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Abstract
Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valu-
able for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published 
reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the 
assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International 
Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were 
stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key ele-
ments from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual 
dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and 
injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not 
observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-
old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was 
demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide 
range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive 
indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study 
of cardiac function in mice.

Introduction

Reference ranges are a powerful tool for diagnostic deci-
sion-making in clinical medicine and their use has become 
increasingly common (Rijnbeek et al. 2001; Williams et al. 
2020). Reference ranges are derived intervals containing 

a defined subset of values from a large and comparable 
population dataset. These values, designed to delineate the 
expected range of a given parameter, are used clinically to 
identify outlier values. Individuals presenting with values 
outside of a clinically defined reference range are considered 
abnormal and flagged for follow up clinical investigation.

Looking beyond clinical applications, reference ranges 
are of enormous value in pre-clinical, basic scientific 
research using in vivo modelling (Otto et al. 2016). They are 
used to define “normality” for a given genetic background, 
sex, and age of animals, such as inbred mouse strains. To 

Manuela A. Oestereicher, Janine M. Wotton, Jacqueline K. White 
and Nadine Spielmann have equal contributions.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00335-023-09995-y&domain=pdf


181Comprehensive ECG reference intervals in C57BL/6N substrains provide a generalizable guide…

1 3

our knowledge, there are no published reference ranges 
for electrocardiography (ECG) in the laboratory mouse. 
Such reference ranges would provide the research commu-
nity with the information necessary to evaluate the conse-
quences of pharmacological, environmental, or genetic per-
turbations, the latter opening up the opportunity to uncover 
genotype*phenotype associations.

We used ECG data collected under the auspices of the 
International Mouse Phenotyping Consortium (IMPC) 
(Dickinson et al. 2016) (https:// www. mouse pheno type. org), 
to generate the first mouse-specific cardiac physiology ref-
erence ranges. Here, data were collected from over 26,000 
conscious or anesthetized C57BL/6N wildtype control mice 
stratified by sex and age. The unprecedented scale of this 
data resource yields a robust reference range for a broad 
and commonly studied set of ECG parameters that are clini-
cally important to assess myocardial electrical processes and 
cardiac function.

Materials/methods

The International Mouse Phenotyping Consortium

The International Mouse Phenotyping Consortium (IMPC) 
represents a multi-institutional and collaborative research 
initiative encompassing twenty-four major research organi-
zations and funding agencies, distributed globally (Dickin-
son et al. 2016). The IMPC seeks to generate and pheno-
type a knockout mouse line for every protein-coding gene 
in the mouse genome (www. mouse pheno type. org) (Muñoz-
Fuentes et al. 2018). Phenotyping is carried out under the 
uniform operating procedures detailed in IMPReSS (Inter-
national Mouse Phenotyping Resource of Standardized 
Screens; www. mouse pheno type. org/ impre ss/ index), which 
were developed and validated during the pilot programs 
EUMORPHIA and EUMODIC (Green et al. 2005).

IMPC centers contributing electrocardiography data

IMPC data release (DR) 15.0 was used herein (https:// www. 
mouse pheno type. org/ data/ previ ous- relea ses/ 15.0). The fol-
lowing subset of ten IMPC data-contributing centers pro-
vided electrocardiography (ECG) data in DR 15.0 (ethical 
approval details are included in parenthesis after each con-
tributing center):

 1. Baylor College of Medicine (BCM) (Institutional 
Animal Care and Use Committee approved license 
AN-5896).

 2. German Mouse Clinic Helmholtz Zentrum München 
(GMC) (#144-10, 15-168)

 3. Medical Research Council (MRC) – Harwell (HAR) 
(Animal Welfare and Ethical Review Body approved 
licenses 70/8015 and 30/3384).

 4. Institute Clinique de la Souris, Mouse Clinical Institute 
(ICS) (#4789-2016040511578546v2).

 5. The Jackson Laboratory (JAX) (Institutional Animal 
Care and Use Committee approved licenses 14,004, 
11,005, and 99,066. JAX AAALAC accreditation num-
ber 000,096, NIH Office of Laboratory Animal Welfare 
assurance number D16-00,170).

 6. RIKEN BioResource Research Center (RBRC) (Ani-
mal Care Committee approved animal use protocols 
0153, 0275, 0277, and 0279).

 7. University of California – Davis (UCD) (Institutional 
Animal Care and Use Committee approved animal 
care and use protocol number 19,075. UCD AAALAC 
accreditation number 000029, and the NIH Office of 
Laboratory Animal Welfare assurance number D16-
00,272 # (A3433-01).

 8. Seoul National University, Korea Mouse Phenotyping 
Center (KMPC) (KRIBB-AEC-19189).

 9. Czech Centre for Phenogenomics (CCP) (AV CR 
62/2016, Academy of Sci., Czech Rep.).

 10. The Centre for Phenogenomics, Toronto (TCP) (22-
0275 and 22-0279).

ECG data were collected from mice at one of two pos-
sible timepoints. For the Early Adult (EA) Pipeline, data 
were collected at a mean of 12 weeks with the minimum of 
8 and maximum of 16 weeks of age. For the Late Adult (LA) 
Pipeline, data were collected at a mean of 62 weeks with the 
minimum of 52 and maximum of 78 weeks of age. Animal 
welfare was assessed routinely for all mice involved.

Animals

This study includes data collected from inbred wildtype con-
trol animals tested as part of the IMPC goals. These mice, 
both males and females, were on a C57BL/6N genetic back-
ground of substrains: C57BL/6NCrl (CCP, HMGU, ICS, 
TCP and UCD); C57BL/6NJ (JAX and BCM); C57BL/6NJcl 
(RBRC) and C57BL/6NTac (KMPC, HMGU, ICS and 
HAR). Non-IMPC mice were from four different studies: 
(1) The founder strains animals from a study titled “The Col-
laborative Cross: A Recombinant Inbred Mouse Population 
for the Systems Genetic Era” (Threadgill et al. 2011) with 
A/J, C57BL/6J, 129S1/SvlmJ, NOD/ShiLtJ, NZO/HlLtJ, 
CAST/EiJ, PWK/Ph, and WSB/EiJ inbred strains (https:// 
pheno me. jax. org/ proje cts/ GMC13); (2) The Jaxwest1 pro-
ject, a multi-system analysis of physiology on seven inbred 
strains of mice: 129S1/SvImJ, A/J, BALB/cJ, C57BL/6J, 
DBA/2J, NOD/ShiLtJ and SJL/J (https:// pheno me. jax. org/ 
proje cts/ Jaxwe st1); (3) Wildtype control animals from three 
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non-IMPC studies performed at the German Mouse Clinic 
(https:// www. mouse clinic. de/) with a standard sample size 
(20–30 control animals per study). The mouse backgrounds 
were: (i) An independent repeat of strain C57BL/6NJ (Jack-
son Laboratory strain #:005304) that is used by some of 
the IMPC contributing centers; (ii) C57BL/6J (JAX strain 
#:000664), the most commonly used inbred mouse strain 
and the first to have its genome sequenced; and (iii) FVB 
(JAX strain #:001800), a widely used multipurpose inbred 
line. For more information on these inbred strains, visit: 
https:// www. jax. org/ strain; and (4) The Xing1, Aging study: 
Electrocardiogram for 29 inbred strains of mice (https:// 
pheno me. jax. org/ proje cts/ Xing1) (Xing et al. 2009). Xing1 
recorded ECG characteristics in the following 26 inbred 
mouse strains: 129S1/SvImJ, A/J, BALB/cByJ, BTBR 
T+ Itpr3tf/J, BUB/BnJ, C3H/HeJ, C57BL/10J, C57BL/6J, 
C57BLKS/J, C57BR/cdJ, C57L/J, CBA/J, DBA/2J, FVB/
NJ, KK/HIJ, LP/J, MRL/MpJ, NOD.B10Sn-H2b/J, NON/
ShiLtJ, NZO/HlLtJ, NZW/LacJ, P/J, PL/J, RIIIS/J, SM/J, 
and SWR/J. AKR/J, PWD/PhJ and SJL/J were excluded 
herein due to incomplete ECG data.

Data collection

The IMPC standard operating procedure provides an over-
view of the conscious and anesthetized ECG procedures 
used by contributing centers (https:// www. mouse pheno type. 
org/ impre ss/ Proce dureI nfo? action= list& procID= 1415& 
pipeID=7). In brief, conscious ECG was collected using 
ECGenie equipment (Mouse Specifics, Inc.) as detailed 
previously by Spielmann (Spielmann et al. 2022). Based 
on availability of equipment and local expertise, some con-
tributing centers opted to perform anesthetized ECG using 
Power Lab recording equipment and LabChart8 software 
(ADInstruments), configured in the following way. All cent-
ers used the “Mouse” preset detection and analysis settings 
and the “Rodent T-wave” analysis mode. The default values 
in the LabChart detection and analysis settings were as fol-
lows: the typical QRS width was 10 ms; R-waves were at 
least 60 ms apart; the Pre-P baseline was 10 ms; the maxi-
mum PR was 50 ms; the maximum RT was 40 ms; and the 
ST height was measured at 10 ms from alignment. Detailed 
information about ECG acquisition, including these default 
settings and parameter analysis are available (https:// www. 
mouse pheno type. org/ impre ss/ Proce dureI nfo? action= list& 
procID= 1426).

Mice were anesthetized either with inhaled isoflurane 
(anesthesia was induced using 2.5–4% isoflurane in oxy-
gen then maintained using 2–2.5% isoflurane in oxygen) or 
injected tribromoethanol (Sigma, stock concentration 20 mg/
ml, dose calculated as 0.5 g/kg body weight). Anesthetized 
mice were positioned supine on a warming pad apparatus 
that maintained the animal’s core temperature at 37 °C. 

Needle electrodes were placed subcutaneously as follows: 
the negative electrode in the right forelimb; the ground elec-
trode in the right hindlimb; and the positive electrode in 
the left hindlimb. ECG data were collected for up to 120 s 
and the resulting data analyzed using LabChart software 
(ADInstruments). Regardless of the methodology, ECG was 
recorded in a dimly lit, quiet procedure room. In order to 
eliminate circadian influences ECG was recorded during the 
morning when the resting phase of a mouse begins.

Data annotation and quality

Standard protocols for ECG signal analysis were used to 
analyze the data. For each cardiac cycle, the P, Q, R, S and 
T peaks were defined and used to derive a total of fifteen 
parameters including intervals, amplitudes, and dispersions 
(Supplemental Table 1).

In both, conscious (ECGenie equipment) and anesthe-
tized (LabChart using the preset windows stipulated above) 
EGC, P, Q, R, S and T peaks were automatically detected 
by averaging over multiple cardiac cycles. If any peaks were 
not selected correctly by either software, the position of this 
marker was corrected manually. Heart rate variability (HRV) 
was calculated as the mean of the differences between suc-
cessive heart rates for the entire set of ECG signals. The 
QT-intervals were frequency corrected (QTc) by apply-
ing the following equation derived by Mitchell (Mitchell 
et al. 1998): QTc = [QT/√(RR/100)]*1000 s. Noise and 
movement artefacts were automatically eliminated by the 
software.

Some subtle differences in wave marker placement were 
observed across IMPC contributing centers. P, Q and R 
marker locations were annotated consistently by all con-
tributing centers. In Fig. 1, S is annotated at the peak nega-
tive inflection point of the QRS complex, which accurately 
reflects the majority of data reported herein, including all 
data collected from conscious mice. However, for datasets 
collected on anesthetized mice, contributing centers variably 
annotated S at the peak negative inflection point, the isoelec-
tric point, or halfway between peak negative inflection and 
isoelectric point. In Fig. 1,  TConscious is annotated as the peak 
positive inflection following S, which accurately reflects 
the majority of data reported herein, including all data col-
lected from conscious mice. However, that peak can also 
be annotated as J (Calvet and Seebeck 2023). This reflects 
the considerable variation and controversy in mouse ECG 
literature around the positioning of T (Berul et al. 1996; 
Boukens et al. 2012; Doevendans et al. 1998; Goldbarg et al. 
1968). One advantage of anesthetized ECG is that signal 
noise decreases as the animals are immobilized and with 
this decrease in electrical noise, the sensitivity of the wave-
form detection improves. All the centers that contributed 
ECG data collected from isoflurane and tribromoethanol 
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anesthetized mice annotated the T-peak  (TAnesthetized) as the 
gently sloping negative inflection after “J”. This is consistent 
with Calvert (Calvet and Seebeck 2023). This is a substan-
tive difference in T-wave annotation between conscious and 
anesthetized animals.

Data were curated and subject to quality control at the 
IMPC prior to Data Release 15 (August 11th, 2021) and we 
excluded one additional mouse from the analysis due to a 
biologically implausible QRS value.

Statistical methods

Bespoke methods were developed to assess ECG reference 
ranges and are independent of the methodologies imple-
mented on the IMPC portal.

Data analysis was conducted using R [version 4.0.4, R 
Core Team 2022 (Team 2022)] with figures and tables pro-
duced in ggplot2, embedded in RMarkdown HTML files. 
Variability of all the data were assessed with two metrics 
(a) coefficient of variation (COV) and (b) “Quartile-based 
CV” (QCV), defined as interquartile range (IQR) (75–25%) 
relative to the median (100*IQR/median).

Visual methods, as well as formal statistical tests were 
applied to test whether the scores of the individual param-
eters were normally distributed. Data were separated by age, 
sex and anesthesia regime and histograms for each param-
eter were plotted. Shapiro-Wilks tests were conducted to 
assess normality. Reference ranges were calculated based 
on median, 25th percentile and 75th percentile. In addition, 
the mean, standard deviation, and parameter sample size 

were provided to reflect the distribution of data. To reflect 
the distribution of each parameter, the 95% confidence inter-
vals can be calculated by mean ± 1.96*standard deviation 
for each parameter.

Investigation of anesthesia, sex and age effects

To investigate the effect of anesthesia on the different param-
eters, we  calculated a one-way Analysis of  Variance 
(ANOVA) with planned comparisons of “Conscious versus 
Isoflurane” and “Conscious versus Tribromoethanol”, sepa-
rated by sex whereas “Isoflurane versus Tribromoethanol” 
was not tested. These planned comparisons were used to 
compare conscious vs unconscious. When looking for differ-
ences between groups we tested the null hypothesis. p-values 
and F-values with degrees of freedom were calculated.

The effects of sex (female vs male) and age (EA vs 
LA) were compared using the same statistical analyses. In 
each case a simple two-tailed t-test was performed and the 
Cohen’s d effect size calculated from the “effsize package” 
(R library). Due to the central limit theorem (CLT) (Zhang 
et al. 2022), the large sample sizes allowed parametric sta-
tistical testing of these effects.

These large group sizes provide overwhelming statistical 
power and may overestimate the importance of the effects. 
Bootstrapping tests were done to verify the biological sig-
nificance of any differences in a range of more realistic 
experimental group sizes.

Fig. 1  Representative averaged waveform of a C57BL/6N mouse as a 
function of voltage over time, reflecting the most commonly applied 
ECG annotations with P-, Q-, R-, S-, and T-peak detection. Some 

differences in the placement of S- and T-annotations between cent-
ers participating in the IMPC were observed. Differences in T-peak 
placement are represented as  TConscious and  TAnesthetized



184 M. A. Oestereicher et al.

1 3

Results

ECG data collected by IMPC contributing centers (data 
release, DR, 15.0) were available from 26,706 wildtype 
control mice, stratified as presented in Table 1 and sum-
marized below. All the mice were from a C57BL/6N-inbred 
substrain. ECG was performed on conscious mice, or mice 
anesthetized with either isoflurane or tribromoethanol. The 
majority of mice (90.6% or 24,194) were tested at a mean 
age of 12 weeks (designated as Early Adult or EA), while 
the remaining 9.4% (2512) of mice were tested at a mean 
age of 62 weeks (designated as Late Adult or LA). Sex was 
evenly distributed at both EA and LA timepoints. Raw data 
can be downloaded using the following link: https:// www. 
mouse pheno type. org/ data/ previ ous- relea ses/ 15.0. The total 
number of reported parameters varied slightly between mice 
and can be accessed in Supplemental Table 2

Variability assessment

A panel of 15 output parameters were collected from ECG, 
namely heart rate (HR), RR-, PR-, PQ-, ST-, and QT-inter-
val, and QT corrected (QTc) using the Mitchell  formula4, 
QRS complex, coefficient of variation of R-R intervals (CV), 
heart rate variability (HRV), pNN5, rMSSD (Root Mean 
Sum of Squared Distance), mean R-amplitude, mean SR-
amplitude and QT corrected (QTc) dispersion (parameter 
definition in Supplemental Table 1).

In multi-center, large-scale, high-throughput programs 
such as the IMPC, variability in the measured values was to 
be expected. However, the extent of this variability dictates 
the sensitivity and robustness of each parameter.

Variability testing was performed on all DR 15.0 ECG 
data from the IMPC, independently of anesthetic agent in 
this analysis. For each sex, individual ECG parameters were 
tested for variability in EA and LA populations. The follow-
ing standard metrics for assessing distribution variability 
were calculated:

(1) Coefficient of variation (COV) (100*standard devia-
tion/mean) assumes a parametric distribution and normal-
izes the variability to the most typical score (mean) but is 
sensitive to outliers. (2) To support the parametric COV 
test, we applied a “Quartile-based CV” (QCV), defined as 
interquartile range (IQR) (75–25%) relative to the median 
(100*IQR/median). QCV is a similar metric to COV but 
uses non-parametric measures of variability, therefore makes 
no assumptions of normality but is still readily influenced by 
outliers (Arachchige et al. 2022; Leys et al. 2013).

Based on this analysis, exclusion criteria were defined as 
any parameter with acceptable variability based on Eurachem 
guidelines (https:// www. eurac hem. org/ index. php/ publi catio 
ns/ guides) of ≥ 30 for COV (Fig. 2) and a QCV ≥ 30 for EA 

Ta
bl

e 
1 

 E
C

G
 d

at
a 

w
er

e 
av

ai
la

bl
e 

fro
m

 a
 to

ta
l o

f 2
6,

70
6 

m
ic

e,
 s

tra
tifi

ed
 b

y 
se

x,
 a

ge
 a

t t
es

tin
g 

(E
A

 =
 m

ea
n 

of
 1

2 
w

ee
ks

 o
f a

ge
; L

A
 =

 m
ea

n 
of

 6
2 

w
ee

ks
 o

f a
ge

), 
an

d 
co

ns
ci

ou
s 

st
at

e 
(c

on
sc

io
us

, 
an

es
th

et
iz

ed
 u

si
ng

 is
ofl

ur
an

e,
 o

r a
ne

st
he

tiz
ed

 u
si

ng
 tr

ib
ro

m
oe

th
an

ol
)

C
on

sc
io

us
Is

ofl
ur

an
e

Tr
ib

ro
m

oe
th

an
ol

Su
m

EA
 F

em
al

es
92

40
26

72
22

6
12

,1
38

EA
 M

al
es

92
38

25
98

22
0

12
,0

56
LA

 F
em

al
es

62
0

69
3

0
13

13
LA

 M
al

es
58

9
61

0
0

11
99

Su
m

19
,6

87
65

73
44

6
26

,7
06

https://www.mousephenotype.org/data/previous-releases/15.0
https://www.mousephenotype.org/data/previous-releases/15.0
https://www.eurachem.org/index.php/publications/guides
https://www.eurachem.org/index.php/publications/guides


185Comprehensive ECG reference intervals in C57BL/6N substrains provide a generalizable guide…

1 3

and LA mice (Supplemental Fig. 1). Figure 2 shows that the 
retained parameters are all clustered closely together, however 
the excluded parameters show a wide range of variability. Spe-
cifically, seven ECG parameters (CV, HRV, pNN5, rMSSD, 
mean R-amplitude, mean SR-amplitude and QTc disper-
sion) exceeded the variability criteria in both sexes (male and 
female) and ages (EA and LA) and were excluded from further 
analysis (Fig. 2). The variability threshold was exceeded least 
for QTc dispersion in EA and mean R- and SR-amplitude for 
LA, however, for the remaining parameters that were excluded, 
variability was in excess of 2–7 times the threshold.

A PQ-interval reference range is provided for conscious EA 
and LA mice (Supplemental Fig. 2) however, PQ-interval was 
excluded from further analysis in this study because data points 
were only captured in EA and LA mice from one of the ten 
data-contributing centers. The remaining seven ECG parameters 
[heart rate (HR), RR-, PR-, ST- and QT-interval, QRS complex, 

and QT corrected (QTc) using the Mitchell formula (Mitchell 
et al. 1998)] consistently presented with low variability across 
the whole IMPC dataset thereby giving high confidence to estab-
lish robust, generalizable reference ranges for EA and LA popu-
lations on the C57BL/6N-inbred genetic background.

Despite the exclusion of several parameters, the electri-
cal conduction phases of a cardiac cycle were entirely cap-
tured by the robust parameters included herein (Fig. 1). The 
lengths of PR-interval and QRS complex covered the atrial 
and ventricular depolarization phases (e.g., contraction), 
whereas lengths of QT- and ST-intervals implied the ven-
tricular repolarization (e.g. relaxation) in voltage over time.

Assessment of data distribution

The distribution of data were assessed via histograms for 
the seven selected ECG parameters stratified by sex, age, 

Fig. 2  Coefficient of variation (COV) analysis of data split by sex 
(female and male) and age (EA and LA) identified parameters with 
excess variability (COV > 30%) that were excluded from further anal-
ysis (white bars). Parameters in blue were below the COV threshold 

of 30% and were retained for further analysis. These were in ascend-
ing COV percentage QTc Mitchell, PQ-, QT-, QRS complex, ST-, 
HR-, RR- and PR-interval
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and anesthetic regime (Fig. 3). This visual representation of 
the frequency of occurrence per value in the data was useful 
for revealing conformity to- and deviations from- a normal 
distribution, for each parameter. Visual inspection of the his-
tograms showed that the data appeared practically normal for 
parameters PR, QT and QTc Mitchell, and modestly skewed 
for HR, QRS, ST and RR. To assess normality mathemati-
cally, we applied the Shapiro–Wilk test which revealed sta-
tistically significant deviation from a normal distribution for 
some, but not all, ECG parameters. Table 2 presents data as 
median and 95% reference range (2.5th and 97.5th percentile) 
to account for the lack of normal distribution of some param-
eters and to provide a consistent data presentation (Leys et al. 

2013). For the sake of completeness, mean, standard devia-
tion and sample size are provided for the seven selected ECG 
parameters stratified by sex, age, and anesthetic regime in 
Supplemental Table 2. Interestingly, male, and female data 
showed similar distributions by visual inspection (Fig. 3). 
To test the hypothesis that there is no difference between 
each sex, a simple two-tailed t-test was performed indepen-
dently for each anesthetic regime and age group, and Cohen’s 
d was calculated as an effect size measure (Supplemental 
Figs. 3–5—Panels a and b, stratified by age).

For some parameters, p-values reached significance < 0.001, 
for others we found no evidence of a difference. However, for 
all parameters the corresponding Cohen’s d value revealed 

Fig. 3  Histograms presenting the distribution of each selected ECG 
parameter for male and female mice separately. By visual inspec-
tion, no sexual dimorphism was apparent. Panel a: Recorded in the 
conscious state in EA (Subpanels A–G) and LA mice (Subpanels 

H–N). Panel b: Recorded under isoflurane anesthesia in EA (Subpan-
els A–G) and LA mice (Subpanels H–N). Panel c: Recorded under 
tribromoethanol anesthesia in EA (Subpanels A–G). No LA data are 
available for tribromoethanol anesthesia
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Fig. 3  (continued)
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Table 2  Median and 95% reference ranges of HR, PR-, QRS complex, QT-, RR- and ST-intervals, and QT corrected (QTc) using the Mitchell 
formula

Female Conscious EA LA

Parameter Median [95% range] Median [95% range]
Heart Rate [bpm] 760 [650;815] 748 [700;790]
PR [ms] 28.7 [20.5;35.8] 26.3 [18.2;35]
QRS [ms] 10.7 [8.4;14.8] 11.8 [8.3;15.3]
QT [ms] 42 [36.4;45.8] 43.3 [37.9;46.2]
RR [ms] 79 [73.7;92.9] 80.2 [76;86.1]
ST [ms] 30.8 [13.1;35.8] 32.3 [27;35.3]
QTc Mitchell [ms] 47.4 [41.7;51.1] 48.5 [42.5;51.5]

Female Isoflurane EA LA

Parameter Median [95% range] Median [95% range]
Heart Rate [bpm] 415.8 [292.6;511.7] 440.5 [339.6;530.3]
PR [ms] 44.5 [29.6;72.7] 46.7 [30.5;58.9]
QRS [ms] 10.1 [7;17.9] 10.1 [7.8;16.6]
QT [ms] 52.1 [35.4;86.9] 52 [29.5;74.2]
RR [ms] 144.4 [117.3;205] 136.2 [113.2;176.7]
ST [ms] 40 [24.3;78] 38.5 [31.9;58.3]
QTc Mitchell [ms] 42.4 [29.9;65.5] 45 [25;62.8]

Female Tribromoethanol EA LA

Parameter Median [95% range] Median [95% range]
Heart Rate [bpm] 440 [355.8;550.5] N/A
PR [ms] 49.1 [41.4;57.7] N/A
QRS [ms] 13.2 [10.6;17] N/A
QT [ms] 53.5 [40.7;75.7] N/A
RR [ms] 136.2 [108.9;166.1] N/A
ST [ms] 42.8 [28.3;63.1] N/A
QTc Mitchell [ms] 45.2 [36.4;60] N/A

Male Conscious EA LA

Parameter Median [95% range] Median [95% range]
Heart Rate [bpm] 764 [661;819.7] 751 [702.3;796.3]
PR [ms] 28.6 [20.4;35] 25.8 [18.2;34.8]
QRS [ms] 10.6 [8.3;14.6] 11.8 [8.6;16.1]
QT [ms] 41.8 [36.6;45.5] 43.3 [38;46.6]
RR [ms] 78.6 [73.2;91.4] 79.9 [75.4;86.1]
ST [ms] 30.6 [12.6;35.6] 32.1 [27.6;35.3]
QTc Mitchell [ms] 47.5 [41.9;51] 48.7 [42.8;51.8]

Male Isoflurane EA LA

Parameter Median [95% range] Median [95% range]
Heart Rate [bpm] 422.6 [298;534.9] 443.1 [325.1;553.7]
PR [ms] 43.2 [32.5;63.6] 44.3 [34;54.9]
QRS [ms] 10 [7;19.7] 10 [7;17.3]
QT [ms] 52.8 [37.9;89.2] 51.2 [34.6;64.8]
RR [ms] 142 [112.2;201.6] 135.4 [108.4;184.6]
ST [ms] 40.7 [26.9;79.3] 38.7 [35.8;41.9]
QTc Mitchell [ms] 43.4 [32.6;64.9] 45.4 [32.7;58]

Male Tribromoethanol EA LA

Parameter Median [95% range] Median [95% range]
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small to negligible effect sizes. We therefore considered the 
possibility that the large group sizes could be overstating the 
biological differences between the sexes for some parameters.

To determine the most likely outcome for typical experi-
mental sample sizes we applied a bootstrap analysis strati-
fied by age group. In brief, random sampling (1000 × rand-
omized) of different subsample sizes, ranging from 5 to 100 
mice, were applied to test the robustness of the effect for 
each parameter comparing females and males. The subsam-
ple group sizes were chosen to more closely approximate 
standard experimental groups. The proportion of significant 
t-tests (p < 0.05), from the 1000 comparisons, indicates the 
power to find the sex difference, for that subsample size. If 
the proportion of significant tests remains near 5% regard-
less of subsample size, then this indicates the influence of 
the Type 1, i.e., false positive, error and it is unlikely that 
experimental group sizes will show a significant effect for 
this parameter.

Recordings from both conscious (Supplemental Fig. 3) 
and isoflurane anesthetized mice (Supplemental Fig. 4) show 
that the ECG parameters consistently have very low propor-
tions of significant tests for sexual dimorphism, with most 
parameters fluctuating around 5% of tests. Therefore, base-
line ECG parameters can be considered likely to be similar 
in females and males with no sex effect for most experimen-
tal purposes.

Tribromoethanol anesthesia (Supplemental Fig. 5) how-
ever, reveals weak sexual dimorphism for a subset of param-
eters. This may be due to a bias from drawing bootstrap 
samples from a much smaller population than the other 
conditions, but we cannot exclude the possibility that this 
anesthetic has a small but significant impact on the sexes.

Effect of anesthetic agent

To investigate the effect of different anesthetic agents on 
cardiac conduction function and ECG profiles, conscious 

data stratified by sex and age are displayed for comparison 
with those of isoflurane or tribromoethanol data (Fig. 4). 
Female data are placed directly above male for ease of visu-
alization. Figure 4 shows distinct distribution clusters for 
conscious, isoflurane and tribromoethanol groups split by 
EA (Fig. 4 – Panels A–G) and LA (Fig. 4 – Panels H–N). As 
before, no data were available for tribromoethanol anesthesia 
in LA mice.

As expected, the physiological benchmark of highest 
heart rate in conscious mice compared to anesthetized ani-
mals was observed (Fig. 4 – Panels A and H). To assess 
the differences between EA anesthetic states, we tested 
conscious versus isoflurane and conscious versus tribro-
moethanol groups, by a one-way ANOVA with planned 
comparisons, and observed highly significant differences 
between those groups (Table 3). Although, for anesthetized 
mice, some subtle differences in S marker placement were 
observed across IMPC contributing centers, the conse-
quence of these marker placement differences was over-
shadowed by the well-established intra-center variability 
arising from mouse to mouse and day to day data collec-
tion (Corrigan et al. 2020; Kafkafi et al. 2005). However, T 
marker placement in ECG data from conscious and anesthe-
tized mice was substantively different and contributes to the 
differences in interval duration reported (Table 3). These 
data clearly show differences in ECG parameters that can 
be attributed to the anesthetic regime; therefore, it is essen-
tial to establish reference ranges separately by condition 
(conscious or anesthetized) and by anesthetic (isoflurane 
or tribromoethanol).

Effect of age on ECG parameters

Two different age groups, i.e., mean of 12-weeks (minimum 
8 and maximum 16 weeks) old EA and mean of 62 weeks 
(minimum 52 and maximum 78 weeks) old LA, have made 
it possible to explore the effect of age on ECG parameters 
in conscious and isoflurane anesthetized mice. A two-tailed 

Data are stratified by sex, age (EA and LA) and conscious state.
Note, there were no data for LA mice anesthetized using tribromoethanol

Table 2  (continued)

Male Tribromoethanol EA LA

Heart Rate [bpm] 414.1 [329.9;573.1] N/A
PR [ms] 47.7 [41.9;55.7] N/A
QRS [ms] 13.4 [10.8;16.8] N/A
QT [ms] 55.2 [42.6;76.6] N/A
RR [ms] 145 [104.7;181.7] N/A
ST [ms] 45.2 [32.4;65.9] N/A
QTc Mitchell [ms] 46 [39.3;62.8] N/A
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t-test was applied to test the difference between the means 
of EA and LA results in conscious mice (Fig. 5—Panels a 
and b). p-values < 0.001 were reached for all parameters, 
indicating high statistical significance and the correspond-
ing Cohen’s d effect size revealed negligible to medium 
standardized effect sizes (Fig. 5 – Panels a and b). These 
strong significance values with comparatively small effect 
sizes suggest that the unbalanced group sizes influenced the 
results.

To test the influence of unbalanced group sizes (i.e., 
large number of EA and smaller number of LA datasets), we 
applied a bootstrap analysis, this time stratified by sex (Fig. 5 
– Panel c). The proportion of significant t-tests (p < 0.05), 

from the 1000 comparisons, indicates the power to find 
the age difference, for that subsample size. This bootstrap 
analysis demonstrated that parameters with even small to 
medium effect sizes required relatively large experimental 
group sizes to attain a conventional > 80% value for power 
estimates (Cohen 1992; Festing and Altman 2002), e.g. QRS 
and ST in conscious conditions required a group size of 50 
mice to achieve > 80% power with a p < 0.05 (Fig. 5 – Panel 
c, QRS (subpanel C) and ST (subpanel F)). As expected, 
for parameters with negligible Cohen’s d effect sizes, such 
as HR and RR, increases in sample size do not appreciably 
increase power (Fig. 5 – Panel c, HR (subpanel A) and RR 
(subpanel E)). Parameters with less than 80% power even 

Fig. 4  Comparison of the anesthetic regimes with the conscious state 
recordings. Distribution of the seven selected ECG parameters pre-
sented by histograms, stratified for female and male mice in EA (Sub-

panels A–G) and LA populations (Subpanels H and N). Color code: 
 Conscious,  Isoflurane and  Tribromoethanol anesthesia
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with up to n = 100 animals, can be considered likely to be 
similar in EA and LA with no aging effect for most experi-
mental purposes. Supplemental Fig. 6 presents the equiva-
lent t-test, Cohen’s d and bootstrap analysis in EA and LA 
mice anesthetized with isoflurane.

In summary, Fig.  6 is a graphical representation of 
the median and 95% reference ranges (2.5th and 97.5th 

percentile) broken down by anesthetic regimen with the 
female data placed directly above equivalent male data for 
easy visual interpretation, corresponding numeric values are 
presented in Table 2. This graphical representation clearly 
shows that anesthetic state strongly influences the reference 
values of the seven parameters.

Table 3  Significant differences between the statistical comparison of conscious versus isoflurane (p < .001) and conscious versus tribromoetha-
nol (p < .001 to p = .004) in female and male mice for HR, PR-, QRS complex, QT-, RR-, ST-interval and QTc Mitchell

Test: p-value and F-value of one-way ANOVA with planned comparison

FEMALE Conscious vs Isoflurane Conscious vs Tribromoethanol

Heart Rate [bpm] F(1)=120674.4, p<.001 F(1)=2122.7, p<.001
PR [ms] F(1)=21279, p<.001 F(1)=872.8, p<.001
QRS [ms] F(1)=78.1, p<.001 F(1)=273.2, p<.001
QT [ms] F(1)=1754.3, p<.001 F(1)=135, p<.001
RR [ms] F(1)=72292.8, p<.001 F(1)=839, p<.001
ST [ms] F(1)=3278.4, p<.001 F(1)=285.3, p<.001
QTc Mitchell [ms] F(1)=221, p<.001 F(1)=8.3, p=.004

MALE Conscious vs Isoflurane Conscious vs Tribromoethanol

Heart Rate [bpm] F(1)=116569.4, p<.001 F(1)=2865.6, p<.001
PR [ms] F(1)=23952.9, p<.001 F(1)=1142.3, p<.001
QRS [ms] F(1)=71.6, p<.001 F(1)=294.8, p<.001 
QT [ms] F(1)=2067.7, p<.001 F(1)=217.7, p<.001
RR [ms] F(1)=64552.1, p<.001 F(1)=1468.3, p<.001
ST [ms] F(1)=4149.9, p<.001 F(1)=424.1, p<.001
QTc Mitchell [ms] F(1)=88.9, p<.001 F(1)=8.3, p=.004

Fig. 5  Testing age-differences in conscious mice. T-test results when 
comparing conscious EA versus LA data show high significance for 
all parameters (p < .001) and negligible to medium Cohen´s d stand-
ardized effect sizes. Panel a: Females, Panel b: Males. Panel c. Boot-

strap analysis of power estimates for sample sizes ranging from 5 to 
100 mice, presented for each of the seven selected ECG parameters. 
Note: X-axis: bootstrapped sample sizes from 5 to 100; Y-axis: pro-
portion of significant tests with p < .05
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Validation of reference ranges using non‑IMPC data

Mice characterized by the IMPC are all substrains of one 
commonly used inbred genetic background, C57BL/6N. 
To test the validity of the reference ranges reported 
herein beyond C57BL/6N-inbred mice, we used repre-
sentative control animals from publicly available ECG 

data including: six founder strains from a collaborative 
cross study (Threadgill et al. 2011); the Jaxwest1 project 
(https:// pheno me. jax. org/ proje cts/ Jaxwe st1) with seven 
inbred strains of mice; and the Xing1: Aging study (https:// 
pheno me. jax. org/ proje cts/ Xing1) (Xing et al. 2009) with 
29 inbred strains of which we have included herein the 
26 strains with complete ECG data. An additional dataset 

Fig. 6  Reference ranges split by anesthetic regimen showing median, 
and 95% reference ranges (2.5th and 97.5th percentile). Female data 
are directly above the male data for EA (Subpanels A–G) and LA 
populations (Subpanels H–N). For the ST-interval in anesthetized 
mice (Subpanels F and M) data were provided from only one center 

and for the LA range (Subpanel M) the number of mice was below 
the recommended number to generate a reliable estimate (Supple-
mentary Table  2). No LA data were available for tribromoethanol 
anesthesia. Color code:  Conscious,  Isoflurane and  Tribromoe-
thanol anesthesia

https://phenome.jax.org/projects/Jaxwest1
https://phenome.jax.org/projects/Xing1
https://phenome.jax.org/projects/Xing1
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was included using inbred, wildtype control animals from 
non-IMPC studies conducted at the German Mouse Clinic 
where data are available upon request. Validation was also 
carried out for LA population using 12- and 20-month 
age groups of the Xing1 study. In each non-IMPC study, 
where suitable we presented the data split by sex and over-
laid with the sex-specific 95% reference range calculated 
herein for conscious mice. Due to the small sample sizes 
in a subset of these comparator studies, however, the com-
bined reference ranges for females and males are sum-
marized in Supplemental Table 3 for further comparison. 
Figure 7 shows the founder strain data from the collabora-
tive cross study overlaid with the reference ranges split by 
sex whereas Supplemental Fig. 7 illustrates data from the 
German Mouse Clinic, Supplemental Fig. 8 from the Jax-
west1 and Supplemental Figs. 9–13 depict LA data from 
the Xing1 study. Of note, HR is not presented throughout 
as it was not accessible for those studies yet it is indirectly 
visualized in the RR-interval plot due to the inverse cor-
relation between HR and RR (Kazmi et al. 2016).

Remarkably, and true for all ECG parameters, most 
non-C57BL/6N values lay within our reference values. 
There is a subset of outliers that fall outside of the refer-
ence ranges which is to be expected with heterogeneity of 
small size and phenotypic differences seen between inbred 
mouse strains, particularly wild-derived strains.

Discussion

Reference ranges for the assessment of abnormal electro-
cardiograms and cardiac conduction disorders in patients 
have long been established and are regularly adopted by 
expert bodies, such as the North American Society of Pac-
ing and Electrophysiology (GURA et al. 2003) and the 
European Society of Cardiology (Blomström-Lundqvist 
et al. 2003; Camm et al. 2010). For mouse models, how-
ever, there are no such reference ranges.

In this multicenter study, we have established reference 
ranges using an exceptionally large ECG dataset compris-
ing more than 26,000 wildtype control mice from the 
International Mouse Phenotyping Consortium (IMPC). 
The goal of the IMPC is to extend the functional annota-
tion of the mammalian genome via the large-scale pro-
duction and phenotypic characterization of single gene 
knockout mouse strains for all protein-coding genes. The 
phenotypic pipeline used to characterize these knockout 
strains included cardiac electrophysiology assessment 
using ECG. For each knockout strain characterized, we 
also assessed wildtype control animals matched for age, 
sex and genetic background. The ECG data from these 
C57BL/6N wildtype control mice hold extraordinary value 
and represent the focus of the current study.

Thus, this study represents a large mouse data set and 
allows the crucial understanding of the effects of sex, age, 
and anesthesia on electrocardiograms in mice. To this end, 
we introduced a stepwise refinement of the data analysis 
and started with an in-depth assessment of the variability 
of 15 ECG parameters gathered in the IMPC. We identi-
fied seven clinically relevant ECG parameters that were 
highly robust and had low variability. We excluded the 
remaining eight ECG parameters because of the exces-
sive level of inter-mouse variability they displayed. Five 
of the eight excluded parameters were direct measures of 
heart rate variability (HRV), or represented parameters 
derived from HRV (HRV, pNN5, rMSSD, mean R-ampli-
tude and mean SR-amplitude). HRV depicts the change 
in the time interval between successive heartbeats and is 
an index of the parasympathetic nervous system (Sassi 
et al. 2015; Singh et al. 2018). HRV measurement is very 
sensitive to experimental methods (e.g. acclimation time, 
ECG sampling rate, and duration of recording), and has 
been shown to be incompatible with a high-throughput 
data collection setup such as that used by the IMPC (Elec-
trophysiology 1996; Sammito and Böckelmann 2016). 
Next, CV provides an indication of the function of the 
parasympathetic nerve and the autonomic nervous system 
through the physiological phenomenon of RR variation 
(Saito et al. 2007). Such measurements, however, require 
stable and prolonged measurement times to be meaning-
ful, which, as stated above for HRV, we do not have in 
the context of the high-throughput testing paradigm used 
herein. Similarly, this susceptibility to broad variability in 
short duration measurements also applies to the parameter 
QT dispersion, which is defined as the difference between 
the longest and shortest QT-interval in one of the sur-
face ECG leads and quantifies the spatial inhomogeneity 
of ventricular repolarization. Mainly for methodological 
reasons, parameters with high variability were excluded 
here, but PR-interval is the exception. This parameter was 
only collected by one center and therefore not included in 
the overall evaluation, but the values were made available 
in full in the supplemental materials. Despite the exclu-
sion of those parameters, the robust ECG parameters that 
were included entirely captured the electrical conduction 
phases of a cardiac cycle and provided a comprehensive 
ECG evaluation.

Understanding the sex-related impact on ECG is cru-
cial for ensuring robust reference values. In this study, we 
were able to show that the values for HR, RR-, PR-, ST- and 
QT-interval, QRS complex, and QT corrected (QTc) using 
the Mitchell formula (Mitchell et al. 1998) are compara-
ble in female and male mice with negligible sexual dimor-
phism. There may, however, be small sex differences for 
some parameters depending on the anesthetic agent. This 
observation is of key importance, and in part consistent 
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with previous mouse data (Karp et al. 2017). Whilst sexual 
dimorphism was not overtly apparent in inbred mice in the 
absence of any environmental, pharmacological or genetic 
perturbations, the literature clearly supports sex differences 
in heart health (Pak et al. 2021) and therefore our recom-
mendation is that both sexes are included in any experimen-
tal design assuming that post-treatment we may detect sex 
differences.

Anesthetics cause a dose-dependent decrease in myocar-
dial contractile force and associated ECG alterations with 
the most familiar landmark of decreased HR (Edrich et al. 
2008). Our observations are that presence of anesthesia mat-
ters, we confirm a decreased heart rate in anesthetized mice 
and go on to reveal distinctions in isoflurane inhalation anes-
thesia and intraperitoneal injected tribromoethanol-induced 
anesthesia (Chu et al. 2006; Shintaku et al. 2014). These 
distinctions are pivotal and to emphasize them we mapped 
the effects of three different states (conscious, isoflurane and 
tribromoethanol anesthesia) on seven ECG parameters in 
detail and present anesthesia-specific reference values.

HR is an important determinant of cardiovascular per-
formance defined by the activity of the sinoatrial node, the 
so-called pacemaker of the heart. The dysfunction of the 
sinoatrial node increases with age, and HR decreases due to 
tissue, cellular, and molecular mechanisms that underlie the 
reduction in pacemaker activity with age (Alings et al. 1995; 
Moghtadaei et al. 2016; Peters et al. 2020). Interestingly, we 
did not observe any strong age-related ECG changes in the 
absence of any pharmacological, environmental, or genetic 
challenges in inbred C57BL/6N mice. The differences in the 
reference ranges of 12-week-old mice compared to 62-week-
old mice were negligible. Our step-by-step analysis of these 
data using bootstrapping showed that age-related ECG 
effects are more likely, if at all, to be detected using large 
group sizes (n > 50). This dependency on the group size can 
be used as a guide for experimental design when considering 
aging. It is possible that studying a population older than 
62 weeks of age would have identified larger age-related 
changes in ECG parameters.

In the IMPC, we control for genetic diversity using 
C57BL/6N-inbred background substrains thereby focusing 
our comparison on the genetic perturbation of interest i.e., 
the single gene that is knocked out on this common genetic 
background. The transferability from the C57BL/6N back-
ground used here, however, was demonstrated by indepen-
dently validating the ranges using data from a broad spec-
trum of non-IMPC C57BL/6N and C57BL/6 J mice, and 
other inbred and wild-derived inbred strains. This validation 
indicates that C57BL/6N-based reference values represent a 
robust and comprehensive indicator of normality for many 
strains and can be used as a starting point for experimental 
investigations of cardiac function in the mouse. A subset of 
outlier strain-parameter combinations were identified, for 

example, the RR-interval in PWK/PhJ mice fell below the 
C57BL/6N-based reference range reported herein. The par-
ticularly small body weight of this wild-derived genetically 
diverse strain (Bonhomme et al. 1984; Kollmus et al. 2020; 
von Deimling et al. 1988) is consistent with increased HR 
and therefore explains their decreased RR-interval.

Each study has its limitations. P-wave interval alone was 
not reported here, however the reported PR-interval did 
allow discrimination of atrioventricular conduction time 
(Clark and Prystowsky 2021). In addition, the PQ-interval 
was only recorded at one contributing center and exclusively 
in conscious mice, yet this large sample size (n = 11,538 EA 
mice) that was equally distributed for sex, yielded a valuable 
PQ reference range that is provided in full in Supplemen-
tal Fig2. The majority of data included in this study were 
collected on conscious mice using the non-invasive, ECG-
enie methodology. Given the large sample size collected, 
this approach represented a huge 3Rs benefit (Hubrecht and 
Carter 2019; Tannenbaum and Bennett 2015). However, the 
relatively low-resolution of the ECGenie technique meant 
that annotation of the J wave, a commonly recognized fea-
ture of the mouse ECG, was omitted from this study. The 
difference in T marker positioning between ECG data from 
conscious and anesthetized mice was substantive and con-
tributed to the statistically significant differences in time 
intervals involving T (QT, QTc and ST). However, we are 
unable to decouple the contribution of the anesthetic agent 
and the T marker location. Taken together these differences 
highlight the urgent need for a standardized and agreed 
annotation schema that accommodates the variable sensi-
tivity of ECG recording methods.

The limiting factors for the tribromoethanol reference 
range data are that it was generated for 12-week-old mice 
only and the group size was the smallest of all conditions 
reported herein [446 mice distributed equally between sex 
(n = 226 female; n = 220 male)]. However, Solberg and col-
leagues (Solberg 1983) report that for a reliable estimate, a 
minimum of 120 values should be included for any reference 
range calculation. The sample size we used for tribromoetha-
nol far exceeds this minimum and should therefore yield a 
representative range. The reference ranges are limited to the 
techniques and anesthetics described and are not intended for 
other ECG methodologies, such as cardiovascular telemetry, 
or other anesthetic agents, such as ketamine.

The reference ranges reported herein can be used to demar-
cate typical values for an experimental control group of mice 
on a C57BL/6N genetic background, for a given sex and age. 
They are not a substitute for contemporaneous control groups 
in any experimental design, but they indicate the likely values 
of that control group, thereby acting as a quality assurance 
tool. These reference ranges provide the information neces-
sary to assess the changes in ECG parameters resulting from 
pharmacological, environmental, or genetic perturbations for 
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experiments conducted on the commonly used C57BL/6N 
genetic background.

In summary, we have created a unique and comprehensive 
map of ECG reference ranges that will be foundational for 
future mouse studies. While based on inbred mouse substrains 
that are C57BL/6N in origin, these reference ranges have util-
ity across different mouse strains and are important guides in 
studies of electrical conductivity disorders.

Supplementary Information The online version contains supplementary 
material available at https:// doi. org/ 10. 1007/ s00335- 023- 09995-y.
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