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Abstract Determining the life-history consequences for

fishes living in extreme and variable environments will be

vital in predicting the likely impacts of ongoing climate

change on reef fish demography. Here, we compare size-at-

age and maximum body size of two common reef fish

species (Lutjanus ehrenbergii and Pomacanthus maculo-

sus) between the environmentally extreme Arabian/Persian

Gulf (‘Arabian Gulf’) and adjacent comparably benign

Oman Sea. Additionally, we use otolith increment width

profiles to investigate the influence of temperature, salinity

and productivity on the individual growth rates. Individuals

of both species showed smaller size-at-age and lower

maximum size in the Arabian Gulf compared to con-

specifics in the less extreme and less variable environment

of the Oman Sea, suggesting a life-history trade-off

between size and metabolic demands. Salinity was the best

environmental predictor of interannual growth across spe-

cies and regions, with low growth corresponding to more

saline conditions. However, salinity had a weaker negative

effect on interannual growth of fishes in the Arabian Gulf

than in the Oman Sea, indicating Arabian Gulf populations

may be better able to acclimate to changing environmental

conditions. Temperature had a weak positive effect on the

interannual growth of fishes in the Arabian Gulf, suggest-

ing that these populations may still be living within their

thermal windows. Our results highlight the potential

importance of osmoregulatory cost in impacting growth,

and the need to consider the effect of multiple stressors

when investigating the consequences of future climate

change on fish demography.
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Introduction

Anthropogenic global climate change is having significant

biological impacts on individuals, species and ecosystems

(e.g. Parmesan and Yohe 2003; Bellard et al. 2012; Hughes

et al. 2018; Gordon et al. 2018; Pratchett et al. 2018;

França et al. 2020). Reductions in body size, coupled with

reduction in lifespan (Munch and Salinas 2009), geo-

graphic shifts in species distribution (Walther et al. 2002;

Parmesan and Yohe 2003; Feary et al. 2014) and changes

in phenology (Walther et al. 2002; Stenseth 2002; Visser

and Both 2005; Taylor 2008), are recognised as common

responses to global warming in ectotherms (Daufresne

et al. 2009; Gardner et al. 2011; Ohlberger 2013). Such

reduction in body size is consistent with the temperature-

size rule (TSR) (i.e. body size decreases at higher tem-

perature) (Atkinson 1994; Kingsolver and Huey 2008;

Ohlberger 2013; Huss et al. 2019) and is particularly evi-

dent in aquatic environments (Forster et al. 2012; Horne

et al. 2015), where fish and other aquatic organisms’

average body size has already declined by 5–20% over the

last two decades (Baudron et al. 2014; Audzijonyte et al.

2016; van Rijn et al. 2017). Experimental temperature-size

responses, models and meta-analyses suggest that body

size will further reduce by 3–5% per degree of warming in

aquatic arthropods, while in fishes it may decline by

14–24% by 2050 under a higher green-house gases emis-

sion scenario (A2 scenario, IPCC 2007; Cheung et al.

2013; Pauly and Cheung 2018).

Decreasing fish sizes will impact fecundity and fisheries

productivity (Baudron et al. 2014; Barneche et al. 2018),

prey–predator interactions (Barnes et al. 2010) and overall

ecosystem functioning (Bellwood et al. 2012; Cheung et al.

2013). Understanding what drives reductions in fishes’

body size will be essential for predicting how populations

are impacted by projected climate change. In this regard,

despite the ubiquity of the TSR in describing the pattern of

body size and temperature in a range of taxa, the under-

lying mechanisms of body size reduction with increasing

temperature are still debated (Audzijonyte et al. 2019).

Projected increases in mean temperature and tempera-

ture variability due to climate change (i.e. 1.0 to 4.0 �C
increase by 2100, IPCC 2019) are likely to be particularly

challenging for marine fish due to the greater energetic

demands for routine metabolic activities (Gillooly et al.

2001; Pörtner and Knust 2007; Neuheimer et al. 2011;

Rubalcaba et al. 2020) with, ultimately, less energy avail-

able for somatic growth. Similarly, projected intensifica-

tion of the global water cycle (4–8% �C of increase in

surface air temperature change) and consequent increase in

water salinity in already dry regions (Durack et al. 2012;

Skliris et al. 2014; Zika et al. 2018) will likely increase the

osmoregulation costs for many marine species (Boeuf and

Payan 2001; Ern et al. 2014), especially those living in

hypersaline semi-enclosed seas. Finally, climate change is

predicted to alter the rate and distribution of primary pro-

duction in the world’s oceans (Brown et al. 2010; Stock

et al. 2017), with consequent impacts on food availability

and fish growth and biomass (Martino et al. 2019). While

the relationship between ocean primary productivity and

fish growth is clear (Downing et al. 1990), the direction and

magnitude of this relationship can vary, from increased

growth due to greater food availability to growth reduction

associated with excessive primary production and ocean

deoxygenation, especially in highly productive and vari-

able environments (Martino et al. 2019; Tanner et al.

2019).

One approach to understanding how marine fish

demography may be impacted by future environmental

variance and extremes in temperature and salinity is to

study contemporary communities that exist within natu-

rally extreme and variable environments (Burt et al. 2020).

Here, we compare the effect of water temperature, salinity

and primary productivity on the size-at-age and growth rate

of the coral reef fishes Lutjanus ehrenbergii and Po-

macanthus maculosus between the environmentally

extreme southern Arabian/Persian Gulf (hereafter ‘Arabian

Gulf’) and comparatively more benign adjacent Oman Sea

(Fig. 1). The Arabian Gulf has the largest thermal range

([ 20 �C) and highest maximum sea surface temperature

(SST) experienced by extant coral reef fishes (win-

ter:\ 15 �C, summer:[ 35 �C), with fishes enduring

several months of conditions considered lethal to reef

fishes in other parts of the world (Riegl and Purkis 2012;

Rummer et al. 2014; Vaughan et al. 2019). In addition,

present summer SSTs in the Gulf are comparable to those

expected for tropical oceans by 2100 (Riegl and Purkis

2012; IPCC 2019), while winter temperatures can be so

low as to induce cold water coral bleaching (Coles and

Fadlallah 1991). Additionally, due to restricted water

exchange through the narrow Strait of Hormuz, as well as

limited freshwater input and high evaporation (Reynolds

1993, 2002), the Arabian Gulf’s waters are characterized

by hypersaline conditions (annual mean salinity 42 psu)

that are the highest reported for coral reefs (Bauman 2013,

Vaughan et al. 2019). In contrast, the Oman Sea is subject

to less extreme and variable temperature and salinity, but a

higher baseline and higher interannual variation of

chlorophyll-a concentration (used as a proxy for primary

productivity) due to seasonal upwelling events (Coles

2003, Bauman 2013).

Given differences in environmental conditions between

the Arabian Gulf and the Oman Sea, we hypothesise that,

in line with the TSR, (i) fishes in the Arabian Gulf would

exhibit lower growth rates, as well as smaller size-at-age
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and maximum body size than conspecifics from the less

extreme and less variable environment of the Oman Sea

and (ii) that predicted differences in growth between pop-

ulations (i.e. Arabian Gulf vs Oman Sea) would be driven

by local environmental conditions. We investigated the

role of temperature, salinity and productivity in structuring

fish demography between regions by using an otolith

sclerochronology approach and mixed-effect modelling

and predicted that low growth rate and small body size

would be the results of extreme temperature ranges in the

Arabian Gulf, exacerbated by high salinity and lower pri-

mary productivity.

Materials and method

To determine whether fish growth is reduced in the Arabian

Gulf compared to the Oman Sea and whether extreme

environmental conditions are the drivers of somatic growth

differences, we analysed the otolith structure of the

blackspot snapper (Lutjanus ehrenbergii, F. Lutjanidae

[Peters, 1869]) and the yellow-bar angelfish (Pomacanthus

maculosus, F. Pomacanthidae [Forsskål, 1775]). Both L.

ehrenbergii and P. maculosus are coral-associated species

commonly found on nearshore patch and fringing reefs

throughout both regions (Feary et al. 2010; Burt et al.

2011) and are known to have highly determinate growth

patterns (Grandcourt et al. 2010; 2011). Furthermore, the

two species were chosen because they are phylogenetically

and ecologically disparate: L. ehrenbergii is a generalist

carnivore, feeding on benthic invertebrates associated with

turfing algae (i.e. amphipods, isopods) and small fish

(Randall 1995; D’Agostino et al. 2019), while P. maculo-

sus is a facultative spongivore/corallivore (Shraim et al.

2017).

Sample collection of focal species for life-history

comparison

Sample collection encompassed six sites within the Ara-

bian Gulf (three reefs and four local fish landing sites,

spanning from Dhabiya to Umm Al Quwain) and seven

sites within the Oman Sea (two reefs and five local fish

landing sites, spanning from Dibba to As Seeb) (Fig. 1,

Table S2). As both species are relatively site attached and

the nearest sites between the two regions were separated by

more than 300 km (Grizzle et al. 2016; Burt et al. 2016),

negligible movement between regions was predicted

(Buchanan et al. 2019). Fish sourced from landing sites

were purchased and sampled only upon confirmation of

their local origin from the fisherman. Individuals collected

in situ (i.e. from the reefs) were collected using the fish

anaesthetic clove oil (juveniles) or spear guns (sub-adults

and adults) and euthanized using an ice slurry. Upon col-

lection, all individuals were measured (standard length

Fig. 1 Map of the study regions

showing collection locations in

the southern Arabian/Persian

Gulf and northern Oman Sea

(circles: field collection–reefs,

triangles: local fish landing

sites; refer to Table S2 for

location names, coordinates and

sampling method)
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[SL], nearest mm), weighed (total weight, nearest g) and

sagittal otoliths removed, cleaned in ethanol and stored dry.

Age determination

To determine age, 1012 and 210 otoliths were sectioned

from L. ehrenbergii and P. maculosus specimens, respec-

tively (Table 1). Each otolith was ground to the nucleus to

produce a thin transverse section (* 300 lm) and moun-

ted on a microscope slide using established procedures (i.e.

Taylor and McIlwain 2010). Otoliths were examined under

transmitted light with a low power microscope and indi-

vidual ages estimated by counting the number of annual

increments, or annuli, along the dorsal antisulcus axis of

each otolith (Fig. 2). Previous studies have verified the

deposition of annual increments for both species (Grand-

court et al. 2010; 2011). Blind reads (with respect to size

and collection location) of annual increments were per-

formed by the first author (DD) on three separate occasions

for each specimen. Final age was determined when two or

more counts agreed, and the precision of age estimation

was calculated using the index of average percentage error

(IAPE) (following Wakefield et al. 2017). If agreement was

not achieved after three counts, the sample was excluded

from the analysis. For individuals\ 1 year, otolith sec-

tions were further ground with lapping film, polished by

hand with 0.3 lm alumina powder and viewed through a

compound microscope by one of the co-authors (BMT).

For these individuals, age was then estimated by counting

the number of daily increments, with three blind reads

performed for each individual. Final age for juvenile fishes

was taken as the median of three counts when all counts

were within 10% of the median. Samples with counts[
10% of the median were excluded from the analysis.

Population-level growth, body size and life span

To model and compare the population growth rate of P.

maculosus and L. ehrenbergii between the Arabian Gulf

and the Oman Sea, the re-parameterised version of the von

Bertalanffy growth function (rVBGF, Francis 1988) was

used (Visconti et al 2018). The rVBGF describes growth

based on modelled body size of individuals at three ages,

Ls, Lx and Ll, allowing a direct comparison of mean size-

at-age data between populations. Age s was selected to

reflect the ascending part of the growth trajectory (i.e. the

period of fast, early growth), x represents the onset of a

reduction in growth rate, while l represents the asymptote

of growth (i.e. when growth reaches a plateau) (Trip et al.

2008, 2014). To model species growth based on the tra-

jectory of the region-specific growth curves, ages 1 and

5 years (based on annuli counts) were taken as Ls (here-

after ‘L1’) and Ll (hereafter ‘L5’), respectively, while Lx

was calculated at 3 years (hereafter ‘L3’). The rVBGF

model was fitted using the age (years) and length data (mm

SL) of each sample and by constraining the curve to a

length of settlement of 10 mm SL (Grandcourt et al. 2011).

The best-fit model parameters, L1, L3 and L5, describing

each dataset were determined by minimising the negative

log of the likelihood, given a probability density function

with a Poisson distribution (Haddon 2001).

Mean maximum age (hereafter ‘Agemax’) and mean

maximum body size (hereafter ‘Lmax’) were estimated for

both species in each region. Agemax and Lmax were taken,

respectively, as the average age (years) and body size (SL)

of the 25% oldest or largest adult (i.e. C 3 years old)

individuals, respectively (Trip et al. 2008, 2014). Differ-

ences in mean Agemax and Lmax between populations were

analysed using linear models.

Table 1 Details of Lutjanus ehrenbergii and Pomacanthus maculosus
otolith samples used to investigate differences in growth between the

Arabian Gulf and the Oman Sea. Site and species-specific growth

comparison and best-fit re-parameterised von Bertalanffy growth-

function parameters (rVBGF) are shown

Species Area n Size range

(mm)

Age (days–

years)

Agemax

(SE)

Lmax (SE) L1 L3 L5 - k r

Lutjanus
ehrenbergii

Arabian Gulf 873 33–224 38–15 8.58 (0.41) 199.52 (1.91) 132.54 186.31 189.45 4071.80 25.53

Oman Sea 139 18–282 27–16 11 (0.53) 246.21 (3.71) 144.72 216.52 223.12 695.66 34.81

Pomacanthus
maculosus

Arabian Gulf 168 9–262 9–31 14.62 (1.14) 197.48 (4.94) 95.12 160.65 170.48 841.03 36.12

Oman Sea 42 40–264 81–22 8.55 (1.93) 227.11 (6.55) 107.34 177.83 188.34 204.78 28.65

n, sample size; L1, mean size-at-age one; L3, age three; L5, age five; - k, negative log-likelihood; r, standard deviation. All sizes are in mm SL,

Ages are in years unless indicated otherwise
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Individual annual growth estimation

To determine whether yearly growth rate differs within

species between regions, annual increment widths were

measured and compared between individuals. A subset of

the total samples (148 and 144 otoliths of L. ehrenbergii

and P. maculosus, respectively; Table 2) that showed clear

edges between annual increments and with at least one

completed annual increment (i.e. individuals C 2 years

old) were photographed and examined. As otolith growth is

an appropriate representation of fish somatic growth in our

species (i.e. significant positive relationship between oto-

lith radius and individual body length, see Fig. S1a, b),

increment widths were measured (mm) along the dorsal

antisulcus axis (from core to edge) using MorphoJ (v1.06).

Distances between the outer edges of each annual incre-

ment were taken to indicate the width of each consecutive

growth increment (Fig. 2a, b). Through back-calculation

from age at capture (hereafter ‘AAC’) and year of capture,

age (‘Age’) and calendar growth year (‘Year’) were,

respectively, assigned to each increment (Table 3). The

first two annual increments were not used in the analysis

due to poor visualisation in the inner region of the otolith,

while the last (marginal) increments were excluded

because they did not represent a full year of growth

(Martino et al. 2019). For each region, the sample size was

at least five increment measurements per calendar year. In

total, increment widths were measured from 148 L.

ehrenbergii (Arabian Gulf = 58; Oman Sea = 90) and 144

P. maculosus (Arabian Gulf = 107; Oman Sea = 37) indi-

viduals (Table 2). Increment widths encapsulated growth of

individuals between 2002 and 2015 in L. ehrenbergii and

between 1993 and 2016 in P. maculosus (Table 2).

Growth mixed modelling

Sources of annual growth variation in P. maculosus and L.

ehrenbergii were investigated using a series of hierarchical

mixed-effects models predicting variation in otolith incre-

ment widths (following Morrongiello and Thresher 2015).

Growth was modelled separately for the two regions to

avoid the co-variation of multiple environmental factors

with regions. All mixed modelling was performed in R (R

core development team 3.5.1, 2019), using the packages

lme4 (Bates et al. 2018), effects (Fox 2003), and AICc-

modavg (Mazerolle 2019). Modelling could not be done for

P. maculosus in the Oman Sea due to insufficient sample

sizes.

Fig. 2 Annual increment

widths follow measurements

along transverse sections of

otoliths in (a) Lutjanus
ehrenbergii, and (b)
Pomacanthus maculosus.
Photographs were taken under a

high-power microscope with

transmitted light. Inset shows

the annotated transverse section

of a fish estimated as 8 years old

Table 2 Summary of L. ehrenbergii and P. maculosus otolith samples used to develop sclerochronologies

Species Area No. sampled years No. fish No. increment measurements Age range (year) Range of years

L. ehrenbergii Arabian Gulf 2 58 211 2–15 2002–2015

Oman Sea 2 90 368 2–16 2003–2015

P. maculosus Arabian Gulf 3 107 678 2–31 1993–2016

Oman Sea 4 37 119 2–22 2002–2016
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To explore potential drivers of inter-annual growth

variation within the model, we used both intrinsic and

extrinsic predictors. Intrinsic predictors (i.e. intra-popula-

tion drivers) were the fixed effects of Age and AAC, which

account for expected age-related trends, bias, and selec-

tivity (Morrongiello and Thresher 2015), while the random

effects of FishID and Year were utilized (Table 3 and

Supplementary materials–‘intrinsic predictors’ for details).

Extrinsic predictors (i.e. environmental predictors) were

mean, maximum and minimum annual SST (�C) (‘mean,

max and min SST’, respectively), annual mean salinity

(‘salinity’, psu) and annual mean chlorophyll-a (‘chl-a’, mg

m-3) (Table 3 and Supplementary materials–‘extrinsic

predictors’ for details). Due to the lack of sex data, sex was

not used as growth predictor; nevertheless, patterns of

sexual dimorphism are known for our species (i.e. female

individuals grow larger in L. ehrenbergii, while males grow

larger in P. maculosus) (Grandcourt et al. 2010, 2011), and

were taken into account during the interpretation of the

results.

Model selection

Growth, Age, and AAC were log-transformed to meet

model assumptions. All variables (intrinsic and extrinsic)

were mean centred to facilitate the convergence of the

model and the interpretation of the random slopes (Mor-

rongiello and Thresher 2015). Analyses were run with a

two-stage approach: in the first stage, we built a base set of

linear mixed models that encompassed a series of random

effect and fixed intrinsic effect structures to identify the

optimal intrinsic model (Tables S3–S6 and Supplementary

materials–‘models selection’ for details of models selec-

tion, ranking and fitting). In the second stage of the anal-

ysis, we investigated whether environmental factors

influenced growth. We extended the optimal intrinsic

model for each region to include single or combinations

between two environmental variables, which were fitted

separately and ranked using Akaike’s information criterion

corrected for small sample sizes (AICC) (Burnham and

Anderson 2004) and DAICc values (Table S7, S8). Inter-

actions between SST effects and between SST and salinity

were not included in the model selection as a high level of

correlation was expected. Additionally, collinearity

between all the remaining combinations was explored

using variance inflation factor (VIF) and models with VIF

above 3 were removed from comparison (Hair et al. 1998).

Finally, linear temporal growth trends were investigated by

adding Year as a fixed effect to the optimal intrinsic model.

Results

Population-level growth, body size and life span

The age range of L. ehrenbergii individuals was similar

between regions, ranging between 38 days and 15 years in

the Arabian Gulf and 27 days to 16 years in the Oman Sea;

whereas P. maculosus individuals’ age range differed

between regions comprising of both younger and older

Table 3 Descriptions of predictor variables used in the mixed-effects modelling of Lutjanus ehrenbergii and Pomacanthus maculosus’s growth

Parameter Description Data range

Fixed intrinsic effects

Age Age in years when otolith annual increment was formed

Year Year in which the annual increment was formed

AAC Age in years at time of capture. Measure of potential selectivity on growth

Fixed extrinsic effects

Mean SST Mean annual sea surface temperature (�C) 1993–2016

Max SST Mean maximum sea surface temperature during the hottest month (Aug) (�C) 1993–2016

Min SST Mean minimum sea surface temperature during the coldest month (Feb) (�C) 1993–2016

Salinity Mean annual salinity (psu) 1993–2016

Chl-a Mean annual chlorophyll-a (mg m-3) 2003–2016

Random effects

1|FishID Unique identifier code for each fish

1|Year Calendar year in which the increment was formed, quantifies inter-annual

growth variability

Age|FishID Random age slope for FishID random intercept, allows for individual-specific

differences in the growth - age relationship

Age|Year Random age slope for Year random intercept, allows for year-dependent

differences in age-specific growth
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individuals in the Arabian Gulf compared to the Oman Sea

(9 days to 31 years and 81 days to 22 years, respectively)

(Table 1). Although there is no generally applicable target

value for precision given variation among species (Cam-

pana et al. 2001), the IAPE for L. ehrenbergii and P.

maculosus was, respectively, 3.9 and 3.5% which is below

the expected value of 5% in high-volume ageing facilities

(Morison et al. 1998).

Both L. ehrenbergii and P. maculosus had consistently

smaller asymptotic size and maximum length (Lmax) in the

Arabian Gulf compared with the Oman Sea (Fig. 3a, b;

Table 1). Specifically, Lmax of L. ehrenbergii and P.

maculosus individuals was 19% (linear regression,

F = 153.3, df = 1,49, p\ 0.001) and 13% smaller

(F = 9.968, df = 1,34, p = 0.003), respectively. Maximum

age (Agemax) was significantly lower in the Arabian Gulf

compared to the Oman Sea for L. ehrenbergii (F = 4.362,

df = 1,49, p = 0.042), but did not significantly differ

between P. maculosus populations (F = 1.859, df = 1,34,

p = 0.182) (Table 1).

Sources of individual growth variation

Extrinsic conditions

The magnitude and temporal trends of extrinsic parameters

varied significantly between the Arabian Gulf and the

Oman Sea (Fig. 4, Table S1). Both regions recorded rela-

tively high inter-annual variation in min, mean and max

SST, while inter-annual variation in salinity was high in the

Arabian Gulf but minimal in the Oman Sea. In addition,

both regions recorded relatively high inter-annual variation

in chlorophyll-a concentrations, which was stronger in the

Oman Sea than the Arabian Gulf (Fig. 4a). Despite no

difference in annual mean SST between regions, the Ara-

bian Gulf had higher intra-annual SST variation, with

temperature significantly colder in winter and warmer in

summer compared to the Oman Sea, as well as higher

annual mean salinities, and lower annual mean chlorophyll-

a concentrations (Fig. 4b, Table S1).

Growth predictors

Across species and regions, growth declined with age and

salinity (Tables 4 and 5, see Table 4 for random effect

structure details). Negative effects of salinity on growth

rate were most apparent within the Oman Sea populations

of L. ehrenbergii (- 107.2% annual growth per unit

increase in annual mean salinity [psu-1]), while Arabian

Gulf populations of L. ehrenbergii and P. maculosus

also showed lower growth with higher levels of salinity

(- 30.3% and - 5.1% annual growth per unit increase in

annual mean salinity [psu-1], respectively) (Fig. 5a and

Table 5).

There was little consistent effect of increasing temper-

ature on growth rate between regions, though regional

patterns were apparent (Fig. 5b and Table 5). Water tem-

perature within the Arabian Gulf was positively correlated

to growth in both species, with increases in max SST

having a predicted effect on L. ehrenbergii’s growth rate

of ? 12.7% per �C, and increases in mean SST an effect

of ? 6.5% per �C in P. maculosus. There was no effect of

temperature on the Oman Sea populations of L.

ehrenbergii.

Discussion

We compared the growth of two common coral reef fish L.

ehrenbergii and P. maculosus between the environmentally

extreme Arabian Gulf and comparably benign Oman Sea,

and examined the impact of temperature, salinity and pri-

mary productivity on the somatic growth of populations

within each region. We found that both species were sig-

nificantly smaller at age and attained a smaller maximum

body size within the Arabian Gulf than within the Oman

Sea. However, contrary to the expectation that extremes in

temperature would be the main driver of somatic size

reduction (i.e. consistent with the TSR), reductions in body

size were mainly related to variation in salinity. Such

results indicate that salinity may be a vital determinant of

both species’ growth trajectories. In comparison, temper-

ature had a slightly positive effect on growth rates of

Arabian Gulf populations of both species, with no mea-

surable effect on Oman Sea fish populations.

In our study, growth declined with higher mean annual

salinity across species and regions, indicating the impacts

on demography of a highly saline environment are a

reduction and, ultimately, truncation of life history. Indeed,

together with temperature, food availability and photope-

riod, salinity is known to be a major factor in determining

fish development and growth (Boeuf and Payan 2001).

Moreover, as osmoregulation is energetically costly (i.e.

between 2 and 30% of daily energy expenditure in marine

fish) (Boeuf and Payan 2001; Ern et al. 2014; Kultz 2015),

changes in salinity may result in significant energy diver-

sion from growth (Boeuf and Payan 2001). Here, we did

not observe the expected crossing of growth curve trajec-

tories between populations living in different thermal

regime as predicted by the TSR (i.e. faster juvenile growth

but earlier asymptotic growth for fish living in warmer

environments) (Trip et al 2014), suggesting that salinity

and perhaps even productivity are exhibiting a strong

influence on differences in growth between regions. Inter-

estingly, growth rates of populations within the Oman Sea,
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where salinity conditions are predominantly stable, were

impacted more strongly by salinity fluctuations compared

to populations within the Arabian Gulf, suggesting Arabian

Gulf’s populations may have higher capability of accli-

mation to seasonal and interannual changes in environ-

mental conditions (Rummer and Munday 2017;

D’Agostino et al. 2019). While numerous studies have

examined the implications of increasing temperature and

temperature variability on coral reef fish growth (e.g.

Munday et al. 2008; Messmer et al. 2017; Taylor et al.

2019), to our knowledge there has been no investigation of

the combined effect of increasing temperature and salinity

on coral reef fish demography. This is despite the evidence

of synergism between the two stressors (Claireaux and

Lagarde 1999; Jian et al. 2003) and the likely occurrence of

both stressors in already dry regions and hyper-saline

(sensu saltier than ocean salinity) semi-enclosed seas in the

near future (such as the Arabian Gulf, Red Sea and

Mediterranean Sea) (Durack et al. 2012; Skliris et al. 2014;

Zika et al. 2018).

Positive effects of high SST on growth rates of both

species within the Arabian Gulf may show that high

summer water temperatures do not exceed the population’s

typical temperature range in this region. For example, there

Fig. 3 Comparison of re-

parameterised version of the

von Bertalanffy growth function

(rVBGF) for Lutjanus
ehrenbergii (a) and
Pomacanthus maculosus (b)
between the Arabian Gulf

(‘Gulf’) and the Oman Sea

(‘Oman’). Data points: red

circles = Arabian Gulf, blue

triangles = Oman Sea. Note

different scales on the x-axis
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was a positive effect of increased maximum SST on growth

rate of L. ehrenbergii, potentially indicating that the Ara-

bian Gulf’s summer temperature of[ 34 �C may not

exceed the thermal optimum for this species. Indeed, L.

ehrenbergii abundance and predatory activity appear to be

highest in summer (D’Agostino et al. 2019; Vaughan et al.

Fig. 4 Intra- (a) and inter- (b) annual variability in sea surface

temperature (min, mean and max), salinity and chlorophyll-a between

the Arabian Gulf (‘Gulf’, red) and the Oman Sea (‘Oman’, blue). In

(a) divergent bars quantify the positive/negative annual change of

specific environmental variables during a given year from the

individual mean (dashed vertical line) across all years. In (b) solid

black line represents the median, with the box indicating the upper

and lower quartiles, and whiskers representing the maximum or

minimum observed value that is within 1.5 times the interquartile

range of the upper or lower quartile, respectively. Dots are individual

data points

Table 4 Optimal model structures derived by ranking a series of increasingly complex mixed-effects models

Species Region Intrinsic model Fixed effects Random effects Best extrinsic covariate structure

L. ehrenbergii Arabian Gulf 2a2 Age ? AAC Age|FishID ? 1|Year Salinity ? max SST

Oman Sea 2a2 Age ? AAC Age|FishID ? 1|Year Salinity

P. maculosus Arabian Gulf 3a1 Age Age|FishID ? Age|Year Salinity ? mean SST

Oman Sea NA NA NA NA

In Lutjanus ehrenbergii, the best intrinsic model was similar across regions and included Age and AAC with a random Age slope for FishID. This

indicated that the growth–age relationship differed among individuals, while the random intercept for Year indicated growth varied among years.

In Pomacanthus maculosus in the Arabian Gulf, the best intrinsic model included only Age as fixed intrinsic factor with random Age slope for

FishID and random Age slope for Year, indicating the age-growth relationship differed among years
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2021), suggesting that L. ehrenbergii may still have the

aerobic capacity to perform ecological tasks (e.g. swim-

ming, feeding) during the Arabian Gulf’s extreme summer

temperature. This hypothesis is supported by the results of

a recent laboratory temperature tolerance experiment on

three cryptobenthic fish species in the Arabian Gulf where

Brandl et al. (2020) showed that fish’s thermal maximum

tolerance limits largely surpass (i.e. between 1 and 2.5 �C)
the maximum summer temperature recorded in the region

(i.e. 36 �C). Finally, the positive effect of mean SST on

Arabian Gulf populations of P. maculosus may suggest that

intermediate temperatures experienced during milder win-

ters or slightly warmer springs or autumns may benefit the

growth rate of this species (Johansen et al. 2015; Djur-

ichkovic et al. 2019).

The smaller body sizes observed in Arabian Gulf fishes

of both species may represent a life-history trade-off

between metabolic demands (i.e. increased osmoregulatory

cost) and size, with likely flow-on effects to population

structure. Although not universally accepted, the gill-oxy-

gen limitation theory (GOLT) states that as gills function as

a two-dimensional surface with growth limited by geo-

metrical constraints, any three-dimensional increases in

fish body size, and consequent increases in oxygen

demand, may not be met by adequate oxygen supply (Pauly

and Cheung 2018, but see Audzijonyte et al. 2019). Con-

sequently, larger-bodied individuals may be unable to

compensate for increased metabolic demands associated

with high salinity and temperature, due to the incapability

of the respiratory system to supply enough oxygen. While

we did not observe a strong negative effect of max SST

(when dissolved oxygen is at its lowest and the oxygen

demand at its highest) on fish growth (Shapiro Goldberg

et al. 2019), large-bodied individuals are expected to have

limited capacity to increase mass-specific maximum

metabolic rate in warmer conditions (Messmer et al. 2017;

Rubalcaba et al. 2020) and to be more likely to approach

their maximum physiological capacity (Pauly and Cheung

2018). Hence, reduced individual body size in the Arabian

Gulf may represent a life-history trade-off, whereby sur-

vival is enhanced through smaller body size and, therefore,

reduced metabolic demands. Additionally, reduced body

size was recently observed in cryptobenthic fish species in

the Arabian Gulf compared to conspecific in the Oman Sea

(Brandl et al. 2020). Here the authors, based on gut content

analyses, suggested fish body size reduction was due to a

mismatch between individuals elevated energetic costs of

living in the extreme environment of the Arabian Gulf and

reduced food quality and diversity within this habitat.

Although reductions in body size may play an important

role in coping with variable and extreme temperature and

salinity, other mechanisms may be involved in facilitating

population stability. For example, recent work has high-

lighted the importance of behavioural and feeding plas-

ticity in coping with the Arabian Gulf’s extreme

environmental conditions. The pale-tail damselfish (Po-

macentrus trichrourus) appears able to mitigate bioener-

getic inefficiency associated with the fluctuating and

extreme water temperature within the Arabian Gulf by

downregulating costly activities during winter and summer,

while upregulating activity and increasing energy stores in

spring (D’Agostino et al. 2019). In this respect, P.

trichrourus, P. maculosus and Pomacentrus aquilis all

show a degree of feeding plasticity in the Arabian Gulf

(Shraim et al. 2017; D’Agostino et al. 2019), suggesting

that such plasticity in feeding may be an important factor in

Table 5 Fixed effect parameter estimates (± SE) and test statistics for optimal models describing intrinsic, temporal and environmental effects

on Lutjanus ehrenbergii and Pomacanthus maculosus’ growth (see Tables S1—8 for model selection and base models’ detail)

Fixed effects parameter Arabian Gulf Oman Sea

L. ehrenbergii P. maculosus L. ehrenbergii P. maculosus

Estimate t value Estimate t value Estimate t value Estimate t value

Intrinsic effects

Intercept - 2.20 (0.02) - 88.84 - 2.59 (0.02) - 130.4 - 2.26 (0.04) - 56.58 NA NA

Age - 1.04 (0.05) - 19.99 - 0.82 (0.03) - 23.61 - 1.06 (0.05) - 23.04 NA NA

AAC 0.27 (0.06) 4.81 - - 0.15 (0.05) 2.9 NA NA

Temporal effect

Year 0.08 (0.01) 5.59 0.01 (0.002) 6.42 0.07 (0.01) 7.75 NA NA

Environmental effects

Salinity - 0.3 (0.09) - 3.51 - 0.05 (0.02) - 2.18 - 1.07 (0.43) - 2.47 NA NA

SST (mean) - - 0.06 (0.04) 1.77 - - NA NA

SST (max) 0.13 (0.08) 1.58 - - - - NA NA
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understanding growth rate and overall body size of all three

species.

Reductions in fish body size, within the magnitude of

lowered size reported in the present work, are expected to

have substantial consequences for trophic interactions,

ecosystem function, fisheries and global protein supply

(Shackell et al. 2010; Cheung et al. 2013). Fish body sizes

are already reducing due to intensive fishing pressure

(Stergiou 2002), while there is also evidence to show the

potential additive effect of climate change and oxygen

limitation on individual (and therefore population) body

size spectrum (Cheung et al. 2013; van Rijn et al 2017;

Rubalcaba et al. 2020). Notably, theoretical models predict

that small reductions in individual body size (i.e. 4% over

50 years) may lead to a 50% increase in mortality as well

as a 5–35% reduction in biomass and catch (Audzijonyte

et al. 2013). However, most importantly, as fish fecundity

exponentially increase with body size, lowered body size is

expected to have substantial negative consequences on

population reproductive output, replenishment and long-

term persistence (Baudron 2014; Barneche et al. 2018),

which will have cascading effects on the wider ecosystem,

potentially impacting coastal economies and threatening

food security.

Understanding the mechanisms by which fishes endure

the Arabian Gulf’s extreme and variable environment will

be vital to understand how low latitude coral reef fish

populations may cope with predicted changes in their

environment. The present work shows that sub-tropical fish

communities can persist within extreme environmental

conditions, albeit with substantial trade-offs to their life

history and demographic structure; individuals of both L.

ehrenbergii and P. maculosus showed smaller size-at-age

and lower maximum size in the Arabian Gulf compared

with conspecifics in the Oman Sea. Our results suggest that

to predict the effect of climate change on fish demography,

Fig. 5 Predicted effect of annual mean salinity (a) and max and mean

sea surface temperature (SST) (b) on the otolith incremental growth

of Lutjanus ehrenbergii and Pomacanthus maculosus populations

between the Arabian Gulf (red lines) and the Oman Sea (blue line).

Black lines indicate 95% CI. Note different scales on the y and x-axis.

Predicted effects refer to the model outputs described in Table 4 and 5
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the combined effect of osmoregulatory and thermal stress

needs to be considered, especially in regions with limited

oceanic exchange and predicted increase in SST and

evaporation. Ultimately, to tease apart the effect of extreme

temperature and salinity on growth of Arabian Gulf fish

populations and establish the role of other potential coping

mechanisms (i.e. feeding and behavioural plasticity) in

mitigating environmental stressors, laboratory-based

physiological-behavioural experiments combining multiple

stressors and conditions, while assessing detailed energy

budget, are needed.
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