii et al.

2002). We posit that outplanting of stress-tolerant reef-

building Heliopora corals to degraded reef systems within

its current geographic range may enable restoration of

structural complexity and calcium carbonate production to

select reefs. However, such restoration strategies could

inhibit growth and/or recruitment by scleractinian corals

(Atrigenio et al. 2017; Guzman et al. 2019; Atrigenio et al.

2020) and should therefore critically evaluate any potential

resulting consequences as part of a broader decision-mak-

ing framework (National Academies of Sciences 2019).

We conclude that Heliopora corals warrant further research

as potentially emerging reef-builders and target taxa for

restoration and adaptation efforts in the Anthropocene.

Supplementary InformationThe online version contains

supplementary material available at https://doi.org/10.1007/s00338-

021-02137-3.
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