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Abstract
Current asthma treatments have been discovered to decrease the risk of disease progression. Herein, we aimed to character-
ize novel potential therapeutic targets for asthma. Differentially expressed genes (DEGs) for GSE64913 and GSE137268 
datasets were characterized. Weighted correlation network analysis (WGCNA) was used to identify trait-related module 
genes within the GSE67472 dataset. The intersection of the module genes of interest, as well as the DEGs, comprised the 
key module genes that underwent additional candidate gene screening using machine learning. In addition, a bioinformatics-
based approach was used to analyze the relative expression levels, diagnostic values, and reverently enriched pathways of 
the screened candidate genes. Furthermore, the candidate genes were silenced in asthmatic mice, and the inflammation 
and lung injury in the mice were validated. A total of 1710 DEGs were characterized in GSE64913 and GSE137268 for 
asthma patients. WGCNA identified 2367 asthma module genes, of which 285 overlapped with 1710 DEGs. Four candidate 
genes, CDC167, POSTN, SEC14L1, and SERPINB2, were validated using the intersection genes of three machine learn-
ing algorithms, including Least Absolute Shrinkage and Selection Operator, Random Forest, and Support Vector Machine. 
All the candidate genes were significantly upregulated in asthma patients and demonstrated diagnostic utility for asthma. 
Furthermore, silencing CDC167 reduced the levels of inflammatory cytokines significantly and alleviated lung injury in 
ovalbumin (OVA)-induced asthmatic mice. Our study demonstrated that CDC167 exhibits potential as diagnostic markers 
and therapeutic targets for asthma patients.

Introduction

Asthma is a highly prevalent chronic respiratory condition 
that is observed on a global scale. According to available 
data, there has been a decline in the estimated prevalence 
of asthma, with rates decreasing from 601.2 to 477.9 per 
1,000,000 individuals between the years 1990 and 2019 
(Cao et al. 2022). Nevertheless, the frequency of these inci-
dents continues to increase, highlighting the ongoing need 
to address the burden of disease, particularly among school-
aged children (Asher et al. 2021). The primary approach 
to managing asthma includes the use of short-acting β(2)-
agonist (SABA) medications and inhaled corticosteroids 
(Fuhlbrigge and Sharma 2021; Nwaru et al. 2020). These 
treatments are intended to prevent or minimize asthma 
symptoms. However, it is important to note that the use of 
these medications has been associated with certain adverse 
effects, such as an increased likelihood of exacerbations and 
even higher mortality rates (Fuhlbrigge and Sharma 2021; 
Nwaru et al. 2020). The pathophysiology of asthma encom-
passes inflammation, hyperresponsiveness, and airway 
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remodeling. However, the considerable heterogeneity of the 
disease makes it difficult to identify biomarkers and develop 
novel therapeutic approaches (Busse et al. 2022). In addi-
tion, the characterized subtypes are not consistently stable; 
for instance, Type-2 (T2 or Th2)-low asthma can transition 
to the T2-high subtype as the disease progresses, and vice 
versa, based on the T2 inflammation-based classification 
standards (Habib et al. 2022). As a result, there is an urgent 
need to characterize novel biomarkers and therapeutic targets 
in order to enhance the diagnosis and treatment of asthma.

The utilization of bioinformatics analysis has demon-
strated significant promise in the characterization of bio-
markers and therapeutic targets in various diseases, includ-
ing asthma (Abdel-Aziz et al. 2020). Accordingly, ~ 38% 
of childhood asthma cases have been attributed to various 
hereditary factors, which have been associated with immune 
responses, muscle function, and lung function (Zayed 2020). 
Furthermore, the presence of disease heterogeneity, varia-
tions in datasets or sample sources, individual differences 
among patients, and differences in analytical methodology 
contribute to the variability observed in various studies. 
For example, weighted gene co-expression network analy-
sis (WGCNA) was applied using the GSE43696 dataset, 
resulting in the identification and characterization of 15 hub 
genes. These hub genes include BIRC5, CCNB2, CDCA2, 
MELK, UBE2C, and KIF20A, among others (He et  al. 
2020). The GSE89809 dataset was subjected to comparable 
analyses, yielding hub genes such as CCR1, CCR7, CXCR1, 
CXCR2, TLR2, FCGR3B, and FPR1 (Zhang et al. 2021). 
However, these findings diverged significantly from previ-
ous analyses despite some shared characteristic biological 
processes. Additionally, the presence of heterogeneity was 
observed in various studies, necessitating the utilization of 
multiple datasets and comprehensive analytical methodolo-
gies to identify universal biomarkers and therapeutic targets 
for further characterization.

The objective of this study was to discover new poten-
tial biomarkers using three machine learning algorithms: 
Least Absolute Shrinkage and Selection Operator (LASSO), 
Random Forest, and Support Vector Machine (SVM). The 
differentially expressed genes (DEGs) from the GSE64913 
and GSE137268 datasets were combined. These datasets 
consisted of samples collected from the airway epithelium 
and induced sputum of individuals diagnosed with asthma, 
respectively. The genes belonging to the module that was 
highly correlated with asthma were characterized using the 
GSE67472 dataset. In addition, the intersect genes of the 
module genes and the DEGs were analyzed with machine 
learning in order to identify hub genes associated with 
asthma. Furthermore, the hub genes were confirmed by 
examining their expression profiles in both the dataset and 
asthmatic mice. The findings demonstrate that CDC167, 
POSTN, SEC14L1, and SERPINB2 exhibit potential as 

diagnostic markers and therapeutic targets for individuals 
with asthma.

Materials and methods

Acquisition of asthma‑related datasets

The workflow of our bioinformatics analyses is summarized 
in Fig. 1. The datasets pertaining to asthma were obtained by 
downloading them from the GEO database, which identified 
differential gene expression and pathways in asthma and help 
us to find the potential as diagnostic markers, accessible at 
https:// www. ncbi. nlm. nih. gov/ geo/. The GSE64913 dataset 
comprises airway epithelial biopsy samples obtained from 
a cohort of 42 healthy individuals and 28 patients diagnosed 
with asthma. Similarly, the GSE67472 dataset encompasses 
epithelium samples collected from 43 healthy individuals 
and 62 asthma patients. Lastly, the GSE137268 dataset con-
sists of induced sputum samples obtained from 15 healthy 
individuals and 54 patients diagnosed with asthma. The 
basic information of the GEO datasets was shown in Table 1.

Characterization of DEGs

The “limma” package in the R software was used to screen 
the DEGs that were upregulated and downregulated in the 
GSE64913 and GSE137268 datasets. The screening crite-
ria were set as |log2FC|> 1.2 and P value < 0.05. The vol-
cano plot was generated using the “ggplot2” package. All 
the GEGs from both datasets were collected for subsequent 
analysis.

Weighted correlation network analysis (WGCNA) 
analysis

According to the WGCNA method (Botía et al. 2017; Lang-
felder and Horvath 2008), the GSE67472 dataset with most 
varied of genes was subsequently employed to examine the 
genes that are most likely associated with asthma using. 
The “goodSamplesGenes” function from the “WGCNA” 
R package was employed to assess the presence of miss-
ing and discrete values. Subsequently, the “hclust” function 
was utilized in hierarchical cluster analysis to eliminate out-
liers and generate a heat map illustrating the correlations 
between modules and traits. To circumvent the issue of 
arbitrary thresholds, a soft threshold was employed, while 
ensuring scale independence and mean connectivity by 
keeping the powers fixed. When the soft threshold power 
was defined as 10, the scale-free topology index was 0.9. 
Thus, this network conformed to the power-law distribu-
tion and closer to the real biological network state (Yang 
et al. 2018). The process of gene clustering involved the 

https://www.ncbi.nlm.nih.gov/geo/
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utilization of the “TOMsimilarity” and “hclust” functions 
to create the weighted adjacency matrix and transformed 
topological overlap matrix (TOM). The “cutreeDynamic” 
function was used to self-adaptively prune the dynamically 
identified modules of the hierarchical clustering tree by set-
ting 60 genes for each module. The co-expressed modules 

were generated using the “dynamicTreeCut” algorithm 
and subsequently clustered using the “moduleEigengenes” 
approach. The modules that exhibited similarities were sub-
sequently subjected to clustering using the “hclust” function, 
with a height threshold of 0.25. Subsequently, the clinical 
correlations of the genes within the module were assessed 

Fig. 1  Workflow for the charac-
terization of hub genes

Table 1  Basic information of the GEO datasets

GEO Organism Phenotype Submission date Platforms Samples Control Asthma Experiment type

GSE64913 Homo sapiens Severe asthma Mar 25, 2019 GPL570 70 42 28 Array
GSE67472 Homo sapiens Mild-to-moderate asthma May 06, 2021 GPL16311 105 43 62 Array
GSE137268 Homo sapiens Sputum asthma Sep 13, 2019 GPL6104 69 15 54 Array
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using the “corPvalueStudent” function. Subsequently, gene 
significance and module membership were computed for 
each module. Subsequently, the module genes of interest, 
identified in both the previously characterized DEGs and 
the most prominent module associated with asthma, were 
selected for subsequent analysis.

Gene ontology (GO) and kyoto encyclopedia 
of genes and genomes (KEGG) enrichment

The “clusterProfile” package was used to apply GO and 
KEGG enrichment to the DEGs as well as the relevant 
module genes. Included in GO enrichment are biological 
process (BP), cellular component (CC), and molecular func-
tion (MF). P value < 0.05 were applied to both enrichments.

Machine learning

The LASSO, Random Forest, and SVM algorithms were 
utilized to identify hub genes among the module genes of 
interest. The module genes of interest were normalized 
with the DEGs. LASSO was a conventional feature selec-
tion method, which could screen important differential genes 
(Alhamzawi and Ali 2018). Random Forest could be highly 
parallelized to obtain a more accurate and stable model 
(Asadi et al. 2021). And SVM algorithms help with gene 
classification and regression tasks (Uddin et al. 2019). In 
addition, the R software’s “glmnet” function was used to 
conduct the analysis for LASSO linear regression. Subse-
quently, the “cv.glmnet” function was used for cross-model 
validation, and the “coef” function was used to analyze the 
optimized genes. For Random Forest analysis, R package 
“randomForest” was used to construct the forest, and the 
30 most important asthma-related genes were selected as 
potential hub genes. For SVM, SVM-REF was constructed 
using the “caret” and “randomForest” R packages. Finally, 
the potential hub genes characterized by all three algorithms 
were deemed hub genes, which were characterized by the 
“VennDiagram” R package.

ROC evaluation

The module genes of interest were normalized using the 
DEGs. Subsequently, the predictive value of the predicted 
hub genes was evaluated using ROC curves using the 
“pROC” R package. Subsequently, the area under the curve 
(AUC) and 95% confidence interval (CI) were calculated.

Gene‑set enrichment analysis (GSEA)

The R packages “clusterProfiler” and “org.Hs.eg.db” were 
utilized to perform GSEA in order to identify the signaling 

pathways associated with hub genes in all three character-
ized datasets.

Animal experiments

In order to validate the hub gene CCDC167, an in vivo veri-
fication was conducted by referencing a previously published 
report (Wu et al. 2022). In this study, female BALB/c mice 
(aged 5 ± 1 weeks) were procured from the Experimental 
Animal Centre of East China Normal University [SCXK 
(Shanghai) 2021-0006] and subsequently housed in animal 
facilities that maintained specific pathogen-free conditions. 
All experimental procedures were reviewed and approved 
by the Animal Care and Use Committee of Kongjiang Hos-
pital. After a period of acclimation lasting one week, a total 
of 10 mice were randomly assigned to one of three groups: 
the control group, which received treatment with saline; the 
shNC group, which induced asthma and received treatment 
with short hairpin (sh) RNA as a negative control; and the 
shCCDC167 group, which induced asthma and received 
treatment with shCCDC167. To induce asthma, a solution 
consisting of 20 μg ovalbumin (OVA, Sigma-Aldrich, St. 
Louis, MO) and 2 mg aluminum hydroxide (769,460, Sigma-
Aldrich) was administered via intraperitoneal injection in a 
volume of 1 mL on day 7, day 14, and day 21. Subsequently, 
the mice with asthma were confined within a transparent 
enclosed cage measuring 20 × 20 × 30 cm for a duration 
spanning from day 27 to day 30. During this period, they 
were subjected to daily treatment with a 1% OVA solution 
administered via atomization for a duration of 20 min. The 
mice in the control group were administered a comparable 
quantity of normal saline. Furthermore, in the shNC and 
shCCDC167 experimental groups, a total volume of 50 μL 
of AAV6 recombinant vector (obtained from Genepharma 
Co., Ltd., Shanghai, China) containing either shNC or shC-
CDC167 was administered to the lungs of the mice via 
endotracheal intubation on day 1 and day 7. On the 34th day 
of the experiment, all mice were administered an intraperi-
toneal injection of pentobarbital sodium (100 mg/kg, Veto-
quinol, Cedex, France). Subsequently, the bronchoalveolar 
lavage fluid (BALF) and lung tissues were collected for sub-
sequent analysis. The shRNAs (Genepharma) employed in 
this study were as follows: CCDC167 shRNA: 5ʹ -CCG GCC 
TAG TGT TCA AGC ATG GCT TCT CGA GAA GCC 
ATG CTT GAA CAC TAG GTT TTT TG-3ʹ, and control 
shRNA: 5ʹ -CCG GCC TAG TGT TCA AGC ATG GCT 
TCT CGA GAA GCC ATG CTT GAA CAC TAG GTT TTT 
TG-3ʹ. The cytokines IgE (J24307, Giled Biotechnology, 
Wuhan, China), IL-4 (J24113, Giled), IL-5 (J24112, Giled), 
and IL-13 (J24122, Giled) present in bronchoalveolar lav-
age fluid (BALF) were examined using ELISA kits as per 
the manufacturer's guidelines. The mouse lung tissues were 
fixed using a 10% formalin solution, which was followed 
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by dehydration, paraffin embedding, and subsequent slicing 
into sections measuring 5 μm in thickness. The sliced sec-
tions underwent regular dewaxing and staining procedures 
using hematoxylin and eosin (H&E), periodic acid-Schiff 
stain (PAS), and Masson's trichrome stain to observe the 
presence of inflammatory cell infiltration, smooth muscle 
cell hyperplasia, and airway mucus secretion in the sam-
ples. The measurements of the inner area of the bronchial 
wall (WAi), airway smooth muscle area (WAm), number of 
bronchial smooth muscle cells (N), and inner perimeter of 
the bronchial wall (Pi) were conducted using Image Pro Plus 
software (Media Cybernetics Inc., MD, USA). These meas-
urements were obtained after the sections were observed at 
40X magnification and photographed using a microscope 
(Olympus CX41, Tokyo, Japan).

Statistics

Statistical analyses were conducted using R software 
(v4.2.1) and GraphPad Prism (V9.4.0, GraphPad Software, 
San Diego, CA, USA). Unless otherwise specified, the 
Student's t-test was employed for comparing between two 
groups, while one-way analysis of variance (ANOVA) was 
utilized for comparing among three or more groups. A P 
value < 0.05 was deemed to be statistically significant.

Results

Characterization of module genes

The DEGs for the GSE64913 and GSE137268 datasets, 
which include samples of airway epithelium and induced 
sputum, were characterized using the “limma” package of 
the R software. A total of 720 DEGs were identified for 
GSE137268, of which 488 were upregulated and 232 were 
downregulated (Fig. 2A). For GSE64913, 1035 DEGs were 
identified, of which 516 were upregulated and 519 were 
downregulated (Fig. 2B). DEGs for the two datasets were 
significantly different, with 1035 DEGs for GSE64913 
and 720 DEGs for GSE137268; however, only 45 intersect 
genes were characterized between the two datasets (Fig. 2C). 
Then, subsequent analysis was conducted on all DEGs from 
both datasets. The GSE67472 dataset, which contains air-
way epithelium samples from healthy donors and asthma 
patients, was normalized using DEGs and analyzed using 
the WGCNA package. Resulting gene dendrograms and 
respective module colors were displayed in Fig. 2D and E. 
The disease-related modules with the greatest significance 
were identified (Fig. 2F). Among the characterized mod-
ules, the light-cyan, cyan, and salmon modules were sig-
nificantly downregulated in asthma patients, whereas the 
purple, brown, and dark-green modules were significantly 

upregulated. The correlation and importance between 
genes and modules for the dark-green module are depicted 
in Fig. 2G; accordingly, 285 genes characterized both in 
the dark-green module and in the DEGs were chosen as the 
module genes of interest that were used in subsequent analy-
ses (Fig. 2H). The module genes of interest were primarily 
enriched in negative regulation of proteolysis, hydrolase, 
peptidase and endopeptidase activities (BP), regulation of 
endopeptidase activity (BP), apical part of cell (CC), apical 
plasma membrane (CC), and peptidase activities (MF) by 
GO analysis (Fig. 2I). Furthermore, via KEGG enrichment, 
the genes of interest were predominantly enriched in the 
chemokine signaling pathway, serotonergic synapse, glu-
tathione metabolism, and salivary secretion (Fig. 2J). Col-
lectively, we characterized 285 module genes of interest for 
future analyses.

Identification of asthma‑related hub genes 
via machine learning algorithms

The module genes of interest were then trained using 
LASSO, Random Forest, and SVM algorithms in order to 
identify the hub genes for asthma. Following normalization 
to the DEGs, LASSO regression was used to identify the 
most relevant genes via the minimum criteria (Fig. 3A), and 
20 genes were identified as potential hub genes with the 
optimal lambda value using the LASSO algorithm (Fig. 3B). 
Random Forest was used to calculate the importance of the 
module genes of interest. Importantly, the 30 most impor-
tant genes were chosen as the potential hub genes with 
mean decrease gini > 0.4 (Fig. 3C). As the number of trees 
increases, the error rate rapidly decreases. When the number 
of trees exceeds 30, the decrease in error rate begins to slow 
down and gradually stabilizes (Fig. 3D). In addition, 18 can-
didate hub genes were validated using the SVM algorithm, 
which displayed the lowest 5 × CV error (0.19, Fig. 3E) and 
highest 5 × CV accuracy (0.81, Fig. 3F). Finally, CCDC167, 
POSTN, SEC14L1, and SERPINB2 were designated as the 
asthma hub genes because they were characterized by all 
three machine learning algorithms (Fig. 3G).

Validation of the hub genes

Next, the hub gene expression levels in the GSE67472 
datasets were verified to validate the prediction. The 
expression of hub genes, including CCDC167, POSTN, 
SEC14L1, and SERPINB2, was significantly lower in 
healthy donors (controls) compared to asthma patients 
(Fig. 4A–D). The predictive value of the hub genes was 
assessed using ROC curves, and the aero under curves 
for CCDC167, POSTN, SEC14L1, and SERPINB2 were 
approximately 0.79, 0.87, 0.86, and 0.89, respectively, sup-
porting their sensitivity and specificity in asthma diagnosis 
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(Fig. 4E–H). The GSEA showed that in patients having a 
high expression of CCDC167, amino sugar and nucleo-
tide sugar metabolism, biosynthesis of nucleotide sugars, 

glycosphingolipid biosynthesis—lacto and neolacto series, 
mucin-type O-glycan biosynthesis, and terpenoid back-
bone biosynthesis were upregulated. Conversely, allograft 
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rejection, ascorbate and aldarate metabolism, graft-versus-
host disease, pentose and glucuronate interconversions, 
and type I diabetes mellitus were downregulated (Fig. 5A). 
On the other hand, in patients having a high expression of 
POSTN, amino sugar and nucleotide sugar metabolism, 
biosynthesis of nucleotide sugars, oxidative phosphoryla-
tion, proteasome and ribosome were upregulated. Con-
versely, allograft rejection, autoimmune thyroid disease, 
graft-versus-host disease, intestinal immune network for 
IgA production, and type I diabetes mellitus were down-
regulated (Fig. 5B). Moreover, in patients having a high 
expression of SEC14L1, biosynthesis of nucleotide sugars, 
mucin-type O-glycan biosynthesis, oxidative phosphoryla-
tion, proteasome, and ribosome were upregulated. Con-
versely, IL-17 signaling pathway, legionellosis, mineral 
absorption, rheumatoid arthritis, taurine, and hypotau-
rine metabolism were downregulated (Fig. 5C). Further-
more, in patients with elevated SERPINB2 expression, 
biosynthesis of nucleotide sugars, mucin-type Oglycan 
biosynthesis, proteasome, protein export, and ribosome 
were upregulated. On the other hand, allograft rejection, 
autoimmune thyroid disease, graft-versus-host disease, 
intestinal immune network for IgA production, and rheu-
matoid arthritis were downregulated (Fig. 5D). In addition, 
the application of GO analysis (Fig. 5E) revealed that the 
hub genes were enriched in fibrinolysis (BP), regulation 
of viral-induced cytoplasmic pattern recognition recep-
tor signaling pathway (BP), regulation of RIG-I signaling 
pathway (BP), negative regulation of viral-induced cyto-
plasmic pattern recognition receptor signaling pathway 
(BP), negative regulation of response to external stimu-
lus (BP), collagen-containing extracellular matrix (CC), 
Golgi apparatus subcompartment (CC), trans-Golgi net-
work (CC), peptidase inhibitor activity (MF), extracellular 
matrix structural constituent (MF), endopeptidase inhibi-
tor activity (MF), serine-type endopeptidase inhibitor 
activity (MF), and heparin-binding (MF). These results 
suggest that the characterized hub genes were upregulated 
in asthma patients and were involved in disease signal-
ing transduction. Among these enrichments, coiled-coil 
domain-containing protein 167 (CCDC167) was the gene 
involved in the greatest number of processes.

In vivo validation of the hub gene CCDC167

CCDC167 was upregulated in different types of tumors as 
previously reported (Chen et al. 2021). However, the role 
of CCDC167 in the development of asthma still remains 
unclear. To further study the mechanism of CCDC167 
in asthma, he shCCDC167 was used to downregulate the 
expression of CCDC167 in mice with asthma, and the result-
ant impacts of shCCDC167 were examined. The suppres-
sion of gene expression was confirmed in mice treated with 
shCCDC167, as demonstrated in Fig. 6A. In comparison 
to the control group (shNC), the experimental group (shC-
CDC167) exhibited decreased levels of total cell counts 
(Fig. 6B), eosinophils (Fig. 6C), macrophages (Fig. 6D), 
and lymphocytes (Fig. 6E) in BALF. Additionally, the shC-
CDC167 group demonstrated significantly lower levels 
of inflammatory cytokines, including IgE (Fig. 6F), IL-4 
(Fig. 6G), IL-5 (Fig. 6H), and IL-13 (Fig. 6I), in BALF.

Subsequently, the lung histology of the mice was exam-
ined. The airways of the shNC mice exhibited significant 
cellular infiltration and damage to alveolar structures, as 
observed through H&E staining. However, these effects 
were mitigated in the shCCDC167 group (Fig. 7A). Goblet 
cell hyperplasia and the production of airway mucus were 
detected in shNC mice using PAS staining. However, these 
effects were notably reduced in the shCCDC167 group, as 
shown in Fig. 7B. Furthermore, there was a notable pres-
ence of smooth muscle hyperplasia and fibrosis in the small 
airway tissues of the shNC group. However, this observa-
tion was reversed in the shCCDC167 group, as depicted in 
Fig. 7C. In the asthmatic mice treated with shNC, there was 
a notable reduction in WAi/WAm levels, accompanied by 
a noteworthy elevation in N/Pi, WAi/Pi, and WAm/Pi lev-
els. However, these changes were reversed upon treatment 
with shCCDC167, as depicted in Fig. 7D–G. The observa-
tions made in vivo provide empirical support for our initial 
hypothesis that CCDC167 has the potential to serve as both 
a biomarker and a therapeutic target for asthma.

Discussion

Asthma has been one of the most prevalent airway diseases 
in the world, affecting more than 2.3 million people and 
causing approximately 37,600 deaths in 2016 (2020). Unfor-
tunately, this disease remains incurable, and the treatment 
has long been “symptom-control” oriented, which requires 
long-term medication and results in a series of adverse 
reactions (Moore et al. 2022; Skoner et al. 2022; Skov et al. 
2022). Consequently, the identification of novel biomark-
ers and therapeutic targets for the treatment of asthma is 
urgent and essential. With the inclusion of datasets of epi-
thelial samples and induced sputum samples, as well as the 

Fig. 2  Characterization of module genes using WGCNA. A DEGs 
for GSE64913; B DEGs for GSE137268; C Overlap of DEGs in 
the GSE64913 and GSE137268 datasets; D Genes from GSE67472 
dataset with similar expression patterns were clustered into different 
modules to detect outliers; E Sample clustering tree diagram; F Heat 
map of module-trait correlations; G Scatter plots showing correlation 
and importance between genes and modules for module dark green; 
H Overlapping of the dark green module with DEGs form GSE64913 
and GSE137268 datasets; I Gene Ontology (GO) enrichment of 
the overlapped module genes; J Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment of the overlapped module genes

◂
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application of different training algorithms, we aimed to 
reduce the influence of heterogeneity in the current study. 
Four hub genes, CCDC167, POSTN, SEC14L1, and SER-
PINB2, have been characterized and confirmed with training 
databases and in vivo.

Asthma is obviously a heterogeneous disease with its 
many phenotypes, such as allergic and non-allergic, T2 
subtype, eosinophilic, and endotypes defined with different 
immunological mechanisms (Calvén et al. 2020). Therefore, 
it is difficult to characterize asthma biomarkers and thera-
peutic targets. In addition, asthma is stimuli-sensitive, which 
could potentially lead to heterogeneity in clinical samples 
under varying environmental conditions, such as humidity 
and air pollution of the air (Lam et al. 2016; Strauss et al. 
1978). Inclusion of specific subtypes and restriction of the 
environment may increase consistency and improve the qual-
ity of analyzed hub genes but may limit their applicability 

to other subtypes of asthma. In addition, over-subdivided 
phenotypes would cause difficulties in drug development 
and clinical decision-making. Several types of samples 
were collected for asthma in different researches, includ-
ing exhaled air, airway epithelial biopsies, induced sputum, 
serum, and urine (Popović-Grle et al. 2021). Among these 
samples, airway epithelial biopsies and induced sputum were 
generated directly from the infection focus, and are there-
fore expected to more accurately represent the pathology 
of asthma patients, such as cough, wheezing, shortness of 
breath,etc. (Aegerter and Lambrecht 2023; Bakakos et al. 
2011; Bradley et al. 1991). Asthma refers to abnormalities 
of immune cells, the epithelium of the airways, and their 
interactions (Calvén et al. 2020). Both airway epithelial 
biopsy and induced sputum were important diagnostic 
samples involving airway epithelial cells and inflammatory 
cells at different levels (Maestrelli et al. 1995). In the present 

Fig. 3  Characterization of hub genes using machine learning algo-
rithms. A Least absolute shrinkage and selection operator (LASSO) 
regression analysis of the module genes; B Selection of the optimal 
penalty parameter for LASSO regression; C Random Forest of the 
module genes, the red represents the asthma samples, the green refers 

to the healthy volunteers, and the black is for all samples; D The most 
important 30 genes selected with Random Forest; E, F Support Vec-
tor Machine (SVM) characterizing of feature genes; G Hub genes 
were selected by the union of the three machine learning algorithms
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study, we demonstrated that DEGs for epithelial biopsy and 
induced sputum were sufficiently distinct to ensure relevance 
and heterogeneity and included DEGs from both the epithe-
lium and immune cells.

The utilization of Weighted WGCNA and machine learn-
ing algorithms has been employed in the characterization 
of hub genes associated with various diseases, including 
asthma. WGCNA has the ability to identify and character-
ize gene modules that are most pertinent to specific traits 
(Li et al. 2021). This allows for the exclusion of DEGs 
that may be statistically significant but not relevant to the 
traits under investigation. In their study, Yan Li et al. con-
ducted an analysis of DEGs in the GSE64913 dataset, and 

characterized the asthma-related traits within the same 
dataset. Their findings demonstrated that ANXA8, ATF4, 
CD44, CYCS, DDIT3, FKBP5, LDHA, PMAIP1, S100A2, 
and SFN exhibited potential as hub genes associated with 
asthma (Li et al. 2023). Although the majority of their pre-
dicted genes demonstrated limited prognostic value when 
referencing the same dataset, this finding underscores the 
limited efficacy of hub gene characterization solely through 
the use of WGCNA. In their study, Ding et al. employed the 
WGCNA technique along with five machine learning algo-
rithms to identify hub genes associated with lipid metabo-
lism. Their findings indicated that CH25H exhibited poten-
tial as a biomarker for asthma in relation to lipid metabolism 

Fig. 4  Characterization of the identified hub genes. The levels of 
the hub genes were standardized to the DEGs, and the expression 
profiles of the hub genes, including CCDC167 (A), POSTN (B), 
SEC14L1 (C), and SERPINB2 (D) in the GSE64913, GSE137268 

and GSE67472 datasets were evaluated; The predictive value of 
CCDC167 (E), POSTN (F), SEC14L1 (G), and SERPINB2 (H) was 
evaluated with ROC curves: ***P < 0.001 by Student’s t-test
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(Ding et al. 2023). Accordingly, the inadequacy of a singu-
lar biomarker for this diverse disease was apparent. In this 
study, we have identified four hub genes that are associated 
with asthma. Previous research has demonstrated that two of 
these genes, namely POSTN and SERPINB2, are considered 
T2 signature genes and have shown promise as potential bio-
markers (Burgess et al. 2021; Du et al. 2022; Mo et al. 2019). 
However, the functional roles of CCDC167 and SEC14L1 in 
the context of asthma have yet to be fully elucidated.

POSTN is a well-characterized biomarker and crucial 
asthma regulator. POSTN promoted mucin hypersecretion 

and sustained eosinophilic inflammation, both of which 
were essential asthma pathologies of asthma (Burgess et al. 
2021). POSTN was also a biomarker and a key player in tis-
sue remodeling and fibrosis, which are important processes 
in bronchial asthma (Izuhara et al. 2015). SERPINB2 has 
been identified as an adaptive immunity regulator. Compared 
to wild-type SERPINB2(+/+) macrophages and mice, OVA 
significantly induced OVA-specific IFN-gamma-secreting T 
cells and enhanced the secretion of Th1-promoting cytokines 
in SERPINB2(−/−) macrophages and mice (Schroder 
et al. 2010). SERPINB2 was positively correlated with the 

Fig. 5  Gene set enrichment analysis (GSEA) and Gene Ontology 
(GO) enrichment. GSEA of the significant upregulated and downreg-
ulated signaling pathways in the hub genes CCDC167 (A), POSTN 

(B), SEC14L1 (C), and SEPRINB2 (D) in highly expressed individu-
als. (E) GO enrichment of the hub genes was applied
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severity of bronchial asthma (NE et al. 2017), and antagoniz-
ing SERPINB2 could inhibit the differentiation of Th2 cells 
in vitro (Zhou et al. 2021). Our analysis strategy identified 
POSTN and SERPINB2 as hub genes, which highlighted 
the significance of the two genes and supported the efficacy 
of our analyses.

As determined by GSEA, the hub genes were primarily 
enriched with the biosynthesis of nucleotide sugars, mucin-
type O-glycan biosynthesis, proteasome, and ribosome, 
whereas they were negatively correlated with allograft rejec-
tion and graft-versus-host disease. CCDC167 was associated 
with the majority of these predicted biological processes, 
emphasizing its central role in asthma. However, CDC167 
was previously an uncharacterized asthma gene. CCDC167 
was reported to be significantly upregulated as a hub gene in 
the lungs of chloroprene-treated mice (Guo and Xing 2016), 

and to be downregulated by multiple antitumor therapeutics 
in breast cancer patients (Chen et al. 2021). In the present 
study, CCDC167 was silenced in OVA-induced asthmatic 
mice, and the inhibitory effect of CCDC167 silencing in 
asthma was confirmed by decreased inflammatory cytokines 
and an improvement in airway injuries.

Conclusion

The four hub genes, namely CCDC167, POSTN, SEC14L1, 
and SERPINB2, were subjected to characterization and vali-
dation using the training databases. In particular, the role 
of CCDC167 as a crucial factor and a possible therapeutic 
target for asthma was confirmed through experimentation on 
mice with OVA-induced asthma.

Fig. 6  Effect of shCCDC167 on inflammation in asthmatic mice. A 
The silencing of CCDC167 in asthmatic mice was confirmed with 
qRT-PCR (WB?); B the level of total bronchoalveolar lavage fluid 
(BALF) cells; C the level of eosinophils in BALF; D the level of 

macrophages in BALF; E the level of lymphocytes in BALF; F the 
level of IgE in BALF; G the level of IL-4 in BALF; H the level of 
IL-5 in BALF; I the level of IL-13 in BALF. N = 10 for each group, 
***P < 0.001 by Student’s t-test
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Fig. 7  Effect of shCCDC167 on lung tissue damage in asthmatic 
mice. A Inflammatory cell infiltration in asthmatic mice was indi-
cated with H&E staining, scale = 100 μm; B pathologic morphology 
in asthmatic mice tested with Periodic acid-Schiff (PAS) staining, 
scale = 100  μm; C smooth muscle hyperplasia and fibrosis in asth-
matic mice visualized with Masson staining, scale = 100  μm; The 
inner area of the bronchial wall (WAi), airway smooth muscle area 

(WAm), number of bronchial smooth muscle cells (N), and inner 
perimeter of the bronchial wall (Pi) were measured with Image Pro 
Plus, and Wai/WAm (D); N/Pi (E); Wai/Pi (F); and WAm/Pi (G) 
were calculated. N = 4 for each staining and each of the sections was 
observed in 4 randomized 400X fields: ***P < 0.001 by Student's 
t-test
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