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Abstract Coral reefs are renowned for the complexity of

their habitat structures and their resulting ability to host

more species per unit area than any another marine

ecosystem. Dedicated cleaner fish, which acquire all their

food resources through client interactions, rely on both the

habitat structures (by using topological cleaning stations)

and the wide diversity of fish species available on coral

reefs, to function. As a result of natural and anthropogenic

threats, coral reef habitat structures and their complexity are

being lost—despite this threat it is unclear how important

reef geometry is to key ecological interactions, like clean-

ing. Using an established Caribbean reef study site, three-

dimensional constructions of discrete coral heads were used

to investigate how fine-scale structural complexity traits

(structural complexity—measured by rugosity and vector

dispersion—height, volume, surface area, percentage live

coral cover and refuge availability) relate to cleaner occu-

pancy, abundance and their cleaning interactions with cli-

ents. Coral height was a particularly important trait for

cleaning, correlating with both the occurrence of cleaning

stations on a reef, and with increased cleaning durations and

reduced cleaning frequencies/rates. Cleaning stations were

also more structurally complex than non-cleaning coral

heads, and the increased availability of uneven surfaces

(creating cracks and crevices) and refuge availability linked

with increased cleaning durations/rates. By understanding

habitat features important to cleaner fish on a typical Car-

ibbean fringing reef, we can gain a better understanding of

how important reef geometry might be for governing the

occurrence and dynamics of such mutualisms.
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Introduction

Coral reefs are renowned for their complex physical three-

dimensional structure (termed structural complexity; Gra-

ham and Nash 2013). Scleractinia stony corals, which

produce hard exoskeletons, are ecosystem engineers, and

are largely responsible for the structural complexity of

coral reefs (Jones et al. 1994; Wild et al. 2011). Corals’

high structural complexity creates a plethora of different

microhabitats (Crowder and Cooper 1982), ultimately

creating one of the most diverse and abundant habitats in

the world (on par with rainforests; Reaka-Kudla 1997).

Within a reef environment, different microhabitats influ-

ence the spatial distribution of species (Tolimieri 1995)

since many species show specific microhabitat preferences

(Booth and Wellington 1998; Majoris et al. 2018a), exhibit

high site fidelity (Streit and Bellwood 2018) and form close

associations with certain microhabitat types (Boström-
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Einarsson et al. 2018). However, finer scale variations in

coral morphology (e.g. height and substrate heterogeneity)

may also promote finer scale differences in species spatial

distributions as a result of altered microhabitat—a concept

which so far has received little attention in coral reef lit-

erature. Since coral structural complexity is under threat

from anthropogenic climate change and industrialism

(Munday 2004), it is vital to determine the importance of

small-scale variation in coral morphology for reef species.

Structural complexity can influence the outcomes of

ecological interactions (e.g. predation; Crowder and

Cooper 1982; Grabowski 2004, competition; Petren and

Case 1998, and herbivory; Vergés et al. 2011), with the

magnitude of the effect potentially varying with the degree

of complexity (Grabowski 2004). This hypothesis is

intriguing and may help further our understanding of the

dynamic nature of a classic mutualistic relationship; clea-

ner-client interactions, which are ubiquitous on coral reefs

(White et al. 2007). Cleaning involves a cleaner removing

parasites and debris from the body of another species,

termed a client (Feder 1966). Dedicated cleaner fish gain

all their nutrition from client derived material (formerly

termed obligate; Vaughan et al. 2017) and associate

strongly with cleaning stations. Cleaners wait at their

cleaning stations for clients to visit them, and it has been

shown that associating with a cleaning station, rather than

wandering across a reef, promotes increased cleaning

interactions (Oates et al. 2010; Dunkley et al. 2018).

Despite a wealth of knowledge on the ecology of cleaner-

client interactions, microhabitat characteristics of cleaning

stations are poorly defined. Stations can be cryptic and

have been referred to as ‘particular ecological situations’

(Limbaugh 1961; Youngbluth 1968), which may include

corals, anemones or sponges, collection of rocks, and or

depressions in the benthos (Limbaugh 1961; Losey 1974;

Johnson and Ruben 1988; Sazima et al. 1999; Cheney and

Côté 2001; Huebner and Chadwick 2012). Since substrate

type can influence the frequency and duration of cleaning

interactions (e.g. coral versus sponge; Whiteman and Côté

2002), in addition to the fine-scale distribution, movement,

density and diversity of potential clients (Ferreira et al.

2001; Graham and Nash 2013; Ferrari et al. 2018), loca-

lised variation in coral morphology may also be expected

to influence localised variations in cleaning dynamics.

Traditional methods for quantifying structural com-

plexity, like the chain/tape transect method and Habitat

Assessment Scores (Gratwicke and Speight 2005; Wilson

et al. 2007) are now being replaced by digital three-di-

mensional modelling. Such modelling allows for the in

silico quantification of habitat complexity traits (e.g. sub-

strate heterogeneity, measured as rugosity and vector dis-

persion; Storlazzi et al. 2016; González-Rivero et al. 2017;

Young et al. 2017, volume and surface area; Ferrari et al.

2017; Raoult et al. 2017, coral cover; González-Rivero

et al. 2017, and coral growth; Lange and Perry 2020),

which provides finer scale measurements for addressing

ecological questions (Storlazzi et al. 2016). Indeed, these

techniques have already advanced our understanding on the

relationships between varying structural complexity traits

and reef fish assemblages (Price et al. 2019) and identified

microhabitat types that promote invasive lionfish (Pterois

volitans) aggregations in the Caribbean (Hunt et al. 2019).

The high resolution of such techniques will facilitate the

quantification of finer scale variations in coral morphology

within a reef environment.

Here, we investigated how different coral morphologies

of Faviidae corals, a common group of Caribbean corals,

promote variation in the occupancy and cleaning patterns

of the predominant dedicated Caribbean cleaner, the shar-

knose goby (Elacatinus evelynae). Using a structure-from-

motion approach (Reichert et al. 2016; Ferrari et al. 2017;

Young et al. 2017), we constructed three-dimensional

models of discrete Faviidae coral heads on a reef in Tobago

and quantified different microhabitat traits (e.g. rugosity,

height and volume). We then determined whether these

different traits distinguished coral heads utilised as clean-

ing stations versus those that have never been observed as

cleaning stations across 8 years of long-term study (see

Dunkley et al. 2019b). Subsequently, for cleaning station

coral heads, we tested the hypotheses that microhabitat

features link to cleaner occupancy distributions and

cleaning behaviours (in terms of frequencies, durations and

rates). Together, this study aimed to quantify what micro-

habitat features may define (or not) a cleaning station.

Materials and methods

Study site, occupancy and behavioural observations

The study was conducted on Booby Reef in Man O’ War

Bay, Tobago (11�19.3440N, 060�33.4840W). The site con-

stitutes a fringing reef dominated by non-branching brain

coral species (Faviidae), areas of patchy sand, remnants of

dead elkhorn (Acropora palmata) and staghorn (Acropora

cervicornis) corals. For this study, sharknose goby (Ela-

catinus evelynae) cleaning stations were defined as specific

localities on the reef used by cleaners for performing their

cleaning activities: all cleaning stations were based upon

Faviidae coral heads. Corals were not identified to a spe-

cies level due to the difficulties associated with visual

species-level identification (Todd 2008; Forsman et al.

2009). Within a 70 m by 60 m section of the reef, known

cleaning station coral heads (from 8 years of long-term

study; Dunkley et al. 2019b, n = 55 cleaning stations) were

marked, along with an additional 12 control Faviidae
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corals. These control corals have never been observed to be

occupied by cleaners across 8 years of long-term study at

this site (long-term study detailed in Dunkley et al. 2019b).

Cleaner abundance at cleaning stations was quantified

using presence/absence surveys (n = 1549 surveys,

mean ± S.E. surveys per cleaning station = 28.16 ± 1.34)

over a 6-week period in May–July 2016 by daily snorkel-

ling between the hours of 0830 and 1730 h. For each sur-

vey, observers (n = 6) searched for cleaners at a marked

coral head, and in the close vicinity (* 2 m3 area), for up

to 2 min—individual cleaners show strong site fidelity to

their cleaning stations (Whiteman and Côté 2002; Harding

et al. 2003). A cleaner occupancy value was subsequently

assigned to each cleaning station—cleaner occupancy was

defined here as the proportion of observations where one or

more cleaners were present at the station (range: 0–1).

Between presence/absence surveys, data were also col-

lected on the cleaners’ cleaning behaviour using 10 min

focal observations (n = 223 observations, mean number

observations per cleaning station across 34 cleaning sta-

tions ± S.E. = 6.56 ± 0.52, range: 3–13 observations per

station). For each observation, stations were randomly

sampled throughout the day and one cleaner was randomly

selected from their coral head, and we recorded the dura-

tion and frequency of cleaning interactions with clients.

Cleaning frequencies, durations and cleaning rate were thus

used as a measure of cleaning behaviour. The frequencies

and durations represent the total effort in cleaning whilst

rates represent this effort per cleaning time (i.e. total

cleaning frequency/total cleaning duration). Although cli-

ents tolerate closer human approaches when being cleaned

(Giglio et al. 2020), snorkelers maintained a 1 m distance

from the cleaners during observations.

Three-dimensional digital coral data collection

To create three-dimensional models of the cleaning stations

(n = 55) and control corals (n = 12), video footage was

collected with underwater cameras (Olympus GT-4)

mounted on monopods, using 1080p resolution and med-

ium sharpness. The physical boundaries of a station were

defined as discrete coral head(s) that were not connected to

other reef sections (Fig. 1). Filming occurred under ambi-

ent light, whilst snorkelling at depths of 1–3 m. At each

cleaner station, a cube (6.4 cm3) was placed adjacent to the

coral to serve as a scale. The filming process (adapted from

Gutierrez-Heredia et al. 2016) was carried out by swim-

ming slowly, in a spiral motion, starting from the top of the

coral and moving down towards the base at the seabed

whilst changing the camera angle from (1) top-down

(parallel to the seabed), (2) at 45 � to the coral and seabed,

and (3) planar to the coral. To capture fine-scale spatial

features of the coral the filming procedure was repeated for

each coral head (station and controls) at two different

distances: firstly, with the whole coral in full frame, and

then, secondly, moving closer (* 50 cm from the coral).

This videoing process was repeated three times for each

coral to obtain clear, un-obstructed frames in 360 �, thus
accounting for error in videos from obstruction from

floating debris and marine life. The duration of each video

correlated with the size of the coral head: larger corals

were filmed for longer. This created more images for

Fig. 1 3D digital workflow to

show quantification of a control

and sharknose goby (Elacatinus
evelynae) cleaning station coral

microhabitat traits on Booby

Reef, Man O’ War Bay,

Tobago: (1) In vivo filming, (2),

assembled into mesh chunks in

PhotoScan Standard (3) 3D

model creation in Rhinoceros

3D (see https://youtu.be/

Hy1e0D4USdU) and (4) trim to

exclude surrounding reef
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model reconstruction to ensure quality was not lost as a

result of increased coral size. Together, our video recording

and processing methods created a standardized approach

(e.g. across different coral head sizes and light conditions;

Raoult et al. 2017). Video footage was converted to still

images using QuickTimeTM Player 7.6.6 at an extraction

rate of three images per second, resulting in 100–500

images per station with a resolution of 1920 9 1080p.

Image sequences were then imported into PhotoScan

Standard (Agisoft LLC). Coral models were rendered fol-

lowing the standard workflow sequence in PhotoScan:

alignment, dense point cloud generation, mesh building

and texture building. Each step was set to medium quality

except in the mesh building step where ‘meshes maximum

face count’ was adjusted to 3,000,000 (previously shown to

render high resolution models by Young et al. 2017). Final

models were compared to still images of corals taken with

an Olympus GT-4 camera at four different angles to control

for geometric distortion.

Quantifying habitat traits of digital corals

For each coral head (cleaning stations and control coral),

we quantified its height (cm), volume (cm3), surface area

(cm2), linear rugosity (surface roughness/heterogeneity),

vector dispersion (another measure of structural complex-

ity; Young et al. 2017), percentage live coral cover and

refuge size category. All in silico measurements were

recorded using Rhinoceros 3D (Robert McNeel & Asso-

ciates). Coral dimensions (height, width and depth) were

obtained from three-dimensional models using the ‘Line’

function: to generate distance measures straight lines were

drawn (1) down through the centre of the highest point of

the coral, (2) across the diameter of the coral, (3) at the

widest point and (4) at the narrowest point (using

‘DimAligned’ function). These measurements were sub-

sequently used to calculate the volume and surface area for

each coral, under the assumption that corals represent an

elliptical shape (after Adam 2011). Structural complexity

was measured with two metrics: linear rugosity and vector

dispersion. Linear rugosity chains (2 cm chain link length)

were created with a mesh grid with 10 cm spacing using a

custom Python script (https://github.com/grace

calvertyoung/ Rhino-Python-3D-Coral-Reefs). Using a

consistent spacing allowed a standardisation of the number

of chains, as all corals were different sizes. Vector dis-

persion was calculated at a 1 cm resolution following

Young et al. (2017). Finally, percentage live cover and

refuge size was quantified in situ during video collection

using the habitat assessment score (defined in Gratwicke

and Speight 2005). For each model, habitat that did not

constitute the station (sandy seabed, adjacent rocky

outcrops etc.) were excluded using a circumference of

10 cm from the base of the coral (Fig. 1, steps 3 and 4).

Data analysis

Data were analysed in R version 3.4.3 (R Core Team 2017)

using Generalized Linear Models (GLMs), Generalised

Linear Mixed Models (GLMM, using ‘lme40; Bates et al.

2015) and generalized additive models for location, scale

and shape (GAMLSS, package ‘‘gamlss’’; Rigby and Sta-

sinopoulos 2005). Model assumptions and fits were asses-

sed using residual plots (as specified by Bolker et al. 2009)

and all continuous predictors were scaled and centred

around zero to facilitate model convergence. Best fitting

model selection was based on Akaike Information Crite-

rion (AIC) using a backward elimination approach (with

delta\ 2). The significance of fixed effects was assessed

using likelihood ratio tests comparing models with and

without the main effect. The presence of potential influ-

ential points on model outcomes were checked for (using

Cook’s D and leverage), and sensitivity analyses were

carried out on identified points (Chatterjee and Hadi 2009):

the robustness of results was assessed when identified

outlier values were temporarily excluded from models.

Significant effects that were sensitive to the presence of

influential points are stated in the results.

To determine whether cleaning station corals (n = 55)

versus control corals (n = 12) differed in their microhabitat

traits; rugosity, vector dispersion, height, percentage live

cover and refuge size category were specified as fixed

effects in a binomial logistic GLM (with a probit link). Due

to collinearity (identified by Variance Inflation Factor

values[ 3) between height, volume and surface area,

surface area to volume ratio was specified as a main effect

(replacing volume and surface area, height still included):

this removed any issue with collinearity between variables.

It was not suitable to remove any one of these variables

from all models or carry out a PCA, since we are interested

in the effect of each individual trait.

To determine whether microhabitat traits link with

cleaner occupancy (range: 0–1) and abundance (range: 0–9

gobies per presence/absence survey), and cleaning beha-

viours (frequency, duration and rate), only data from

cleaning stations (n = 55) were used: this removed false

zeros from control corals. Due to further issues with

collinearity between height and surface area to volume

ratio, we first carried out a sequential regression using these

two variables. This method involves regressing the less

important variable (in this case specified as surface area to

volume ratio) against the other (height) and replacing the

less important variable with the residuals from the regres-

sion—this disentangles unique from shared contributions

from the two variables (Graham 2003). Following
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sequential analysis there was no significant correlation

between the variable ‘height’ and the sequential model

residuals. This residual variable was independently calcu-

lated for and specified as, a main effect in all further

models.

To test for a link between microhabitat traits and

occupancy (one value per station); rugosity, vector dis-

persion, height, surface area to volume ratio residuals,

percentage live cover and refuge size category were spec-

ified as fixed effects in a Gaussian GLM (with identity

link). Prior to analysis, occupancy values were logit

transformed since other methods for analysing proportion

data (e.g. binomial and beta models) produced poor fitting

and overdispersed models (assessed using residual plots).

To test for a link between microhabitat traits and cleaner

abundance, the same microhabitat traits (including surface

area to volume residuals) were specified as fixed effects in

a negative binomial GLM. The negative binomial family

replaced an overdispersed Poisson model. For this GLM,

multiple cleaner abundance counts were aggregated to total

amounts per station (following Kratschmer et al. 2018),

and an offset was specified, with a log transformation,

which accounted for the number of presence/absence sur-

veys per station.

To determine whether microhabitat traits link with

cleaning behaviour (frequency, duration and rate) one

GAMLSS (for frequency, replacing an overdispersed

GLMM) and two GLMMs were specified all with the fol-

lowing fixed effects: rugosity, vector dispersion, height,

surface area to volume ratio residuals, percentage live

cover and refuge size. Since more than one observer col-

lected behavioural data (n = 6), ‘‘Observer ID’’ was

included as a random effect in all three models. Data were

used on stations (n = 34) for which multiple observations

(min n = 3) were carried out. For cleaning frequencies, all

observation data were included (n = 223, contained zeros)

whilst for rate and duration, only data containing obser-

vations where cleaning events occurred, were included in

analyses (n = 132 observation, contained no zeros).

Cleaning frequency (modelled using beta-binomial

GAMLSS, replacing an overdispersed binomial GLMM)

and rate (modelled using an inverse Gaussian family with

an inverse link) represent the summed interaction fre-

quency/duration for each cleaning interaction within each

observation (single value per observation), whilst cleaning

duration data (modelled using Gamma family and log link)

represented each single individual cleaning event and its

respective interaction length (multiple values per obser-

vation). Thus, for duration, ObservationID (a unique value

assigned to each observation) was also specified as a ran-

dom effect. The total time for each focal observation

accounted for the amount of time a cleaner was out of view

and thus varied across observations: for cleaning fre-

quency, values were therefore weighted by observation

length. This correction was not necessary for cleaning rate

and duration models since their values were independent

from observation length. Prior to analysis, cleaning rate

values (range: 0.03–1.00) were rescaled from one to ten

using the ‘‘scales’’ package (Wickham 2017): this method

does not remove the variability between values, but simply

transforms data to aid model fit. Finally, to determine

whether significant relationships between microhabitat

traits and cleaning behaviours were mediated and/or

moderated by occupancy/abundance values, station occu-

pancy and cleaner abundance (number of cleaners on the

station for each observation) were added to all three final

models as individual and interaction terms (occupancy/

abundance separately interacted with trait terms). Across

Fig. 2 Microhabitat traits of sharknose goby (Elacatinus evelynae)
cleaning stations. The outer shapes of the violin plot represent the

range of vector dispersions (complexity measure – uniformity in

angles of a surface; Young et al. 2017) and heights (m) across

cleaning and control corals, while shape thickness shows how

frequently these data values occurred. Point and lines show mean ±

95% CI
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some studies of Caribbean cleaning interactions, cleaning

patterns have been shown to vary with time of day (Cote

and Molloy 2003; Sikkel et al. 2004, 2005). However,

across 8 years of long-term data collected from the same

study reef (including data used in this study), Dunkley et al.

(2020) consistently found no effect of time of day on

cleaning frequencies and durations (as also shown by

Grutter et al. 2002; Whiteman & Cote 2002). To avoid

overfitting our already complex models, we did not include

time of day in our behavioural analyses.

Results

Do cleaning stations show specific microhabitat

traits?

Cleaning stations (n = 55) were significantly taller than

control corals (n = 12) and had more structurally complex

surfaces (Fig. 2, GLM, modelR
2 = 39.0%, height: b = 1.00,

v21 = 11.00, p\ 0.001, vector dispersion (uniformity in

angles of a surface; Young et al. 2017): b = 0.54,

v21 = 4.13, p = 0.042). Cleaning stations also had lower

surface area to volume ratios compared to control corals

(GLM, b = - 0.62, v21 = 6.27, p = 0.012) although this

result became non-significant when an influential point

(relating to a control coral) was temporarily removed

(p[ 0.20). There were no other significant differences

between stations and control coral habitat traits (GLM,

p[ 0.05).

Do microhabitat traits link with cleaner occupancy

patterns?

Generally, cleaning station microhabitat traits did not

predict how frequently cleaning stations were occupied

(mean ± S.E. occupancy across stations = 0.56 ± 0.04,

GLM, all predictors p[ 0.05). However, cleaner occu-

pancy tended to increase with the complexity of the coral

surface (GLM modelR
2 = 6.1%, vector dispersion: b = 0.44,

F1, 53 = 3.42, p = 0.070, p = 0.033 when one influential

point (station) removed: influential station vector disper-

sion value = 0.27, mean ± S.E. dispersion value across

stations = 0.17 ± 0.004, influential station occu-

pancy = 0.55). Microhabitat traits did not significantly

predict the variable abundance of cleaners on stations

(GLM, all traits p[ 0.05, up to nine cleaners occupied an

individual station across time, mean cleaner abundance

across presence/absence surveys ± S.E. = 0.97 ± 0.03).

Do microhabitat traits link with cleaning behaviour?

Out of 223 observations across 34 cleaning stations,

cleaning was observed 308 times across 132 observations.

Cleaning occurred less frequently, and bouts were longer,

at taller cleaning stations (Fig. 3, cleaning frequency:

GAMLSS, modelR
2 = 5.8%, v21 = 5.46, p = 0.019, cleaning

duration: GLMM, modelR
2 = 22.9%, v21 = 4.58,

p = 0.032). Cleaning durations also increased with refuge

size category (GLMM, v21 = 4.10, p = 0.043, p = 0.053

when one influential cleaning event removed). Cleaning

rates, which averaged 0.26 cleaning events per second

(± 0.02, S.E.), were lower at taller cleaning stations but

increased with structural complexity (Fig. 3, GLMM,

modelR
2 = 24.4%, height = v21 = 5.97, p = 0.015, vector

dispersion = 6.71, p = 0.010). Links between cleaning

behaviours and microhabitat traits were not medi-

ated/moderated by cleaner presence: generally, cleaning

behaviours were not predicted by cleaning station occu-

pancy or the abundance of cleaners, although cleaning

frequencies tended to negatively link with occupancy

(GAMLSS, b = - 0.17, v21 = 3.45, p = 0.063, height still

remained significant when occupancy and cleaner abun-

dance main effects included in model).

Discussion

Here, for the first time, we demonstrate that the cleaning

stations of a predominant Caribbean cleaner, the sharknose

goby (Elacatinus evelynae), can be distinguished from non-

station corals by increased height and structural complexity

(vector dispersion). Although microhabitat trait variation

predicted the occurrence of cleaning stations, they did not

predict cleaner occupancy nor abundance patterns of

occupied cleaning stations. Variations in coral morphol-

ogy, however, in terms of height, vector dispersion and

refuge size did promote variations in cleaning frequencies,

durations and rates. Cleaning events were longer but

occurred at a lower frequency and rate at taller corals.

Events were also longer when refuge sizes were larger,

whilst rates increased with structural complexity (vector

dispersion). Together, this study highlights the importance

of variation in coral morphology for local cleaner distri-

bution and thus its potential role in moderating the

dynamics of cleaning interactions on a larger scale.

Cleaning gobies show strong site fidelity to their

cleaning stations (Whiteman and Côté 2002; Harding et al.

2003), are assumed to have short lifespans (mean age

documented\ 50 days in White et al. 2007) and remain in

direct contact with their coral (apart from when cleaning,

and the occasional competition-induced move to adjacent

coral; Whiteman and Côté 2002; Côté and Soares 2011).
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Cleaners adult distribution patterns may thus be, in-part,

governed by their larval post-settlement success/settlement

site. Elacatinus gobies form monogamous pairs (Harding

et al. 2003), regularly spawn (E. evelynae spawning

interval: 9–20 days) and produce high clutch sizes (E.

evelynae: 200–250 eggs clutch-1, 10–50% survival to

Fig. 3 Sharknose goby

(Elacatinus evelynae) cleaning
station microhabitat traits which

predicted their cleaning

frequencies, durations and rates.

Lines are based on model

coefficients (GAMLSS or

GLMM) while points represent

raw or mean averaged data.

Cleaning event values were

rescaled from one to 10 to aid

model fit. Log transformations

were performed for

figure clarity. Height, refuge

size and vector dispersion are

illustrated on a three-

dimensional model of one

cleaning station from Booby

Reef, Man O’ War Bay, Tobago
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settlement). Importantly, these larvae have lengthy pelagic

larval periods (E. evelynae: settle 30–40 days post hatch-

ing; Colin 1975; Olivotto et al. 2005; Majoris et al. 2018b)

and for a closely related species (E. lori), larvae have been

documented to travel * 2 km from their parent site

(D’Aloia et al. 2015). Taller corals which stand above

others, may thus ‘catch’ pre-settlement larvae, whilst

increased surface complexity can reduce larvae/adult pre-

dation risk (Beukers and Jones 1998; Almany 2004) and

alter larval density-dependent mortality once settled

(Johnson 2007), together promoting the formation of

cleaning stations. However, if our results were simply

down to random larvae settlement patterns mediated by

their post-settlement survival success, we would also

expect coral heads with larger surface areas to also function

as cleaning stations (similar to Losey 1974), which was not

the case (non-station corals were consistently observed to

be unoccupied across 8 years of long-term study; Dunkley

et al. 2019b). In addition, although gobies do generally stay

affiliated with their coral heads, some localised movements

by adults are observed between neighbouring heads (up

to * 5 m distance; Dunkley et al. 2019a). Thus, by flexi-

bly moving between corals, adult cleaners may more effi-

ciently increase their fitness by benefitting from differential

resources from different coral heads. Choice experiments

would help decipher the absolute habitat preferences for

this species.

Settlement of coral reef fish in their habitat is compli-

cated, and it is very unlikely that finer scale settlement

patterns within an environment are a matter of chance

(Victor 1986). Many coral reef fish larvae rely on a com-

bination of cues to control their settlement site selection,

including visual, olfactory and acoustic stimuli (Mont-

gomery et al. 2001; Lecchini et al. 2005). It is not clear,

however, how sensitive such cues are to finer scale varia-

tions (i.e. between corals of the same family as investigated

here). Some fish also base settlement cues on the presence

of conspecifics and not on the corals characteristics, since

the presence of conspecifics could be an indicator of habitat

quality (Öhman et al. 1998; Lecchini et al. 2005). This

hypothesis is supported for E. prochilos (see Whiteman and

Côté 2004). However, since density dependence can

influence settlement mortality (Johnson 2007), in the cur-

rent study, we would perhaps expect occupancy/abundance

patterns to correlate with microhabitat traits, which we did

not observe (in parallel with Wilson and Osenberg 2002,

assuming corals are at full carrying capacity, with coral

heads assumed to be saturated at very low densities;

Whiteman and Côté 2004).

Taller corals also played an important role in influencing

the dynamics of cleaning interactions. Investments in

cleaning interactions are governed by risk: clients give up

foraging time (Grutter et al. 2002) and may be more

vulnerable to predators (although both cleaners and clients

are thought to be afforded protection to some extent;

Cheney et al. 2008; Soares et al. 2012). Cleaning at a taller

coral may provide both cleaners and clients with a visual

advantage by creating a greater field of view, lowering

predation risk (by providing a better view of approaching

predators; Nemeth 1998) and facilitating longer cleaning

events. Indeed, for a common client of cleaning gobies,

Stegastes partitus (see Dunkley et al. 2019b), a limited

field of view around their territorial site altered their risk-

taking behaviour (Rilov et al. 2007). Further exploration of

this hypothesis however, will rely on knowledge concern-

ing the visual acuity of cleaner fish and their clients, which

is currently unknown (although it is likely to correlate with

eye size; Caves et al. 2017). The assumption that station

habitat traits that reduce risk and are beneficial for cleaning

patterns, can also be supported by our result that longer

cleaning bouts were observed at stations with increase

refuge size, and that cleaning rates were higher with

increased complexity (creating crevices and cracks). Sim-

ilar to cleaner wrasse (species unknown; Ferrari et al.

2018), here cleaning gobies were found to associate with

cleaning stations that showed an increased variation in

slopes. The availability of refuges and fine-scale variations

in structural complexity (1 cm vector dispersion) may

provide a ‘safety net’ for small bodied cleaners (max

4.5 cm fork length; Cheney and Côté 2003) minimising

their risk to threats by reducing access/mobility options for

larger predators. Indeed, Ferrari et al. 2018) hypothesized

that a strong association with sponges by the sponge-

dwelling facultative-cleaning ecotype of sharknose gobies

could be explained by the shelter these benthic organisms

may provide. It should be highlighted however that if taller

corals are more preferable resources (compared to other

coral geometries), only gobies expressing beneficial and

competitive phenotypes may be expected to dominate such

environments, with variation in phenotypes also leading to

variations in cleaning behaviour (Dunkley et al. 2019a).

Correlating the occurrence of different cleaner behavioural

phenotypes (e.g. personality traits) with station microhab-

itat traits, and their spatial locations may thus be beneficial

for future study.

Cleaning patterns can also be goverened by the feedback

behaviours of their clients (Dunkley et al. 2019a), and

clients may use the ‘‘landmark feature’’ of cleaning stations

to locate cleaners (Kulbicki and Arnal 1999; Losey 1974)

with taller or larger features being easier for clients to

locate (Braithwaite and De Perera 2006). In turn, clients

may then learn to associate these specific features (e.g.

‘‘large spherical corals’’) with the cleaners (Losey 1974).

Indeed, in sparser, heterogeneous environments, organisms

tend to aggregate around habitat structures (Garcı́a-Charton

and Pérez-Ruzafa 2001) and thus taller stations may
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promote enhanced client numbers/diversity visiting the

location—creating foraging choice options for the cleaner.

Higher energy gains can be obtained through consuming

higher quality foods, feeding for longer and increasing diet

breadth (Toscano et al. 2016). Since different clients host

species specific parasite assemblages (Grutter 1994),

cleaners could maximise their energy loss versus gains by

selectively cleaning different client types to optimize their

nutrition/energy through fewer interactions. Some client

types will be restricted in their spatial distribution on reef

by the microhabitat features (Tolimieri 1995) and their

reef-use behaviour (e.g. territorial species) however. Taller

stations may thus also allow a greater range of ‘favourable

client types’, hosting higher parasite burdens/diversity (e.g.

predators, larger body sizes; Poulin and Rohde 1997) to

access the cleaner. Incorporation of client functional traits,

abundance, diversity, and behaviour data should now thus

be considered in future study.

The high structural complexity of coral reefs, which is a

defining and vital component of a healthy environment, is

under threat from a suite of natural and anthropogenic

disturbances (Magel et al. 2019). Here we show that the

prevalence and dynamics of cleaning interactions on a local

scale, which are also thought to be a vital component of a

healthy reef (Clague et al. 2011; Waldie et al. 2011;

Demairé et al. 2020), may be vulnerable to even fine-scale

changes in microhabitat structure, especially with regards

to coral height. Through their large number of interactions

with a diversity of client species, cleaning interactions can

also drive patterns of fish diversity themselves (Bronstein

2015), playing an important role in the ecological com-

munity structure (Floeter et al. 2007; Quimbayo et al.

2018)—changes in the dynamics of cleaning interactions

could thus hold strong consequences for the associated reef

fish community. It is important to note however, that like

all mutualisms, cleaning interactions are highly context

dependent: interaction outcomes vary temporally (Cote and

Molloy 2003; Sikkel et al. 2004, 2005; Dunkley et al.

2019a, b, 2020) and spatially (Côté 2000; Sikkel et al.

2000; Dunkley et al. 2020; Romain et al. 2020). Whilst we

show that microhabitat traits play a role in governing local

interaction patterns, a host of additional interlinked con-

textual factors can influence interaction outcomes (e.g.

client identity and abundance; Dunkley et al 2020). It is

therefore difficult to determine at this stage, what our

findings mean under wide-scale ecosystem degradation

scenarios. Compared to the Indo-Pacific, Caribbean reef

communities naturally exhibit lower species diversity

meaning they are already less resilient to decline and

degradation (Bellwood et al. 2004). It is therefore vital that

we gain further knowledge of the finer scale habitat

requirements of such keystone species in the Caribbean to

determine how habitat losses/changes to the reef geometry

may both directly and indirectly impact reef communities.
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