Skip to main content
Log in

Muskeltraining – ein universelles Medikament

Muscle training—a universal drug

  • Leitthema
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

Zusammenfassung

Muskelaktivität bedeutet Bewegung und muskuläre Signalstoffe. Die Myokine sind „physiologische Medikamente ohne Nebenwirkungen“ für den Gesundheitsstatus. Sie wirken antidiabetogen, metabolisch, anabol, immunologisch, generalisiert antientzündlich und antinozizeptiv. Sie sorgen für den „crosstalk“ mit nahezu allen Geweben und Organen zur Abstimmung der Reaktionen und Adaptationen zwecks Sicherung der Gewebehomöostasen. Training ist die Intervention der Wahl bei „allen“ chronischen degenerativen, entzündlichen und autoimmunbedingten Krankheiten im nichtakuten Stadium und bei der chronischen Schmerzerkrankung.

Abstract

Muscle activity means contractions for all movements followed by muscular signalling substances. The myokines are “physiological drugs without side effects” that are beneficial for health status. They have an anti-diabetogenic, metabolic, anabolic, immunological, generalized anti-inflammatory and anti-nociceptive effect. They ensure crosstalk with almost all tissues and organs to coordinate reactions and adaptations for mutual benefit and ensure tissue homeostasis. Training is the intervention of choice for “all” chronic degenerative, inflammatory and autoimmune-related diseases in the non-acute stage and for chronic pain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

BDNF:

„Brain-derived neurotrophic factor“

CRP:

C‑reaktives Protein

FTF:

Fast-Twitch-Faser

IGF:

„Insulin-like growth factor“

IL:

Interleukin

Kcal:

Kilokalorie

Kj:

Kilojoule

Nm:

Newtonmeter

TNF:

Tumornekrosefaktor

Literatur

  1. Arraiz GA, Wigle DT, Mao Y (1992) Risk assessment of physical activity and physical fitness in the Canada health survey mortality follow-up study. J Clin Epidemiol 45(4):419–428

    Article  CAS  Google Scholar 

  2. Barbalho SM, Flato UAP, Tofano RJ, Goulart RA, Guiguer EL, Detregiachi CRP, Buchaim DV, Araújo AC, Buchaim RL, Reina FTR, Biteli P, Reina DOBR, Bechara MD (2020) Physical exercise and myokines: relationships with sarcopenia and cardiovascular complications. Int J Mol Sci 21(10):3607. https://doi.org/10.3390/ijms21103607

    Article  CAS  PubMed Central  Google Scholar 

  3. Bay ML, Pedersen BK (2020) Muscle-organ crosstalk: focus on immunometabolism. Front Physiol 9(11):567881. https://doi.org/10.3389/fphys.2020.567881

    Article  Google Scholar 

  4. Benatti FB, Pedersen BK (2014) Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol 11(2):86–97. https://doi.org/10.1038/nrrheum.2014.193

    Article  CAS  PubMed  Google Scholar 

  5. Blair SN, Kohl HW 3rd, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA (1995) Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 273(14):1093–1098

    Article  CAS  Google Scholar 

  6. Bortz WM II (1984) The disuse syndrome. West J Med 141:691–694

    PubMed  Google Scholar 

  7. Bortz WM (2018) Perspective: why exercise is good and its lack bad for everything. Am J Lifestyle Med 13(3):269–274. https://doi.org/10.1177/1559827618778236

    Article  PubMed  PubMed Central  Google Scholar 

  8. Campbell M, Varley-Campbell J, Fulford J, Taylor B, Mileva KN, Bowtell JL (2019) Effect of immobilisation on neuromuscular function in vivo in humans: a systematic review. Sports Med 49(6):931–950. https://doi.org/10.1007/s40279-019-01088-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choi KM (2016) Sarcopenia and sarcopenic obesity. Korean J Intern Med 31(6):1054–1060. https://doi.org/10.3904/kjim.2016.193

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clark BC, Pierce JR, Manini TM, Ploutz-Snyder LL (2007) Effect of prolonged unweighting of human skeletal muscle on neuromotor force control. Eur J Appl Physiol 100:53–62

    Article  Google Scholar 

  11. Clark BC, Manini TM (2008) Sarcopenia=/=dynapenia. J Gerontol A Biol Sci Med Sci 63:829–834

    Article  Google Scholar 

  12. Clark BC (2009) In vivo alterations in skeletal muscle form and function after disuse atrophy. Med Sci Sports Exerc 42:363–372

    Google Scholar 

  13. Clark BC, Taylor JL, Hoffman RL, Dearth DJ, Thomas JS (2011) Cast immobilization increases long-interval intracortical inhibition. Muscle Nerve 42:363–372

    Article  Google Scholar 

  14. de Oliveira Dos Santos AR, de Oliveira Zanuso B, Miola VFB, Barbalho SM, Santos Bueno PC, Flato UAP, Detregiachi CRP, Buchaim DV, Buchaim RL, Tofano RJ, Mendes CG, Tofano VAC, Dos Santos Haber JF (2021) Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. Int J Mol Sci 22(5):2639. https://doi.org/10.3390/ijms22052639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Devasahayam AJ, Kelly LP, Williams JB, Moore CS, Ploughman M (2021) Fitness shifts the balance of BDNF and IL‑6 from inflammation to repair among people with progressive multiple sclerosis. Biomolecules 11:504. https://doi.org/10.3390/biom11040504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Díaz BB, González DA, Gannar F, Pérez MCR, de León AC (2018) Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol Lett 203:1–5. https://doi.org/10.1016/j.imlet.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  17. Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, Pedersen BK (2004) Endurance training reduces the contraction-induced interleukin‑6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab 287(6):E1189–94. https://doi.org/10.1152/ajpendo.00206.2004

    Article  CAS  PubMed  Google Scholar 

  18. Fischer CP (2006) Interleukin‑6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12:6–33

    PubMed  Google Scholar 

  19. Fischer CP, Berntsen A, Perstrup LB, Eskildsen P, Pedersen BK (2007) Plasma levels of interleukin‑6 and C‑reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports 17:580–587

    CAS  PubMed  Google Scholar 

  20. Frank F (2003) Das metabolische Syndrom, Arteriosklerose und degenerative Erkrankung des Stütz- und Bewegungsapparates. Arbeitsmed Sozialmed Umweltmed 38:31–37

    Google Scholar 

  21. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615. https://doi.org/10.1038/nri3041

    Article  CAS  PubMed  Google Scholar 

  22. Gomarasca M, Banfi G, Lombardi G (2020) Myokines: the endocrine coupling of skeletal muscle and bone. Adv Clin Chem 94:155–218. https://doi.org/10.1016/bs.acc.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Gil AM, Elizondo-Montemayor L (2020) The role of exercise in the interplay between myokines, hepatokines, osteokines, adipokines, and modulation of inflammation for energy substrate redistribution and fat mass loss: a review. Nutrients 12(6):1899. https://doi.org/10.3390/nu12061899

    Article  CAS  PubMed Central  Google Scholar 

  24. Handschin C, Spiegelman BM (2008) The role of exercise in PGC1alpha in inflammation and chronic disease. Nature 454(7203):463–469

    Article  CAS  Google Scholar 

  25. Hong BS, Lee KP (2020) A systematic review of the biological mechanisms linking physical activity and breast cancer. Phys Act Nutr 24(3):25–31. https://doi.org/10.20463/pan.2020.0018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huffman KM, Andonian BJ, Abraham DM, Bareja A, Lee DE, Katz LH, Huebner JL, Kraus WE, White JP (2021) Exercise protects against cardiac and skeletal muscle dysfunction in a mouse model of inflammatory arthritis. J Appl Physiol (1985) 130(3):853–864. https://doi.org/10.1152/japplphysiol.00576.2020

    Article  CAS  Google Scholar 

  27. Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 41(1):14–29. https://doi.org/10.1007/s12272-017-0994-y

    Article  CAS  PubMed  Google Scholar 

  28. Jurca R, Lamonte MJ, Barlow CE, Kampert JB, Church TS, Blair SN (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc 37(11):1849–1855. https://doi.org/10.1249/01.mss.0000175865.17614.74

    Article  PubMed  Google Scholar 

  29. Kelly M, Gauthier MS, Saha AK, Ruderman NB (2009) Activation of AMP-activated protein kinase by interleukin‑6 in rat skeletal muscle: association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes 58(9):1953–1960

    Article  CAS  Google Scholar 

  30. Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH (2019) Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch 471(3):491–505. https://doi.org/10.1007/s00424-019-02253-8

    Article  CAS  PubMed  Google Scholar 

  31. Kim G, Kim JH (2020) Impact of skeletal muscle mass on metabolic health. Endocrinol Metab (Seoul) 35(1):1–6. https://doi.org/10.3803/EnM.2020.35.1.1

    Article  Google Scholar 

  32. Kito T, Teranishi T, Nishii K, Sakai K, Matsubara M, Yamada K (2016) Effectiveness of exercise-induced cytokines in alleviating arthritis symptoms in arthritis model mice. Okajimas Folia Anat Jpn 93(3):81–88. https://doi.org/10.2535/ofaj.93.81

    Article  CAS  PubMed  Google Scholar 

  33. Langer N, Hänggi J, Müller NA, Simmen HP, Jäncke L (2012) Effects of limb immobilization on brain plasticity. Neurology 78(3):182–188. https://doi.org/10.1212/WNL.0b013e31823fcd9c

    Article  CAS  PubMed  Google Scholar 

  34. Laube W (2013) Muskelaktivität: Prägung des ZNS und endokrine Funktion – somatische oder degenerativ-nozizeptive Körperstruktur. Man Med 51:141–150. https://doi.org/10.1007/s00337-012-0989-1

    Article  Google Scholar 

  35. Laube W (2020a) Sensomotorik und Schmerz. Wechselwirkung von Bewegungsreizen und Schmerzempfinden. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  36. Laube W (2020b) „Mehr Bewegung – Weniger Störung“ Funktion basiert auf Struktur – Struktur essentiell auf Funktion angewiesen. Man Med 58(6):307–315

    Article  Google Scholar 

  37. Leal LG, Lopes MA, Batista ML Jr (2018) Physical exercise-induced myokines and muscle-adipose tissue crosstalk: a review of current knowledge and the implications for health and metabolic diseases. Front Physiol 9:1307. https://doi.org/10.3389/fphys.2018.01307

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee IM, Hsieh CC, Paffenbarger RS Jr (1995) Exercise intensity and longevity in men. The harvard alumni health study. JAMA 273(15):1179–1184

    Article  CAS  Google Scholar 

  39. Lee IM, Paffenbarger RS Jr (2000) Associations of light, moderate, and vigorous intensity physical activity with longevity. The harvard alumni health study. Am J Epidemiol 151(3):293–299

    Article  CAS  Google Scholar 

  40. Lees SJ, Booth FW (2004) Sedentary death syndrome. Can J Appl Physiol 29(4):447–460. https://doi.org/10.1139/h04-029 (discussion 444–6)

    Article  PubMed  Google Scholar 

  41. Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 67(1):28–40. https://doi.org/10.1093/gerona/glr010

    Article  PubMed  Google Scholar 

  42. Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta 1800(3):235–244. https://doi.org/10.1016/j.bbagen.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  43. Mathis D, Shoelson SE (2011) Immunometabolism: an emerging frontier. Nat Rev Immunol 11(2):81. https://doi.org/10.1038/nri2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409

    Article  Google Scholar 

  45. Otaka N, Shibata R, Ohashi K, Uemura Y, Kambara T, Enomoto T, Ogawa H, Ito M, Kawanishi H, Maruyama S, Joki Y, Fujikawa Y, Narita S, Unno K, Kawamoto Y, Murate T, Murohara T, Ouchi N (2018) Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ Res 123(12):1326–1338. https://doi.org/10.1161/CIRCRESAHA.118.313777

    Article  CAS  PubMed  Google Scholar 

  46. Paffenbarger RS Jr, Hyde RT, Wing AL, Hsieh CC (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314(10):605–613

    Article  Google Scholar 

  47. Paffenbarger RS Jr, Lee IM (1997) Intensity of physical activity related to incidence of hypertension and all-cause mortality: an epidemiological view. Blood Press Monit 2(3):115–123

    PubMed  Google Scholar 

  48. Papadakis MA, Grady D, Black D, Tierney MJ, Gooding GA, Schambelan M, Grunfeld C (1996) Growth hormone replacement in healthy older men improves body composition but not functional ability. Ann Intern Med 124:708–716

    Article  CAS  Google Scholar 

  49. Paula FM, Leite NC, Vanzela EC, Kurauti MA, Freitas-Dias R, Carneiro EM, Boschero AC, Zoppi CC (2015) Exercise increases pancreatic β‑cell viability in a model of type 1 diabetes through IL‑6 signaling. FASEB J 29(5):1805–1816. https://doi.org/10.1096/fj.14-264820

    Article  CAS  PubMed  Google Scholar 

  50. Pedersen BK (2009) The diseasome of physical inactivity and the role of myokines in muscle-fat cross talk. J Physiol 587:5559–5568

    Article  CAS  Google Scholar 

  51. Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25(5):811–816. https://doi.org/10.1016/j.bbi.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  52. Pedersen BK (2019) Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol 15(7):383–392. https://doi.org/10.1038/s41574-019-0174-x

    Article  PubMed  Google Scholar 

  53. Pena GS, Paez HG, Johnson TK, Halle JL, Carzoli JP, Visavadiya NP, Zourdos MC, Whitehurst MA, Khamoui AV (2020) Hippocampal growth factor and myokine cathepsin B expression following aerobic and resistance training in 3xTg-AD mice. Int J Chronic Dis 2020:5919501. https://doi.org/10.1155/2020/5919501

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rosenberg IR (1989) Summary comments. Am J Clin Nutr 50:1231–1233

    Article  Google Scholar 

  55. Ruiz JR, Sui X, Lobelo F, Lee DC, Morrow JR Jr, Jackson AW, Hébert JR, Matthews CE, Sjöström M, Blair SN (2009) Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer Epidemiol Biomarkers Prev 18(5):1468–1476. https://doi.org/10.1158/1055-9965.EPI-08-1075

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM (2011) Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124(7):789–795. https://doi.org/10.1161/CIRCULATIONAHA.110.010710

    Article  PubMed  PubMed Central  Google Scholar 

  57. Severinsen MCK, Pedersen BK (2020) Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev 41(4):594–609. https://doi.org/10.1210/endrev/bnaa016

    Article  PubMed Central  Google Scholar 

  58. Slattery ML, Jacobs DR Jr (1988) Physical fitness and cardiovascular disease mortality. The US railroad study. Am J Epidemiol 127(3):571–580

    Article  CAS  Google Scholar 

  59. Slattery ML, Jacobs DR Jr, Nichaman MZ (1989) Leisure time physical activity and coronary heart disease death. The US railroad study. Circulation 79(2):304–311

    Article  CAS  Google Scholar 

  60. Yoo SZ, No MH, Heo JW, Park DH, Kang JH, Kim SH, Kwak HB (2018) Role of exercise in age-related sarcopenia. J Exerc Rehabil 14(4):551–558. https://doi.org/10.12965/jer.1836268.134

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zanette G, Manganotti P, Fiaschi A, Tamburin S (2004) Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol 115(6):1264–1275. https://doi.org/10.1016/j.clinph.2003.12.033

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Laube.

Ethics declarations

Interessenkonflikt

W. Laube gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laube, W. Muskeltraining – ein universelles Medikament. Manuelle Medizin 59, 179–186 (2021). https://doi.org/10.1007/s00337-021-00801-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-021-00801-x

Schlüsselwörter

Keywords

Navigation