Skip to main content
Log in

Fine-scale time series surveys reveal new insights into spatio-temporal trends in coral cover (2002–2018), of a coral reef on the Southern Great Barrier Reef

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Reef monitoring programmes often focus on limited sites, predominantly on reef slope areas, which do not capture compositional variability across zones. This study assessed spatial and temporal changes in hard coral cover at four hierarchical spatial scales. ~ 55,000, geo-referenced photoquadrats were collected annually from 2002 to 2018 and analysed using artificial intelligence for 31 sites across reef flat and reef slope zones on Heron Reef, Southern Great Barrier Reef, Australia. Trends in hard coral cover were examined at three spatial scales: (1) “reef scale”, all data; (2) “geomorphic zone scale”—north/south reef slope, inner/outer reef flat; and (3) “site scale”—31 sites. Coral cover trajectories were also examined at: (4) “sub-site scale”—sub-division of sites into 567 sub-sites, to estimate variability in coral cover trajectories via spatial statistical modelling. At reef scale coral cover increased over time to 25.6 ± 0.4 SE % in 2018 but did not recover following disturbances caused by disease (2004–2008), cyclonic conditions (2009) or severe storms (2015) to the observed pre-disturbance level (44.0 ± 0.7 SE %) seen in 2004. At geomorphic zone scale, the reef slope had significantly higher coral cover than the reef flat. Trends of decline and increase were visible in the slope zones, and the southern slope recovered to pre-decline levels. Variable coral cover trends were visible at site scale. Furthermore, sub-site spatial modelling captured eight years of coral recovery that occurred at different times and magnitudes across the four geomorphic zones, effectively estimating variability in the trajectory of the reef’s coral community. Derived spatial predictions for the entire reef show patchy coral recovery, particularly on the southern slope, and that recovery hotspots are distributed across the reef. These findings suggest that to fully understand and interpret coral decline or recovery on a reef, more accurate assessment can be achieved by examining sites distributed within different geomorphic zones to capture variation in exposure, depth and consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam, T. C., Schmitt, R. J., Holbrook, S. J., Brooks, A. J., Edmunds, P. J., Carpenter, R. C., & Bernardi, G. (2011). Herbivory, Connectivity, and Ecosystem Resilience: Response of a Coral Reef to a Large-Scale Perturbation. Plos One, 6(8), e23717. doi:https://doi.org/10.1371/journal.pone.0023717

  • Adjeroud, M., Chancerelle, Y., Schrimm, M., Perez, T., Lecchini, D., Galzin, R., & Salvat, B. (2005). Detecting the effects of natural disturbances on coral assemblages in French Polynesia: A decade survey at multiple scales. Aquatic Living Resources, 18(2), 111-123. doi:https://doi.org/10.1051/alr:2005014

  • Adjeroud, M., Kayal, M., Iborra-Cantonnet, C., Vercelloni, J., Bosserelle, P., Liao, V., Chancerelle, Y., Claudet, J., & Penin, L. (2018). Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Scientific Reports, 8(1), 9680. doi:https://doi.org/10.1038/s41598-018-27891-3

  • AIMS. (2019). Long-term Reef Monitoring Program - Annual Summary Report on coral reef condition for 2018/19. Retrieved from https://www.aims.gov.au/reef-monitoring/gbr-condition-summary-2018-2019

  • Asner, G. P., Martin, R. E., & Mascaro, J. (2017). Coral reef atoll assessment in the South China Sea using Planet Dove satellites. Remote Sensing in Ecology and Conservation, 3(2), 57-65. doi:https://doi.org/10.1002/rse2.42

  • Beijbom, O., Edmunds, P. J., Roelfsema, C., Smith, J., Kline, D. I., Neal, B. P., Dunlap, M. J., Moriarty, V., Fan, T.-Y., Tan, C.-J., Chan, S., Treibitz, T., Gamst, A., Mitchell, B. G., & Kriegman, D. (2015). Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation. Plos One, 10(7), e0130312. doi:https://doi.org/10.1371/journal.pone.0130312

  • Berkelmans, R., De'ath, G., Kininmonth, S., & Skirving, W. J. (2004). A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs, 23(1), 74-83.

  • Berkelmans, R., & Oliver, J. K. (1999). Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs, 18(1), 55-60.

  • Bruno, J. F., & Selig, E. R. (2007). Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons. Plos One, 2(8), e711. doi:https://doi.org/10.1371/journal.pone.0000711

  • Connell, J. H., Hughes, T. P., & Wallace, C. C. (1997). A 30-Year Study of Coral Abundance, Recruitment, and Disturbance at Several Scales in Space and Time. Ecological Monographs, 67(4), 461 - 488.

  • Cortés, J., Oxenford, H. A., van Tussenbroek, B. I., Jordán-Dahlgren, E., Cróquer, A., Bastidas, C., & Ogden, J. C. (2019). The CARICOMP Network of Caribbean Marine Laboratories (1985–2007): History, Key Findings, and Lessons Learned. Frontiers in Marine Science, 5(519). doi:https://doi.org/10.3389/fmars.2018.00519

  • De’ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences, 109(44), 17995-17999. doi:https://doi.org/10.1073/pnas.1208909109

  • Done, T. J. (1982). Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs, 1(2), 95-107. doi:https://doi.org/10.1007/bf00301691

  • Done, T. J. (1983). Coral Zonation: Its Nature and Significance. In D. J. Barnes (Ed.), Perspectives on Coral Reefs (pp. 107 - 147). Canberra: Australian Institute of Marine Sciences.

  • Doropoulos, C., Ward, S., Roff, G., González-Rivero, M., & Mumby, P. J. (2015). Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats. PLOS ONE, 10(5), e0128535. doi:https://doi.org/10.1371/journal.pone.0128535

  • Edmunds, P. J. (2002). Long-term dynamics of coral reefs in St. John, US Virgin Islands. Coral Reefs, 21(4), 357-367. doi:https://doi.org/10.1007/s00338-002-0258-1

  • Edmunds, P. J., & Bruno, J. F. (1996). The importance of sampling scale in ecology: kilometer-wide variation in coral reef communities. Marine Ecology Progress Series, 143, 165 - 171.

  • Emslie, M. J., Bray, P., Cheal, A. J., Johns, K. A., Osborne, K., Sinclair-Taylor, T., & Thompson, C. A. (2020). Decades of monitoring have informed the stewardship and ecological understanding of Australia's Great Barrier Reef. Biological Conservation, 252, 108854. doi:https://doi.org/10.1016/j.biocon.2020.108854

  • Fasiolo, M., Nedellec, R., Goude, Y., & Wood, S. N. (2020). Scalable Visualization Methods for Modern Generalized Additive Models. Journal of Computational and Graphical Statistics, 29(1), 78-86. doi:https://doi.org/10.1080/10618600.2019.1629942

  • Fine, M., Hoegh-Guldberg, O., Meroz-Fine, E., & Dove, S. (2019). Ecological changes over 90 years at Low Isles on the Great Barrier Reef. Nature Communications, 10(1), 4409. doi:https://doi.org/10.1038/s41467-019-12431-y

  • Galzin, R., Lecchini, D., Lison de Loma, T., Moritz, C., Parravicini, V., & Siu, G. (2015). Long term monitoring of coral and fish assemblages (1983-2014) in Tiahura reefs, Moorea, French Polynesia.

  • Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301(5635), 958-960. doi:https://doi.org/10.1126/science.1086050

  • Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H., & Pratchett, M. S. (2013). Recovery of an Isolated Coral Reef System Following Severe Disturbance. Science, 340(6128), 69. doi:https://doi.org/10.1126/science.1232310

  • González-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Bryant, D. E. P., Ganase, A., Gonzalez-Marrero, Y., Herrera-Reveles, A., Kennedy, E. V., Kim, C. J. S., Lopez-Marcano, S., Markey, K., Neal, B. P., Osborne, K., Reyes-Nivia, C., Sampayo, E. M., Stolberg, K., Taylor, A., Vercelloni, J., Wyatt, M., & Hoegh-Guldberg, O. (2020). Monitoring of Coral Reefs Using Artificial Intelligence: A Feasible and Cost-Effective Approach. Remote Sensing, 12(3), 489. doi:https://doi.org/10.3390/rs12030489

  • González-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Holtrop, T., González-Marrero, Y., Ganase, A., Roelfsema, C., Phinn, S., & Hoegh-Guldberg, O. (2016). Scaling up Ecological Measurements of Coral Reefs Using Semi-Automated Field Image Collection and Analysis. Remote Sensing, 8(1), 30. Retrieved from http://www.mdpi.com/2072-4292/8/1/30

  • González-Rivero, M., Bongaerts, P., Beijbom, O., Pizarro, O., Friedman, A., Rodriguez-Ramirez, A., Upcroft, B., Laffoley, D., Kline, D., Bailhache, C., Vevers, R., & Hoegh-Guldberg, O. (2014). The Catlin Seaview Survey – kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 24(S2), 184-198. doi:https://doi.org/10.1002/aqc.2505

  • Gourlay, M. R. (2011). Waves and Wave-Driven Currents. In D. Hopley (Ed.), Encyclopedia of Modern Coral Reefs: Structure, Form and Process (pp. 1154-1171). Dordrecht: Springer Netherlands.

  • Graham, N. A. J., Nash, K. L., & Kool, J. T. (2011). Coral reef recovery dynamics in a changing world. Coral Reefs, 30(2), 283-294. doi:https://doi.org/10.1007/s00338-010-0717-z

  • Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742. Retrieved from <Go to ISI>://000251616800029

  • Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., van Nes, E. H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. doi:https://doi.org/10.1038/nature22901

  • Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., Liu, G., McWilliam, M. J., Pears, R. J., Pratchett, M. S., Skirving, W. J., Stella, J. S., & Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492-496. doi:https://doi.org/10.1038/s41586-018-0041-2

  • Jackson, J., Donovan, M., Cramer, K., & Lam, V. (2014). Status and trends of Caribbean coral reefs: 1970-2012. Retrieved from Washington, D.C.: http://pubs.er.usgs.gov/publication/70115405

  • Joyce, K., Phinn, S., & Roelfsema, C. (2013). Live Coral Cover Index Testing and Application with Hyperspectral Airborne Image Data. Remote Sensing, 5(11), 6116-6137.

  • Kennedy, E., Roelfsema, C., Lyons, M., Kovacs, E., Borrego-Acevedo, R., Roe, M., Phinn, S., Larsen, K., Murray, N., Yuwono, D., Wolff, J., & Tudman, P. (2020). Reef Cover: a coral reef classification to guide global habitat mapping from remote sensing. bioRxiv, 2020.2009.2010.292243. doi:https://doi.org/10.1101/2020.09.10.292243

  • Liu, P.-J., Meng, P.-J., Liu, L.-L., Wang, J.-T., & Leu, M.-Y. (2012). Impacts of human activities on coral reef ecosystems of southern Taiwan: A long-term study. Marine Pollution Bulletin, 64(6), 1129-1135. doi:https://doi.org/10.1016/j.marpolbul.2012.03.031

  • Madin, J. S., & Madin, E. M. P. (2015). The full extent of the global coral reef crisis. Conservation Biology, 29(6), 1724-1726. doi:https://doi.org/10.1111/cobi.12564

  • Maynard, J. A., Beeden, R., Puotinen, M., Johnson, J. E., Marshall, P., van Hooidonk, R., Heron, S. F., Devlin, M., Lawrey, E., Dryden, J., Ban, N., Wachenfeld, D., & Planes, S. (2016). Great Barrier Reef No-Take Areas Include a Range of Disturbance Regimes. Conservation Letters, 9(3), 191-199. doi:https://doi.org/10.1111/conl.12198

  • Mellin, C., Thompson, A., Jonker, M. J., & Emslie, M. J. (2019). Cross-Shelf Variation in Coral Community Response to Disturbance on the Great Barrier Reef. Diversity, 11(3), 38. doi:https://doi.org/10.3390/d11030038

  • Ortiz, J. C., Bozec, Y.-M., Wolff, N. H., Doropoulos, C., & Mumby, P. J. (2014). Global disparity in the ecological benefits of reducing carbon emissions for coral reefs. Nature Clim. Change, 4(12), 1090-1094. doi:https://doi.org/10.1038/nclimate2439

  • Ortiz, J. C., Gomez-Cabrera, M. d. C., & Hoegh-Guldberg, O. (2009). Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia). Coral Reefs, 28(4), 999. doi:https://doi.org/10.1007/s00338-009-0546-0

  • Peterson, E. E., Santos-Fernández, E., Chen, C., Clifford, S., Vercelloni, J., Pearse, A., Brown, R., Christensen, B., James, A., Anthony, K., Loder, J., González-Rivero, M., Roelfsema, C., Caley, M. J., Mellin, C., Bednarz, T., & Mengersen, K. (2020). Monitoring through many eyes: Integrating disparate datasets to improve monitoring of the Great Barrier Reef. Environmental Modelling & Software, 124, 104557. doi:https://doi.org/10.1016/j.envsoft.2019.104557

  • Phinn, S. R., Roelfsema, C. M., & Mumby, P. J. (2012). Benthic cover map of Heron Reef derived from a high-spatial-resolution multi-spectral satellite image using object based image analysis. In Supplement to: Phinn, SR et al. (2012): Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. International Journal of Remote Sensing, 33(12), 3768-3797, doi:10.1080/01431161.2011.633122: PANGAEA.

  • Puotinen, M., Maynard, J. A., Beeden, R., Radford, B., & Williams, G. J. (2016). A robust operational model for predicting where tropical cyclone waves damage coral reefs. Scientific Reports, 6, 26009. doi:https://doi.org/10.1038/srep26009

  • Roelfsema, C., Kovacs, E., Roos, P., Terzano, D., Lyons, M., & Phinn, S. (2018). Use of a semi-automated object based analysis to map benthic composition, Heron Reef, Southern Great Barrier Reef. Remote Sensing Letters, 9(4), 324-333. doi:https://doi.org/10.1080/2150704X.2017.1420927

  • Roelfsema, C., Phinn, S., Jupiter, S., Comley, J., & Albert, S. (2013). Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. International Journal of Remote Sensing, 34(18), 6367-6388. doi:https://doi.org/10.1080/01431161.2013.800660

  • Roelfsema, C. M., Kovacs, E., Markey, K., Vercelloni, J., Rodriguez-Ramirez, A., Lopez-Marcano, S., Gonzalez-Revero, M., Hoegh-Guldberg, O., & Phin, R. S. (2021). Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002-2018. Scientific Data, 8, 84 (2021). doi:https://doi.org/10.1038/s41597-021-00871-5

  • Roelfsema, C. M., Kovacs, E., Stetner, D., & Phinn, S. R. (2018). Georeferenced benthic photoquadrats captured annually from 2002-2017, distributed over Heron Reef flat and slope areas.

  • Roelfsema, C. M., Kovacs, E. M., Ortiz, J. C., Callaghan, D. P., Hock, K., Mongin, M., Johansen, K., Mumby, P. J., Wettle, M., Ronan, M., Lundgren, P., Kennedy, E. V., & Phinn, S. R. (2020). Habitat maps to enhance monitoring and management of the Great Barrier Reef. Coral Reefs, 39(4), 1039-1054. doi:https://doi.org/10.1007/s00338-020-01929-3

  • Roelfsema, C. M., & Phinn, S. R. (2010). Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps. Journal of Applied Remote Sensing, 4(1), 1-28. doi:04352710.1117/1.3430107

  • Roff, G., Kvennefors, E. C. E., Fine, M., Ortiz, J., Davy, J. E., & Hoegh-Guldberg, O. (2011). The Ecology of ‘Acroporid White Syndrome', a Coral Disease from the Southern Great Barrier Reef. PLOS ONE, 6(12), e26829. doi:https://doi.org/10.1371/journal.pone.0026829

  • Sweatman, H., A.Cheal, G.Coleman, S.Delean, B.Fitzpatrick, I.Miller, R.Ninio, K.Osborne, C.Page, & A.Thompson. (2001). Long-Term Monitoring of the Great Barrier Reef (Status Report Number 5, 2001). Retrieved from http://www.aims.gov.au/pages/research/reef-monitoring/ltm/mon-statrep5/statrep5.html

  • Vercelloni, J., Liquet, B., Kennedy, E. V., González-Rivero, M., Caley, M. J., Peterson, E. E., Puotinen, M., Hoegh-Guldberg, O., & Mengersen, K. (2020). Forecasting intensifying disturbance effects on coral reefs. Global Change Biology, 26(5), 2785-2797. doi:https://doi.org/10.1111/gcb.15059

  • Wikle, C. K., Zammit-Mangion, A., & Cressie, N. (2019). Spatio-Temporal Statistics with R (1st ed.).

  • Wilkinson, C. (2008). Status of coral reefs of the world: 2008. (Vol. 1). Townsville: Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre.

  • Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2nd ed.).

Download references

Acknowledgements

Funding provided by: University of Queensland; Global Change Institute at UQ, CSIRO; ARC Laureate Fellowship to Professor Ove Hoegh-Guldberg; ARC Linkage Grant to Prof. J Marshall and Prof. S Phinn; and WBGef Coral Reef Remote Sensing, ARC linkage innovative Coral Reef Monitoring. Fieldwork support was provided by: Coral and Reef Check Volunteers, Staff and students at University of Queensland, Heron Island Research Station, Field assistance: Rodney Borrego, Ian Leiper, Douglas Stetner, Josh Passenger, Megan Saunders, Robert Canto, Peran Bray. The constructive comments are from the reviewers of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Roelfsema.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Mark Vermeij

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 770 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roelfsema, C., Kovacs, E.M., Vercelloni, J. et al. Fine-scale time series surveys reveal new insights into spatio-temporal trends in coral cover (2002–2018), of a coral reef on the Southern Great Barrier Reef. Coral Reefs 40, 1055–1067 (2021). https://doi.org/10.1007/s00338-021-02104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02104-y

Keywords

Navigation