Skip to main content

Advertisement

Log in

Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Early life history traits of brooding corals are often affected by the environmental conditions experienced by parental colonies. Such parental effects can impact offspring survival, which influences the overall success of a population as well as resilience to environmental challenges. This study examines the reproductive ecology and early life history traits of the brooding coral Porites astreoides across a depth gradient in Bermuda. Fecundity, larval size, larval Symbiodinium density, and settlement success, as well as post-metamorphic juvenile survival, growth, and Symbiodinium density were compared across three reef sites representing an inshore patch reef (2–5 m), an offshore rim reef (8–10 m), and an upper-mesophotic reef (30–33 m). Although fecundity did not differ across sites, larvae produced by colonies on the patch reef site were smaller, had lower Symbiodinium densities, and had lower rates of settlement and juvenile survival compared to larvae from colonies on the rim and upper-mesophotic reef sites. Larvae produced by colonies from the rim and upper-mesophotic sites did not differ in size or Symbiodinium densities; however, rates of settlement, growth, and survival were higher for larvae from the upper-mesophotic site compared to those from the rim reef site. These results indicate that offspring quality and success vary among sites with differing environmental conditions and may imply higher recruitment potential and resilience for upper-mesophotic corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alamaru A, Yam R, Shemesh A, Loya Y (2009) Trophic biology of Stylophora pistillata larvae: evidence from stabel isotope analysis. Mar Ecol Prog Ser 383:85–94

    Article  Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2016) Mesophotic coral ecosystems under anthropogenic stress: A case study at Ponce, Puerto Rico. Coral Reefs 35:63–75

    Article  Google Scholar 

  • Badyaev AV, Uller T (2009) Parental effects in ecology and evolution: mechanisms, processes and implications. Proc R Soc Biol Sci Ser B 364:1169–1177

    Google Scholar 

  • Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141

    Article  Google Scholar 

  • Bak R, Engel M (1979) Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community. Mar Biol 54:341–352

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105:105–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the deep reef refugia hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Muir P, Englebert N, Bridge TCL, Hoegh-Guldberg O (2013) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32:935

    Article  Google Scholar 

  • Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: Evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238

    Article  Google Scholar 

  • Bridge TCL, Hughes TP, Guinotte JM, Bongaerts P (2013) Call to protect all coral reefs. Nat Clim Change 3:528–530

    Article  Google Scholar 

  • Chamberland VF, Latijnhouwers KRW, Huisman J, Hartmann AC, Vermeij MJA (2017) Costs and benefits of maternally inherited algal symbionts in coral larvae. Proc R Soc B 284:20170852

    Article  PubMed  Google Scholar 

  • Chornesky EA, Peters EC (1987) Sexual reproduction and colony growth in the scleractinian coral Porites astreoides. Biol Bull 172:161–177

    Article  Google Scholar 

  • de Putron S, Smith SR (2011) Planula release and reproductive seasonality of the scleractinian coral Porites astreoides in Bermuda, a high-latitude reef. Bull Mar Sci 87:75–90

    Article  Google Scholar 

  • de Putron S, Lawson JM, White KQL, Costa MT, Geronimus MVB, MacCarthy A (2017) Variation in larval properties of the Atlantic brooding coral Porites astreoides between different reef sites in Bermuda. Coral Reefs 36:383–393

    Article  Google Scholar 

  • Donelson JM, Munday PL, McCormick MI (2009) Parental effects on offspring life histories: when are they important? Biol Lett 5:262–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitt WK, Fisher CR, Trench RK (1986) Contribution of the symbiotic dinoflagellate Symbiodinium microadriaticum to the nutrition, growth and survival of larval and juvenile tridacnid clams. Aquaculture 55:5–22

    Article  Google Scholar 

  • Fricke HW, Meischner D (1985) Depth limits of Bermudan scleractinian corals: a submersible survey. Mar Biol 88:175–187

    Article  Google Scholar 

  • Ginzburg LR (1998) Inertial growth: population dynamics based on maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, Oxford, UK, pp 42–53

    Google Scholar 

  • Gleason DF, Wellington GM (1995) Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar Biol 123:693–703

    Article  Google Scholar 

  • Goodbody-Gringley G (2010) Diel planualtion by the brooding coral Favia fragum (Esper). J Exp Mar Biol Ecol 389:70–74

    Article  Google Scholar 

  • Goodbody-Gringley G, de Putron S (2016) Brooding cnidarians: planulation patterns, larval behavior, and recruitment dynamics. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future The world of Medusa and her sisters. Springer International, Switzerland, pp 279–290

    Chapter  Google Scholar 

  • Goodbody-Gringley G, Vollmer S, Woollacott RM, Giribet G (2010) Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar Biol 157:2591–2602

    Article  Google Scholar 

  • Goodbody-Gringley G, Wetzel D, Gillion D, Pulster E, Miller A, Ritchie K (2013) Toxicity of the Deepwater Horizon source oil and the chemical dispersant, Corexit 9500, to coral larvae. PLoS ONE 8:e45574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodbody-Gringley G, Marchini C, Chequer A, Goffredo S (2015) Population structure of the great star coral, Montastraea cavernosa, on mesophotic reefs in Bermuda. PLoS ONE 10:e0142427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green D, Edmunds P, Carpenter R (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10

    Article  Google Scholar 

  • Harii S, Yamamoto M, Hoegh-Guldberg O (2010) The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Mar Biol 157:1215–1224

    Article  CAS  Google Scholar 

  • Harrison PL (2011) Sexual Reproduction of Scleractinian Corals. In: Dubinsky Z, Stambler N (eds) Coral Reefs: An Ecosystem in Transition. Springer Science and Business Media B.V., Berlin, pp 59–85

    Chapter  Google Scholar 

  • Hart MW (1995) What are the costs of small egg size for marine invertebrate with feeding planktonic larvae. Am Nat 146:415–416

    Article  Google Scholar 

  • Hartmann AC, Marhaver KL, Chamberland VF, Sandin SA, Vermeij MJA (2013) Large birth size does not reduce negative latent effects of harsh environments across life stages in two coral species. Ecology 94:1966–1976

    Article  PubMed  Google Scholar 

  • Hartmann AC, Marhaver KL, Vermeij MJA (2017) Corals in healthy populations produce more larvae per unit cover. Conserv Lett 00:1–12. https://doi.org/10.1111/conl.12410

    Article  Google Scholar 

  • Havenhand JN (1993) Egg to juvenile period, generation time, and the evolution of larval type in marine invertebrates. Mar Ecol Prog Ser 97:247–260

    Article  Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: Deep reproductive refugia for threatened shallow corals. Sci Rep 5:12407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holstein DM, Smith TB, Paris CB (2016) Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS ONE 11:e014600608

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP, Rodrigues LJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyi L, Pratchett MS, Steneck R, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  PubMed  CAS  Google Scholar 

  • Isomura N, Nishihira M (2001) Size variation of planulae and its effects of the lifetime of planulae in three pocilloporid corals. Coral Reefs 20:309–315

    Article  Google Scholar 

  • Jackson JBC, Donovan M, Cramer K, Lam VV (2014) Status and trends of Caribbean coral reefs: 1970–2012. Global Coral Reef Monitoring Network. IUCN, Gland, Switzerland

    Google Scholar 

  • Jaeckle WB (1994) Rates of energy consuption and acquisition by lecithotrophic larvae of Bugula neritinia (Bryozoa: Cheilostomata). Mar Biol 119:517–523

    Article  Google Scholar 

  • Jaeckle WB, Manahan DT (1989) Feeding by a “nonfeeding” larva: uptake of dissolved amino acids from seawater by lecithotrophic larvae of the gastropod Haliotis rufescens. Mar Biol 103:87–94

    Article  CAS  Google Scholar 

  • Jaeckle WB, Manahan DT (1992) Experimental manipulations of the organic chemistry of seawater: implications for studies of energy budgets in marine invertebrate larvae. J Exp Mar Biol Ecol 156:273–284

    Article  Google Scholar 

  • Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV (2013a) Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol 22:4335–4348

    Article  PubMed  CAS  Google Scholar 

  • Kenkel CD, Meyer E, Matz MV (2013b) Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol Ecol 22:4322–4334

    Article  PubMed  CAS  Google Scholar 

  • Kojis BL, Quinn NJ (1984) Seasonal and depth variation in fecundity of Acropora palifera at two reefs inPapua New Guinea. Coral Reefs 3:165–172

    Article  Google Scholar 

  • Lucas MI, Walker G, Holland DL, Crisp DJ (1979) An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar Biol 55:221–229

    Article  Google Scholar 

  • Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263

    Article  Google Scholar 

  • Marshall DJ, Steinberg PD (2014) Larval size and age affect colonization in a marine invertebrate. J Exp Biol 217:3981–3987

    Article  PubMed  Google Scholar 

  • Marshall DJ, Bolton TF, Keough MJ (2003) Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. Ecology 84:3131–3173

    Article  Google Scholar 

  • Marshall DJ, Cook CN, Emlet RB (2006) Offspring size variation within broods as a bet-hedging strategy in unpredictable environments. Ecology 87:214–255

    Article  PubMed  Google Scholar 

  • Michalek-Wagner K, Willis B (2001) Impacts of bleaching on the soft coral Lobophytum compactum. II. Biochemical changes in adults and their eggs. Coral Reefs 19:240–246

    Article  Google Scholar 

  • Moran AL, Emlet RB (2001) Offspring size and performace in variable environments: field studies on a marine snail. Ecology 82:1597–1612

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, Oxford, UK

    Google Scholar 

  • Padilla-Gamino JL, Pochon X, Bird C, Concepcion GT, Gates RD (2012) From parent to gamete: Vertical transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the reef building coral Montipora capitata. PLoS ONE 7:e38440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Padilla-Gamino JL, Bidigare RR, Barshis DJ, Alamaru A, Hedouin L, Hernandez-Pech X, Kandel R, Leon Soon S, Roth MS, Rodrigues LJ, Grottoli A, Portocarrero C, Wagenhauser SA, Buttler F, Gates RD (2013) Are all eggs created equal? A case study from the Hawaiian reef-building coral Montipora capitata. Coral Reefs 32:137–152

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  PubMed  CAS  Google Scholar 

  • Pechenik JA (1990) Delayed metamorphosis by larvae of benthic marine invertebrates: does it occur? Is there a price to pay? Ophelia 32:63–94

    Article  Google Scholar 

  • Prasetia R, Sinniger F, Hashizume K, Harii S (2017) Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS ONE 12:e0177034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol 218:2365–2372

    Article  PubMed  Google Scholar 

  • Qian P, McEdward L, Chia FS (1990) Effects of delayed settlement on survival, growth, and reproduction in the spionid polychaete, Polydora ligni. Invertebr Reprod Dev 18:147–152

    Article  Google Scholar 

  • R Development Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich H, Robertson D, Goodbody-Gringley G (2017) Do the shuffle: Changes in Symbiodinium consoria throughout juvenile coral development. PLoS ONE 12:e0171768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richmond RH (1987) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533

    Article  Google Scholar 

  • Rivera HE, Goodbody-Gringley G (2014) Aggregation and cniae development as early defensive strategies in Favia fragum and Porites astreoides. Coral Reefs 33:1079–1084

    Article  Google Scholar 

  • Roth MS, Fan T-Y, Deheyn DD (2013) Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS ONE 8:e59476

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano X, Baums IB, Smith T, Jones R, Shearer TL, Baker AC (2016) Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci Rep 6:21619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y (2018) Can mesophotic corals replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology. https://doi.org/10.1002/ecy.2098

    Article  PubMed  Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2016) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Global Change Biol 22:2756–2765

    Article  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Tomascik T, Sander F (1987) Effects of eutrophication on reef-building corals II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies. Mar Biol 94:53–75

  • Wade MJ (1998) The evolutionary genetics of maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, Oxford, UK, pp 5–21

    Google Scholar 

  • Ward S, Harrison PL, Hoegh-Guldberg O (2002) Coral bleaching reduces reproduction of scleractinian corals and increases their susceptibility to future stress. Proc 9th Int Coral Reef Symp 2:1123–1128

  • Wellington GM, Fitt WK (2003) Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar Biol 143:1185–1192

    Article  CAS  Google Scholar 

  • Wendt DE (2000) Energetics of larval swimming and metmorphosis in four species of Bugula (Bryozoa). Biol Bull 198:346–356

    Article  PubMed  CAS  Google Scholar 

  • Wulff RD (1986) Seed size variation in Desmodium paniculatum. 2. Effects of seedling growth and physiological performance. J Ecol 74:99–114

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by PADI Foundation Grant #21893, a Bermuda Institute of Ocean Sciences Grant-In-Aid, an NSF-REU Grant awarded to BIOS (OCE‐1460686), a Galbraith/Wardman Fellowship at Eckerd College and the CV Starr Scholarship Endowment Fund at BIOS, and funding from the Bermuda Institute of Ocean Sciences University Programs Department. All corals were collected via hammer and chisel under collection permit 2016062248 from the Government of Bermuda, Department of Environment and Natural Resources. The authors would also like to thank the three anonymous reviewers, whose helpful comments and critiques greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen Goodbody-Gringley.

Additional information

Topic Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodbody-Gringley, G., Wong, K.H., Becker, D.M. et al. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones. Coral Reefs 37, 483–494 (2018). https://doi.org/10.1007/s00338-018-1673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-1673-2

Keywords

Navigation