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Abstract
Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation 
to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the 
annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed 
measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, 
environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and 
clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of inter-
operable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational 
framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA 
has a modular design which provides several benefits for users and data integrators, including an automated and meaningful 
classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, 
anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can compu-
tationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic 
links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.

Introduction

Animal models have greatly contributed to the progress of 
genomics research. In addition to mutant strains identified 
by traditional phenotypic selection and breeding meth-
ods, genome engineering in model organisms allow the 
generation of transgenic lines and targeted mutants using 

homologous recombination or CRISPR-Cas9 technology 
(Bello et al. 2021; Hsu et al. 2014; Clark et al. 2020). Col-
lectively, these technologies allow researchers worldwide to 
generate a large body of genetic data using mouse and other 
model organisms, and the resulting data is made available 
in several biomedical databases curated by experts (Alliance 
of Genome Resources Consortium 2022; Blake et al. 2021; 
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Kaldunski et al. 2022; Groza et al. 2023). Currently there 
are more than 800 biological databases collecting genotype, 
phenotype and variation data from a wide range of organ-
isms (Ma et al. 2022). The valuable knowledge in these data-
bases on variants, phenotypes and gene function is highly 
relevant to human and veterinary medicine, agriculture, 
evolutionary biology, ecology and comparative genomics 
in general.

Technological advances in next-generation DNA 
sequencing also yield an ever increasing number of new 
genomic variants with unknown functional significance 
across the tree of life (Stephens et al. 2015; Cantelli et al. 
2022). The identification of the phenotypically and clini-
cally relevant subset of the new DNA variants in both human 
and veterinary medicine, as well the characterisation of the 
mechanisms of how these variations exert their phenotypic 
effects, pose serious challenges that cannot be met success-
fully without advancements in data integration and compu-
tational tools (Thessen et al. 2020). A standardised and com-
putationally amenable representation of traits is critical for 
many biomedical and agricultural use cases involving DNA 
variants, from genome-wide association studies (GWAS) to 
Quantitative Trait Loci (QTL) mappings (Rehm 2021; Sollis 
et al. 2023; Bogue et al. 2023; Pathak and Kim 2022; Moses 
et al. 2018). Currently, the lack of consistent computational 
modelling and annotation of traits from various data sources 
restricts their interoperability and hinders not only genetic 
mechanisms of discovery for medicine, but also agriculture, 
biodiversity and evolutionary biology.

Ontologies provide standardised sets of concepts (terms) 
that are understandable by human users and also allow for 
logical inference, computational reasoning and sophisticated 
data queries. There are several phenotype ontologies that 
differ in their scope of specialisation or focus on certain 
taxonomic groups. For example, the Mammalian Phenotype 
Ontology (MP) (Smith and Eppig 2009) and the Human Phe-
notype Ontology (HPO) (Köhler et al. 2021) have different 
taxonomic focusses to categorise phenotypes of primarily 
Mendelian-type inheritance. Each of these ontologies is 
used to annotate genotypes, where the annotations repre-
sent phenotypic states that deviate from a reference, which 
is usually the wild-type or typical phenotype for the species 
and population of focus. The phenotypic deviation or abnor-
mality is always represented in the logical axioms in these 
phenotype ontologies. This is in contrast to trait ontologies, 
where the logical axioms define generic attributes without 
reference to any specific phenotypic alterations or states. 
For example, a “blood glucose amount” can manifest in a 
“Hyperglycemia” phenotype, where the former manifests in 
an “increased amount” phenotypic state with an “abnormal” 
quality component in the logical equivalence axioms. This 
is a fundamental difference between modelling traits and 
phenotypes ontologically.

OBA is a standardised, representational framework for 
observable attributes that are characteristics of organisms, 
or parts of organisms. For example, the attribute “trochanter 
size” (OBA:0002360) is a characteristic of the anatomical 
entity “trochanter” (UBERON:0000980); and “blood glucose 
amount” (OBA:VT0000188) is a characteristic of glucose 
(CHEBI:17234) in the blood (UBERON:0000178). This way 
of defining attributes, called the Entity-Quality (EQ) pat-
tern, is used by many biomedical ontologies, including the 
Plant Trait Ontology (TO) (Cooper et al. 2018) for defining 
attributes of plants such as “petal length” (TO:0002605), the 
Environment Ontology (ENVO) (Buttigieg et al. 2016) for 
defining attributes of environmental materials, such as “soil 
pH” (ENVO:09200010) and the Human Phenotype Ontol-
ogy (HPO) for defining phenotypic abnormalities such as 
“Abnormal telomere morphology” (HP:0031412). The same 
EQ pattern has also been employed in data annotation using 
a post-compositional approach—combining an entity term 
and a quality term within an annotation, rather than creating 
a separately defined trait term—to describe both phenotypic 
abnormalities (e.g. in zebrafish) (Bradford et al. 2011) as 
well as natural evolutionary variation in the Phenoscape 
Knowledgebase (Mabee et al. 2012; Dahdul et al. 2010). 
The initial design of OBA was significantly inspired by work 
from the creators of the Plant Trait Ontology.

The majority of attributes in OBA are logically defined 
using the Web Ontology Language (OWL). These logical 
definitions use terms from relevant reference ontologies, 
such as Uberon (Mungall et al. 2012) or ChEBI (Hast-
ings et al. 2016). With the exception of a small number 
of high-level concepts, most of the classification in OBA 
is automatically computed on the basis of the classifica-
tions of the various reference ontologies, using an auto-
mated reasoner. The advantage of this approach is twofold: 
firstly, we do not have to manually classify any concepts, 
which drops the cost of curating the classification signifi-
cantly whilst increasing its completeness. Secondly, the 
numerous links to reference ontologies can be exploited 
for a wide variety of applications, including querying (e.g. 
select all data where the morphology of a part of the renal 
system is affected), knowledge graph integration (e.g. 
automatic linking to phenotypic abnormalities from widely 
used ontologies such as HPO or MP) and knowledge infer-
ence (e.g. inferring missing data from logical implications) 
(Dececchi et al. 2015). A rich logical axiomatisation based 
on design patterns is necessary to ensure interoperability 
with existing phenotype ontologies and other data types, 
such as anatomical, chemical and biological pathway data. 
Existing ontologies such as the Vertebrate Trait ontology 
(VT) (Park et al. 2013) and the Experimental Factor Ontol-
ogy (EFO) (Malone et al. 2010) are widely used to anno-
tate traits, but do not contain such axiomatisation.
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In this paper, we introduce OBA, an ontology and logi-
cal framework for representing biological attributes. We 
show how we use the Entity-Quality modelling framework 
to automatically classify attributes reliably using reference 
ontologies. Additionally, we demonstrate how OBA can be 
used to automatically integrate data from other widely used 
phenotype ontologies, thereby breaking silos.

Methods

Logical framework

As ontologies grow in size, they become increasingly hard 
to maintain. Phenotype (and trait) ontologies are inherently 
polyhierarchical, as they combine a variety of interwoven 
external classifications, such as attributes and biological 
entities. This makes it hard to ensure that the classification is 
complete by manual curation (no subclass axioms are miss-
ing), and that the existing classification is consistent with 
other ontologies (for example, “head size” should not be a 
parent of “eye size”). Instead of relying on manual classifica-
tion of biological attributes in OBA, we use logical defini-
tions and automated reasoning to compute the hierarchical 
classification. OBA is represented in the Web Ontology Lan-
guage (OWL), a knowledge representation formalism based 

on Description Logics, a fragment of First Order Logic. It is 
fully aligned with the Core Ontology for Biology and Bio-
medicine (COB) (COB: An experimental ontology) because 
all concepts in OBA are, implicitly, children of “characteris-
tic” (PATO:0000001), which itself is part of COB. However, 
we currently do not import COB directly (though this is 
planned as future work).

The Entity-Quality (EQ) pattern (Mungall et al. 2010; 
Washington et al. 2009) is widely used for representing traits 
and phenotypes in ontologies such as the Human (Köhler 
et  al. 2021), Mammalian (Smith and Eppig 2009) and 
Xenopus (Fisher et al. 2022) phenotype ontologies. There 
are a number of variants of this pattern, but at its core, a 
phenotypic quality (Q, which is currently more frequently 
referred to as a “characteristic” rather than “quality”) such as 
“height”, “mass” or “amount”, usually from the Phenotype 
And Trait Ontology (PATO) (Gkoutos et al. 2005), is com-
bined with an entity (E), such as an anatomical or chemi-
cal entity, to form the concept of a “biological attribute”, 
sometimes referred to as a “trait” (see Fig. 1). For exam-
ple, “lysine in blood amount” (OBA:2020005) is composed 
of the PATO class of “amount” (PATO:0000070), lysine 
(CHEBI:25094) and blood (UBERON:0000178). PATO 
defines basic categories of phenotypic qualities (attributes 
or characteristics) and it can be used for quantitative trait 
or Mendelian phenotype annotation (Gkoutos et al. 2018). 

Fig. 1   The Entity-Quality model enables composing biological attrib-
utes in a way that is compatible with the logical definitions of widely 
used ontologies such as the MP and HPO which are used to docu-
ment phenotypes associated with diseases or genes. On the right is 
a specific example of a human phenotype term, “Hypolysinemia” 
(HP:0500142), which means a lower than normal amount of lysine 
in the blood. The EQ (phenotypic effect) on the left is not only used 
to logically define Hypolysinemia, but also the mouse phenotype 

“decreased circulating lysine level” (MP:0030719). This ensures 
that an automated reasoner can compute the appropriate relationship 
between the two (in this case equivalence), as well as to the specific 
biological attribute they are concrete manifestations of (“blood lysine 
amount”). Representing phenotype and phenotypic attributes this way 
enables the grouping of quantitative variant data (e.g. GWAS) and 
qualitative variant data (e.g. MGI)
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PATO is species-neutral in its scope but does not provide 
relationships to the biological entities whose phenotypic 
qualities it is meant to describe (Washington et al. 2009). 
Using EQ logical definitions in OWL enables us to use 
automated reasoners to automatically classify our traits: if, 
for example, lysine is an “amino acid” according to ChEBI, 
there is no need to remember to manually classify “lysine in 
blood amount” under “amino acid in blood amount”—the 
reasoner will do this for us based on the classification in 
ChEBI. A second feature of such axiomatisation is that it 
can be used for powerful logical querying using OWL DL 
Queries (Grau et al. 2008) and SPARQL (Detwiler et al. 
2008). This enables us to group data in ways that are not 
easily available in traditional databases. For example, it 
allows us to query for data related to morphology of a tissue 
that is considered part of the cardiovascular system—even 
if no such term exists in OBA. A query capturing this can 
be found in the supplemental materials (S2, Supplementary 
materials).

Ontologies of phenotypic abnormalities such as HPO, 
MP, XPO (Fisher et al. 2022) and ZP make extensive use 
of the EQ pattern, but are primarily used to capture phe-
notypic effects compared to some reference (usually “wild 
type”) rather than unqualified biological attributes as in 
OBA. For example, “decreased circulating lysine level” 
(MP:0030718) in the Mammalian Phenotype Ontology is 
defined as “abnormal(ly)” (PATO:0000460) “decreased 
amount” (PATO:0000470) of “lysine” in the “blood” 
(Fig. 1). Since both the biological attributes in OBA and 
the phenotypic effects in MP are represented using the Web 
Ontology Language (OWL), we can use an automated rea-
soner, such as ELK (Kazakov et al. 2014), to automatically 
compute links between the two. Other examples of links 
between OBA attributes and phenotypic effects: head cir-
cumference (OBA:VT0000047) has “Decreased head cir-
cumference” (HP:0040195), “Microcephaly” (HP:0000252) 
and “Progressive microcephaly” (HP:0000253) as manifes-
tations; “brain ventricle size” (OBA:0002294) has manifes-
tation “Ventriculomegaly” (HP:0002119).

Template‑based ontology curation with DOS‑DP

Ontologies, especially those with logically rich axiomatisa-
tion, enable powerful services such as automated reasoning, 
classification and logical querying, but logical modelling 
is difficult (Slater et al. 2020) and appropriate expertise 
is scarce. A popular approach to deal with this problem is 
to use design patterns and templating systems for logical 
axioms (Osumi-Sutherland et al. 2017). This allows for 
decoupling the curation of reference terms used for logical 
definitions from their exact axiomatic pattern. The central 
idea is to employ a small number of axiom templates (which 
implement design patterns such as the EQ model described 

above) that can be created and maintained by logic experts, 
and have content curators focus on the selection of appropri-
ate filler terms (e.g. terms from Uberon to define anatomi-
cal attributes). There are a number of available approaches, 
but many Open Biological and Biomedical Ontologies 
(OBO) Foundry (Jackson 2021) ontologies use Dead Sim-
ple Ontology Design Patterns (DOS-DP) (Osumi-Sutherland 
et al. 2017), a system that allows capturing a logical model 
(design pattern) in a specific YAML file (YAML is a struc-
tured, yet human-readable file format; the OBO Foundry is 
a community-driven organisation which promotes the stand-
ardisation of metadata and logical patterns in the Biological 
and Biomedical Ontology community). This YAML file is 
maintained separately from the actual biological attributes, 
which are maintained in tables (TSV files). For example, 
the “entity attribute” template (see Fig. 3), the most basic 
of all OBA design patterns, has two filler terms, the entity 
(e.g. a chemical, or an anatomical entity) and the attribute 
(a characteristic from PATO, such as “amount”) and defines 
how a new biological attribute in OBA following that pat-
tern should be converted to OWL (amongst other aspects, it 
describes how the logical equivalent class definition should 
be instantiated). Curators simply add a row to a spreadsheet 
with the OBA identifier and the two fillers (see Fig. 3). The 
identifier scheme used for new OBA terms corresponds to 
the standard recommendation (OBO foundry). All identifiers 
are represented as a globally unique, persistent and resolv-
able identifier (GUPRI) (Le Franc et al. 2020), otherwise 
known simply as “persistent URL” (PURL), starting with 
the http://​purl.​oboli​brary.​org/​obo/​OBA_ URI prefix, fol-
lowed by an numeric identifier. GUPRIs are essential to the 
vision of global data integration, and provide a stable way 
to refer to domain concepts such as the biological attrib-
utes discussed here. Some identifiers are prefixed with the 
literal “VT” to indicate that they are sourced from VT. A 
specialised toolkit (DOS-DP tools) (dosdp-tools: Utility for 
working with DOSDP design patterns and OWL ontologies) 
then translates the spreadsheet into OWL axioms using the 
template file.

OBA currently uses ten DOS-DP term templates for dif-
ferent trait patterns; see Table S1 (supplemental materials). 
These were selected because they cover the majority of ana-
tomical, chemical level and cellular attributes which are cen-
tral for the integration of genomics data. By far the major-
ity of biological (especially anatomical) attribute terms in 
OBA can be represented using a basic entity-attribute pattern 
(e.g. “head size”). All templates can also be found online 
(src, patterns, dosdp-patterns at master · obophenotype, 
bio-attribute-ontology). In addition to ensuring a consistent 
axiomatisation of the ontology across thousands of terms (a 
general advantage of template systems, not just DOS-DP), 
one major advantage of using DOS-DPs as a framework for 
managing OWL ontologies is their generative capabilities. 

http://purl.obolibrary.org/obo/OBA_
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Fig. 2   Overview of the OBA 
Workflow. The OBA matching 
pipeline searches existing trait 
ontologies for new terms and 
proposes suitable EQ fillers. 
The OBA editors curate EQ 
fillers (new ones and the ones 
proposed by the matching pipe-
line). The ODK then compiles 
the curated terms into OWL and 
imports all the referenced terms 
(EQ fillers) from their respec-
tive external ontologies, e.g. 
Uberon, into a special import 
module

Fig. 3   DOS-DP template example. The fillers declared in the template above (attribute, entity) are mapped to the respective column names in the 
TSV file below. A specialised tool reads both files and generates the axioms specified by the template file
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Not only can we dynamically generate labels, definitions 
and synonyms based on the filler terms provided, but we 
can also add contextual axioms which can be exploited for 
automated reasoning. In OBA, for example, we generate 
General Concept Inclusion (GCI) axioms which define how 
attributes are related mereologically (e.g. “ulna size” part of 
“forelimb skeleton size”). These axioms are defined as part 
of the DOS-DP design patterns.

Automated mapping pipeline for external sources

One of the central use cases for OBA is to provide additional 
structure to other generally weakly axiomatised ontologies, 
mainly VT and the Experimental Factor Ontology (EFO). 
To synchronise these vocabularies with OBA, we execute 
the following workflow:

1.	 Match: link external terms to OBA terms if they exist
2.	 Sync: identify external terms that do not exist in OBA, 

decompose them into their logical components (refer-
ence entities) and curate them as instances in our DOS-
DP template pipeline

3.	 Compile: compile the new terms into OWL and integrate 
them into the ontology

We have built a custom pipeline (oba_alignment.ipynb at 
master · obophenotype, bio-attribute-ontology) that supports 
our curators in steps 1 and 2 (see Fig. 2). To that end, we 
implemented a matching process that works on the ontol-
ogy labels and exact synonyms. After applying a series of 
normalisation steps (including the removal of stop words 
like “measurement” or “trait”), if a direct match between 
an external term and an OBA term can be identified, we 
present it as a candidate match to a curator. The curator just 
has to review and approve or reject the match. For step 2, 
we sequentially match all our reference ontologies (ChEBI, 
Uberon, PRO, GO, PATO) to the external term. For exam-
ple, if an external term “lysine measurement” contains the 
term “lysine”, we record that as a potential match for the 
“entity” column in the “entity-attribute” DOS-DP pattern 
(Fig. 3). Thus our curators are presented with a set of poten-
tial EQ-decompositions, which they proceed to either accept 
or reject. Mappings to external ontologies, as generated in 
steps 1 and 2, are documented using the Simple Standard 
for Sharing Ontological Mappings (SSSOM) (Matentzoglu 
2022a) and shared as part of the OBA GitHub repository 
(https://​github.​com/​oboph​enoty​pe/​bio-​attri​bute-​ontol​ogy). 
Note that in contrast to other synchronisation workflows 
such as those used by Uberon or the Mondo disease ontol-
ogy (Vasilevsky et al. 2020), we do not import any curated 
information from external ontologies (synonyms, definitions, 
etc.) but rely entirely on automated templated processes.

OBA life cycle management

OBA has been a member of the OBO Foundry (Jackson et al. 
2021) for more than seven years and has a team of 6 regular 
contributors. It is managed by members of the European 
Bioinformatics Institute (EBI) and the Monarch Initiative 
(Shefchek et al. 2020) using modern ontology workflows and 
curation practices. To manage our releases, quality control 
and external dependencies we use the Ontology Develop-
ment Kit (ODK (Matentzoglu 2022b), version 1.3.2). The 
ODK provides mechanisms to version and publish OBA 
releases in a variety of serialisations (JSON, RDF/XML, 
OBO) and release file variants according to OBO Foundry 
practices, relying largely on the ROBOT tool (Jackson et al. 
2019). It fully supports DOS-DP workflows which ensures a 
seamless integration of mostly TSV based curation into the 
general ontology life cycle. For example, terms that are used 
as fillers during the decomposition of biological attributes 
are automatically imported from their respective external 
ontologies. The ODK is also used for continuous integration 
testing. Whenever one of our curators makes a pull request 
on GitHub with changes to OBA, we automatically execute 
the DOS-DP pipeline, followed by a number of strict qual-
ity control checks. For example, these checks ensure that all 
terms added fall under the “biological attribute” root term, 
are unique (no other equivalent attribute exists) and are logi-
cally consistent. Lastly, the ODK imports relevant terms and 
axioms from our reference ontologies (e.g. Uberon, ChEBI, 
PATO), which ensures that OBA is fully consistent with 
their axiomatisation (see Fig. 2). To ensure consistency, 
we use the ELK reasoner, which is suitable for OWL 2 EL 
ontologies (see Results). OBA publishes a new version every 
2–3 months, using the GitHub releases mechanism for ver-
sioning and dissemination.

Results

The Ontology of Biological Attributes (OBA) is published 
under the CC0-1.0 licence (public domain) and is in its 
17th release (21 December 2022) (bio-attribute-ontology) 
at the time of writing this paper. The ontology is expressed 
using the OWL 2 EL profile of the Web Ontology Lan-
guage (OWL) (Motik et al. 2009). Note that some imports 
use higher expressivity axioms (beyond OWL 2 EL), which 
means that there are corner cases where using an OWL 2 
EL reasoner such as ELK (Kazakov et al. 2014) may be 
incomplete. (Note: all elements required by the Minimum 
Information for Reporting of an Ontology (MIRO) guide-
lines (Matentzoglu et al. 2018b) are reported here.)

OBA defines 7807 biological attributes, most of which 
have logical equivalence axioms (full logical definition).

https://github.com/obophenotype/bio-attribute-ontology
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OBA attributes have, on average, 1.54 parents (indicating 
a high degree of polyhierarchy) and one or more associated 
synonyms. Most attributes (69.6%) are anatomical, 12.4% 
are attributes of biological processes and 9.8% are cellular 
attributes (see Fig. 4). Anatomical attributes are defined with 
terms from the Uberon anatomy ontology. In total there are 
302 CHEBI, 346 CL, 708 GO, 40 MONDO, 109 NBO, 139 
PATO, 69 PRO, 4 SO and 2469 UBERON terms referred to 
by OBA ids. The latest version of OBA is available under 
the persistent URL http://​purl.​oboli​brary.​org/​obo/​oba.​owl. 
The version referred to as part of this paper can be accessed 
by the versioned persistent URL http://​purl.​oboli​brary.​org/​
obo/​oba/​relea​ses/​2022-​12-​21/​oba.​owl

If an entity is obsoleted, the label is changed to have 
“obsolete” at the beginning, the metadata field “deprecated” 
is true, and all logical axioms are removed. When the entity 
is completely redefined, the metadata field “term replaced 
by” is added to indicate the substitute term.

The four main relationships used in OBA are “part 
of” (BFO:0000050) primarily to denote mereological 
links between anatomical entities, “characteristic of” 
(RO:0000052) to link a characteristic (e.g. “morphology”) to 
a biological entity (e.g. “heart”), “characteristic of part of” 
(RO:0002314) to link a characteristic to a biological entity 
and all of its parts (e.g. we can use “characteristic of part of” 
to define a trait that applies to all parts of the cardiovascu-
lar system), and “subclass of” (rdfs:subClassOf) to classify 
biological attributes. In addition, the relationship has_role 
(RO:0000087) is used in cases where the definition of a 
biological attribute requires a reference to a chemical role, 

such as “serum metabolite” in “serum metabolite amount” 
(OBA:2050092).

OBA coverage of biological attributes relevant 
for cross‑species data integration

The template-based curation workflow (“Template-based 
ontology curation with DOS-DP” section) makes the pro-
cess of adding new attributes highly scalable, as we do not 
need to worry about logical modelling. In the following we 
show (as an example) how to rapidly curate relevant biologi-
cal attributes in OBA to cover the needs of the International 
Mouse Phenotyping Consortium (IMPC) database which 
captures information that includes the effect of gene knock-
outs on phenotype (Groza et al. 2023). IMPC uses 1102 
phenotypic abnormality terms from the Mammalian Pheno-
type Ontology (MP). To ensure that we capture the relevant 
attribute terms for these, we first extract the fillers for the 
EQ logical definitions from MP using DOS-DP tools (dosdp-
tools: Utility for working with DOSDP design patterns and 
OWL ontologies), and then transform the fillers into the 
respective OBA pattern. Since this mapping approach relies 
on the presence of EQ logical definitions (and only about 
half of MP terms have one), only 532 (~ 50%) of the IMPC 
phenotypes could be matched this way. A curator then manu-
ally assigns appropriate PATO characteristics (e.g. “amount” 
in cases where the quality of the phenotypic abnormality was 
“increased amount”). This process resulted in a total of 179 
new trait terms added to OBA. Note that the remaining 50% 
of IMPC phenotypes need more extensive effort, in some 
cases manual curation. However, the mapping approach 
described in the automated mapping pipeline section can be 
employed to streamline the effort.

The Mouse Phenome Database (MPD) (Bogue et  al. 
2023) enables the integration of genomic and phenomic data 
by providing access to primary experimental data, well-doc-
umented data collection protocols and analysis tools. OBA 
terms currently cover 80.1% (5066 of 6325) of trait measures 
annotated in MPD via mappings to VT. We estimate that we 
will cover most of the remaining 20% by the end of 2023.

Identifying mouse traits reflective of human disease is 
critical to prioritise preclinical models of disease and aspects 
of complex disease. Prior to the development of OBA, 
researchers hoping to retrieve mouse trait measures reflec-
tive of human disease characteristics had to know specifi-
cally which mouse traits were associated with each disease, 
searching trait by trait to find a complete set. A workaround 
approach involves retrieval of disease terms (DOID) to ver-
tebrate traits (VT) using a gene-centric mapping performed 
by retrieving Alliance of Genome Resources (AGR) (Alli-
ance of Genome Resources Consortium 2022) annotated 
genes associated with each DOID and identifying Mamma-
lian Phenotype (MP) terms to which their phenotypic alleles Fig. 4   Distribution of OBA attributes across categories and qualities

http://purl.obolibrary.org/obo/oba.owl
http://purl.obolibrary.org/obo/oba/releases/2022-12-21/oba.owl
http://purl.obolibrary.org/obo/oba/releases/2022-12-21/oba.owl
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were annotated in Mouse Genome Database (MGD) (Blake 
et al. 2021). These MP terms were used to retrieve mouse 
trait measures from the Mouse Phenome Database (MPD) 
and the VT terms to which the traits were also annotated. In 
an effort to validate the utility of OBA to retrieve relevant 
mouse data, we compared this gene-centric approach to the 
OBA’s semantic mappings of disease terms from the Human 
Disease Ontology (Schriml et al. 2022) to vertebrate traits 
(VT). In total, OBA mapped 3033 of 3455 (87.8%) disease 
terms to VT terms with mouse trait measures in MPD. From 
the two approaches combined, we identified 4910 disease 
terms that had associations to VT terms. For 1348 disease 
terms, at least one VT term was mapped to the disease using 
each approach and 558 (41.4%) were associated with at least 
one shared VT term. In these cases, the mean overlap of VT 
terms per disease was 26.6% for OBA and 16.7% for the 
gene-centric approach.

Using OBA to group phenotypic abnormalities

To determine how well existing ontologies of phenotypic 
abnormality aggregate under OBA, we count the total num-
ber terms falling under any OBA class, and the total num-
ber of links between a phenotype ontology and OBA. For 
an accurate edge count, we follow the Ubergraph approach, 
which essentially converts an ontology to a knowledge graph 
with nodes and edges instead of axioms. We (1) merge the 
phenotype ontologies with OBA, then (2) materialise the 
relationships necessary for connecting OBA biological 
attributes with phenotypic abnormalities using a regular 
OWL 2 reasoner (ELK). Next, we (3) convert the result-
ing ontology to a knowledge graph using “relation graph” 
(Balhoff et al. 2022). Lastly, (4) we extract the OBA map-
pings from the knowledge graph using the SSSOM toolkit 
(Matentzoglu 2022a). The results can be found in Table 1. 
It is important to understand that no particular effort was 
made to cover all phenotype classes—as described in the 
section above, coverage can be rapidly increased by reus-
ing the logical definitions. This experiment only illustrates 
the breadth of integration, not its depth: it includes classes 
that only link to very general attributes like “morphology 
anatomical entity”.

Alignment with other trait ontologies

In contrast to the alignment with ontologies of phenotypic 
abnormalities as described in the previous section, alignment 
with most other trait vocabularies has to be performed using 
a semi-automated approach based on automated matching 
(see “Automated mapping” section above) and manual cura-
tion. To date, we have curated 2314 mappings to VT (ver-
sion 12.5) and 150 mappings to EFO (version 3.14.0). 2,332 
terms in OBA (which can be recognised by their ID, i.e. 

OBA:VT123 instead of OBA:123) have been derived from 
the VT ontology, i.e. OBA terms decompose and generalise 
them using the EQ pattern.

A handful of other ontologies of attributes use the same 
EQ system to define attribute classes. For example, the Plant 
Trait Ontology (TO) has 1144 classes that classify under 
OBA attributes, and the Plant Phenology Ontology has 60 
such classes.

How to access OBA and how to contribute to it

The EMBL-EBI Ontology Lookup Service (OLS) (Jupp 
et al. 2015) and Ontobee (Ong et al. 2017) are platforms 
from which one can find or browse OBA terms manually. 
There is also an OBA GitHub repository for those who wish 
to contribute to OBA, view documentation or download pub-
lic releases and source files.

Users can explore OBA by entering free text into the 
search box on OLS or by using unique, permanent OBA 
identifiers. It is also possible to browse terms in the ontol-
ogy hierarchy tree view or the interactive graph layout which 
displays colour-coded term relations. Search results return 
OBA terms, textual and logical definitions in addition to 
terms dynamically imported from other ontologies. Users 
can also query for OBA terms using the linked ontology 
server, Ontobee (Table 2). A complete list of terms can be 
downloaded in “.xlxs” or “.tsv” formats from Ontobee’s 
home page. The OBA “.obo” or “.owl” ontology files can 
be viewed in an ontology editor such as Protégé, where users 
can browse terms and construct DL queries (Musen and Pro-
tégé Team 2015).

OBA welcomes contributions or suggestions for improve-
ments from the research community. Contributions, sug-
gestions or bug reports can be initiated via the OBA issue 
tracker on GitHub (Table 2).

Programmatic access to OBA

OBA is distributed in RDF/OWL, OBO Format and OBO 
Graph JSON format, so any programming library that is 
capable of reading these formats can be used to explore 
OBA. For data science use cases we recommend the use 

Table 1   Current degree of integration between OBA and existing 
phenotype ontologies

Ontology # Links to OBA # Classes 
under OBA

HPO 217,474 16,544
MP 187,405 13,620
ZP 117,023 39,373
XPO 38,567 20,340
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of the Ontology Access Kit (OAK) (ontology-access-kit: 
Ontology Access Kit: A python library and command line 
application for working with ontologies.(Github), which pro-
vides both Python bindings and a command line interface. 
Additionally, there are several ways to query OBA terms 
using public APIs: the OLS API, Ubergraph (Balhoff et al. 
2022) and Ontobee SPARQL endpoints (Table 2).

Use cases

OBA is used across a wide range of biological domains and 
processes, including genomics and drug discovery. In this 
section, we list some examples of its use.

The Gene Ontology (Gene Ontology Consortium 2021) 
is using OBA for axiomatising their “regulation of char-
acteristic” branch (~ 100 terms), which describes biologi-
cal processes that qualitatively or quantitatively modulate 
a biological attribute. For example, biological processes 
“regulation of lysosomal lumen pH” (GO:0035751) and 
“lysosomal lumen pH elevation” both regulate the biologi-
cal attribute (trait) “lysosomal lumen pH” (OBA:0000091). 
OBA trait terms imported into EFO can facilitate computa-
tional drug target identification via the Open Targets Plat-
form (Ochoa et al. 2023). For example, OBA, in tandem 
with other ontologies, has proved useful for computational 
drug target identification in a study of drug-induced adverse 
events in animal models (Giblin et al. 2021). In a study that 
identified associations between drug-induced preclinical 
and clinical adverse events in animal models and humans, a 
number of ontologies including the Human Disease Ontol-
ogy (DOID), MP, HPO, EFO and OBA amongst others, 
were used to map adverse events terms. For example, the 
effect “Glucose urine present” was mapped to “urine glu-
cose amount” (OBA:VT0001758) and “Photosensitivity 

allergic reaction” was mapped to “zone of skin photosensi-
tivity” (OBA:0003620). A total of 15 OBA terms were used 
in these mappings. Using these mappings, the OpenTargets 
database was then queried to extract the genes associated 
with diseases encoded by the EFO and DOID ontologies 
(Giblin et al. 2021).

Another important OBA use case is the online community 
resource Functional Trait Resource for Environmental Stud-
ies (FuTRES) (Balk et al. 2022). It contains an application 
ontology, FuTRES Ontology of Vertebrate Traits (FOVT) 
(https://​obofo​undry.​org/​ontol​ogy/​fovt.​html), developed to 
standardise measurable trait terms in vertebrates. The FOVT 
currently has 390 trait terms (https://​futres-​data-​inter​face.​
netli​fy.​app/), 65 of which are from OBA and 325 of which 
will be eventually incorporated into OBA (Balk et al. 2022). 
By standardising terms, researchers spend less time wran-
gling data as the harmonised terms enable interoperable 
data. FOVT follows and helps develop patterns developed 
by OBA. Using patterns helps eliminate human errors and 
makes for easier on-boarding of new ontology curators. 
FOVT also takes advantage of OBA annotation property, 
“measured in taxon” (OBA:2050187) and “not measured 
in taxon” (OBA:2050188), with 244 and 16 assertions, 
respectively, to increase findability of trait terms of interest 
to researchers studying particular groups of organisms.

OBA terms are also used in the fields of agriculture, 
nutrition, zoology and biodiversity. AgBioData member 
databases take advantage of the species-neutral nature of 
OBA terms to integrate agriculturally important animal 
and plant traits with genomics and genetics data (Harper 
et al.2018). The Compositional Dietary Nutrition Ontology 
(CDNO) uses OBA to link nutritional components found 
in food to their human dietary roles which include traits. 
This allows the integration of nutritional components like 

Table 2   Different ways to access OBA

Link Name Note

https://​www.​ebi.​ac.​uk/​ols/​ontol​ogies/​oba EMBL-EBI Ontology Lookup Service (OLS) Find or browse OBA terms manually
https://​github.​com/​oboph​enoty​pe/​bio-​attri​bute-​

ontol​ogy
OBA GitHub repository To contribute to OBA, read documentation, or 

download OBA public releases and source 
files

https://​www.​ebi.​ac.​uk/​ols/​docs/​api OLS API Query OBA terms programmatically
https://​uberg​raph.​apps.​renci.​org/​sparql ubergraph SPARQL endpoint Query OBA terms programmatically
https://​api.​tripl​ydb.​com/s/​Dwuip​bH9o Example query using ubergraph SPARQL 

endpoint
Query OBA terms programmatically

https://​ontob​ee.​org/​ontol​ogy/​OBA Ontobee Query OBA terms manually or programmati-
cally

https://​github.​com/​oboph​enoty​pe/​bio-​attri​bute-​
ontol​ogy/​issues

OBA issue tracker Contribute bug reports or suggestions to OBA

https://​github.​com/​INCAT​ools/​ontol​ogy-​
access-​kit/​blob/​main/​noteb​ooks/​Monar​ch/​
OBA-​Tutor​ial.​ipynb

Accessing OBA using the Ontology Access 
Kit (OAK)

We provide a Jupyter notebook showing exam-
ples of querying OBA using OAK

https://obofoundry.org/ontology/fovt.html
https://futres-data-interface.netlify.app/
https://futres-data-interface.netlify.app/
https://www.ebi.ac.uk/ols/ontologies/oba
https://github.com/obophenotype/bio-attribute-ontology
https://github.com/obophenotype/bio-attribute-ontology
https://www.ebi.ac.uk/ols/docs/api
https://ubergraph.apps.renci.org/sparql
https://api.triplydb.com/s/DwuipbH9o
https://ontobee.org/ontology/OBA
https://github.com/obophenotype/bio-attribute-ontology/issues
https://github.com/obophenotype/bio-attribute-ontology/issues
https://github.com/INCATools/ontology-access-kit/blob/main/notebooks/Monarch/OBA-Tutorial.ipynb
https://github.com/INCATools/ontology-access-kit/blob/main/notebooks/Monarch/OBA-Tutorial.ipynb
https://github.com/INCATools/ontology-access-kit/blob/main/notebooks/Monarch/OBA-Tutorial.ipynb
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“concentration of calcium” (CDNO:0200138) with associ-
ated traits, for example, bone strength (OBA:VT0001542) 
(Andrés-Hernández et al. 2022). OBA trait classes have been 
used for the annotation of domestic guinea pig electrophysi-
ology data (Farrell and Bengtson 2019). The Encyclopedia 
of Life (EOL) TraitBank takes advantage of the well-axio-
matised OBA terms to infer traits in biodiversity data and 
to improve their search functionality (Horn 2016; Parr et al. 
2016). For example, a user looking for a body size meas-
urement would not have to do separate searches for all the 
different ways body size is measured in different taxonomic 
groups, e.g. body length, snout vent length and fork length. 
The semantic features of OBA can contribute to improved 
named entity recognition performance when incorporated 
in a natural language processing (NLP) framework for bio-
diversity literature curation (Batista-Navarro et al. 2016). 
Additionally, OBA can be used to link traits and phenotypes 
to environments (Thessen et al. 2015). This is of particular 
interest in the crop science community, where researchers 
are working to identify specific regions of the genome that 
control complex traits, such as drought resistance.

Having a rich set of links between biological attributes 
(traits) and phenotypic abnormalities also enables a wide 
range of applications. For example, we can use these links 
to group data across species at a high level. Many databases 
such as the Mouse Phenome Database (MPD) have to deal 
with the challenge of grouping trait data from a variety of 
studies for meta-analyses, e.g. all trait data associated with 
hypertension should be grouped. Similarly, the hierarchical 
structure allows for a broader search in FuTRES, where a 
user can query for “humerus length” and have all the ways 
humerus length is measured with measurement values 
returned, rather than having to do a separate search for each 
measurement method to retrieve data.

OBA is a component of the successor of the Unified 
Phenotype Ontology (Matentzoglu et al. 2018a), uPheno 2 
(Ontology Xref Service). uPheno 2 is used by the Monarch 
Initiative (Shefchek et al. 2020) to integrate gene-to-phe-
notype data across species. The integration of OBA allows 
grouping of phenotype data across traits without concern for 
the specific manifestation (e.g. “blood glucose level” instead 
of “abnormally increased blood glucose level” or “limb mor-
phology” instead of “short limb”).

Limitations of the approach

Identifier uniqueness

One of the key OBO Foundry principles is class unique-
ness: a single term, such as “amount of lysine in the blood”, 
should not exist in multiple ontologies. Whilst the synchro-
nisation with EFO is unproblematic (EFO is not an official 

OBO Foundry reference ontology, and measurement terms 
are conceptually disjoint from trait or attribute terms), the 
synchronisation with VT may raise some questions. Whilst 
the class uniqueness principle is absolutely central to ref-
erence ontologies such as PATO, ChEBI, GO and PRO, it 
is very complicated to maintain in a cross-species context. 
The prevalent practice is to have one species-independent 
vocabulary (Uberon, uPheno and now OBA) whose goal it 
is to integrate species-specific ontologies (MA, VT, XAO, 
ZFA, FOVT, etc.). Furthermore, species-specific ontolo-
gies are typically maintained as taxonomical structures 
(owl:subClassOf hierarchies with little additional axiomati-
sation) which means that they lack the strong logical founda-
tion that integrator ontologies provide.

Need for manual mapping curation

The integration of GWAS data with data from a more quali-
tative phenotyping pipeline relies to a large extent on our 
mappings between OBA and EFO, and VT, which is an 
ongoing process. Due to their lack of (logical) formalisation, 
alignment is largely manual, but the comparatively small 
sizes of the relevant branches in EFO and VT makes it feasi-
ble to curate mappings semi-automatically using automated 
matchers and manual curation, as described in the “Auto-
mated mapping” section (Methods). The rapid improvement 
in Large Language Models and other NLP techniques may 
be able to speed up this process in the future.

Discussion and future work

The primary objective of OBA is to break silos across data 
types related to characteristics (e.g. “amount” or “mass”), 
traits or biological attributes (e.g. “amount of lysine in 
blood”), phenotypic abnormalities (e.g. “Hypolysinemia”) 
and biological entities/processes (e.g. “blood”, “lysine”, 
“mitosis” or “cardiovascular system”). Due to its rich logical 
definitions, OBA naturally integrates well with data focussed 
on links to anatomy (such as gene expression data), chemi-
cal entities, cellular components, cell type, biological pro-
cess and more. This allows, for example, the integration of 
anatomy focussed data (such as gene expression and single 
cell expression data) with trait-level data which is already a 
significant improvement over the status quo. Existing vocab-
ularies to capture biological attributes, such as VT and EFO, 
do not (aside from the provision of simple cross-references) 
systematically bridge the gap between PATO characteristics, 
reference ontologies (e.g. anatomy, chemical) and phenotype 
ontologies.

Phenotype ontologies such as MP and HPO that define 
phenotypic abnormalities have been used for over a decade 
in the biomedical domain for clinical and model organism 
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phenotyping. Due to the widespread use of the EQ design 
pattern (see the “Logical framework” section), we can clas-
sify phenotypic abnormalities under their respective bio-
logical attributes ( “Using OBA to group phenotypic abnor-
malities” section). Public endpoints such as Ubergraph (see 
“Programmatic access to OBA” section) demonstrate how 
hundreds of thousands of links between biological attributes 
and phenotypic abnormalities can be inferred automatically 
without a human in the loop. Furthermore, the integration 
of OBA into uPheno 2 allows to easily group phenotypic 
effects across biological attributes, which opens up powerful 
possibilities for search and grouping of annotations (“Use 
cases” section).

Many polygenic, quantitative and GWAS traits are not 
in scope for the Mendelian phenotype focussed ontolo-
gies. There are ontologies that focus on or include quan-
titative and measurable trait terms, such as VT, EFO and 
the Clinical Measurement Ontology (CMO) (Shimoyama 
et al. 2012; Smith et al. 2013). EFO curators, for example, 
maintain a branch in the ontology for “measurement” terms 
that are used in annotation by the GWAS Catalog (Sollis 
et al. 2023). “Measurement” terms, such as “urinary sodium 
measurement” (EFO:0021522), have a broad applicability 
in annotation. They can be used to annotate experiments 
independent of any conclusion about the results and out-
side of any context where conclusions might be made about 
biological traits. The GWAS Catalog uses these terms to 
record something more specific—an association between the 
presence of an allele and some effect on the measured value 
of a trait. Mapping a GWAS annotation with a “measure-
ment” term to an OBA term, such as “urine sodium amount” 
(OBA:VT0006274) enables recording this explicitly, and 
has the advantage that the terms can be integrated directly 
with widely used phenotype ontologies, e.g. “Hypernatriu-
ria” (HP:0012605). Measurement terms are still useful as 
they can record one of many assay methods for measuring a 
specific trait. For example, Body Mass Index is a useful, if 
sometimes limited, proxy measurement of body fat levels. 
Using a BMI measurement term to annotate GWAS variants 
can record this useful information, mapping this to a trait 
term for body fat levels then allows this to be integrated 
with related traits and phenotypes. Specialised ontologies 
that capture the measurement method exist, for example the 
Ontology of Biomedical Investigation (OBI) (Bandrowski 
et al. 2016) or the Biological Collections Ontology (BCO) 
(Walls et al. 2014).

The integration of quantitative trait data (such as GWAS 
or QTL) with outcomes from clinical and research organism 
phenotyping activities is one of the most promising applica-
tions of OBA. For example, the deep integration between 
OBA and HPO will facilitate the use of gene-phenotype 
associations derived from GWAS studies in variant prior-
itisation software such as Exomiser (Smedley et al. 2015), 

which is used for clinical diagnostics. This has the potential 
to significantly extend the existing sources of gene-pheno-
type data from annotations of Mendelian disease resources 
such as OMIM and Orphanet as well as model organism 
resources such as MGI (Blake et al. 2021), IMPC (Groza 
et al. 2023) and ZFIN (Bradford et al. 2022).

As the space of biological attributes/traits is very large, 
any curation of new terms must be highly scalable. To dem-
onstrate how defining new biological attributes can largely 
be automated, we rapidly aligned more than 500 terms from 
the Mammalian Phenotype Ontology with OBA (“OBA 
coverage of biological attributes relevant for cross-species 
data integration” section) by repurposing logical definitions 
used and focussing on the curation of the specific phenotypic 
characteristic (e.g. “amount” instead of “increased amount”). 
Using logical definitions for automated reasoning and tem-
plates for scalable curation enables rapid development of 
terms. However, not all vocabularies make use of such logi-
cal definitions, which necessitates the use of manual and 
automated matching approaches. Due to terminological vari-
ability (different communities use different terminologies 
to talk about the same concepts) and the strong need for 
precision when constructing ontologies, we currently use 
a controlled approach involving equivalent string matching 
and expert-reviewed pre-processing steps (to populate the 
DOS-DP templates), rather than relying on Ontology Match-
ing tools like AgreementMakerLight (AML) (Faria et al. 
2013) for smart or fuzzy matching. Whilst this approach is 
very precise, it is incomplete, which means many terms need 
to be matched entirely manually by a human expert. Mov-
ing forward we expect a much higher volume of new term 
requests that will require us to scale up our curation effort. 
For example, there is an increasing demand from the GWAS 
Catalog for new trait terms to annotate summary statistics 
containing hundreds of GWAS studies directly submitted 
by authors. We are looking into improving our approach 
by combining our strict approach with automated matching 
such as AML. The required precision for curating coherent 
logical axioms requires, however, a human in the loop (at 
least in the near future). To that end, we have also started 
experimenting with ChatGPT (ChatGPT) to scale up manual 
curation significantly..

OBA can facilitate the interpretation of trait and phe-
notypic findings in clinical laboratory test results, many 
of which are annotated with Logical Observation Identi-
fier Names and Codes (LOINC) (Forrey et al. 1996). As 
part of future work, we will bridge OBA to the LOINC 
database via the CompLOINC project (https://​github.​com/​
loinc/​comp-​loinc), which decomposes the (heavily pre-
coordinated) LOINC classification into an OWL ontology 
with is-a hierarchies for each of the 6 LOINC Part Types 
(Component, System, Method, Property, Time and Scalar). 
This OWL formalisation of LOINC allows logical reasoning, 

https://github.com/loinc/comp-loinc
https://github.com/loinc/comp-loinc
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subsumption querying by Part Type, and has the potential 
to provide an extensive bridge between the LOINC-domi-
nated clinical laboratory domain and the phenotype ontology 
world that dominates in the area of genomics. Rather than 
matching LOINC codes on the level of the highly variable 
LOINC labels, OBA terms can be matched much more eas-
ily to LOINC Part terms (e.g. chemical entities to ChEBI, 
anatomical entities to Uberon). This will result in a much-
needed bridge between the clinical laboratory domain and 
biological research and genomics.

Also as future work, we seek to integrate OBA with 
disease ontology terms (which are also widely used, for 
example, in GWAS) through phenotypic features of dis-
eases and common links to Uberon. For example, “familial 
juvenile hyperuricemic nephropathy” (MONDO:0000608) is 
linked to “Hyperuricemia” (HP:0002149) which is logically 
defined as “increased amount of uric acid in the blood”. It 
therefore is automatically classified under “blood uric acid 
levels” (OBA:VT0010302). This gives us a natural bridge 
from diseases to biological attributes which provides another 
layer of integration. A second level of integration that has 
yet to be explored is to exploit the numerous “anatomi-
cal site” relations provided by disease ontologies such as 
Mondo—these are already integrated with OBA through 
the use of a common reference ontology (Uberon), but bio-
logical attribute terms could easily be generated based on 
the Uberon reference for more thorough logical integration. 
Prior to the development of OBA, researchers hoping to 
retrieve mouse trait measures reflective of human disease 
characteristics had to know specifically which mouse traits 
were associated with each disease, searching trait by trait to 
find a complete set. Using OBA mappings, mouse trait meas-
ures in MPD, for example, are readily annotated to 3033 
disease ontology terms with more than 50% coverage across 
all MPD trait measures, allowing researchers a simple means 
of retrieving all disease associated trait data using a single, 
intuitive disease-centric query. These data can then be used 
to identify preclinical mouse models collectively extreme 
across a set of disease-related traits.

Related work

The Vertebrate Trait Ontology (VT) (Park et al. 2013) is a 
cross-species, unified trait vocabulary used for the anno-
tation of terms in vertebrates. It was created based on the 
structure of the Mammalian Phenotype Ontology (MP), 
where references to abnormalities were removed and a 
skeletal set of neutral trait terms was maintained. It is there-
fore a phenotype-neutral ontology, which, similar to OBA, 
describes traits that do not indicate an abnormal state or 
process or express any phenotypic variation. Unlike OBA, 
VT terms are not constructed using logical axioms, and there 

are no logical links to other ontologies. VT uses weak non-
logical cross-references to GO and MP to indicate that a 
link exists, but these links are sparse and cannot be used for 
automated reasoning (less than 20% of VT terms have such 
links, compared to 100% of OBA, which are logical and 
therefore more meaningful).

The Plant Trait Ontology (TO) (Cooper et al. 2018) is a 
Planteome database reference ontology that describes phe-
notypic traits in plants. Comparable to OBA, it is species-
neutral and many TO terms also follow the EQ pattern, 
drawing entities from ontologies like the Plant Ontology 
(PO), GO and ChEBI and quality terms from PATO to pro-
vide pre-composed descriptions of terms and logically con-
nect TO to other ontologies. Similarly, the flora phenotype 
ontology (FLOPO) (Hoehndorf et al. 2016), also employ-
ing the same Entity-Quality model used by OBA, is used 
for describing traits in the plant flora. TO and FLOPO can 
be seen as complementary to OBA, covering the world of 
plants, where OBA is focussed on Metazoan traits.

The Animal Trait Ontology (ATO) (Meunier-Salaün 
2015) is an effort to form a central, standardised reposi-
tory of controlled, phenotypic trait terms for three domes-
ticated farm animal species. It was later expanded and is 
now referred to as the Animal Trait Ontology for Livestock 
(ATOL), an ontology of traits defining phenotypes described 
in the Environment Ontology for Livestock (EOL). One of 
ATOL’s objectives is to use trait terms related to industry-
wide technical measurements to promote standardisation. 
This was realised through the adoption of PATO’s Entity-
Quality formalism model (Gkoutos et al. 2018), the same 
model used by OBA.

Conclusion

The Ontology of Biological Attributes (OBA) is a species-
independent ontology with numerous links to other bio-
logical and biomedical ontologies that integrates widely 
used phenotype ontologies such as HPO. A scalable logical 
framework based on design patterns and templates allows 
the rapid curation of precisely defined terms which not only 
bridge the gap between low level characteristics (such as 
“weight” and “amount”) and reference ontologies such as 
the ChEBI (chemical entity) and Uberon (anatomy) ontolo-
gies, but also the currently wide chasm between quantita-
tive “measurement” data such as GWAS and qualitative 
phenotyping data from clinical or model organism pheno-
typing activities. OBA is an active, evolving ontology that 
welcomes contributions and suggestions from the trait data 
community. In the near future, our goal is to integrate OBA 
more closely with clinical laboratory data (e.g. LOINC) and 
disease data (e.g. Mondo).
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