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Abstract
Mice have emerged as one of the most popular and valuable model organisms in the research of human biology. This is 
due to their genetic and physiological similarity to humans, short generation times, availability of genetically homologous 
inbred strains, and relatively easy laboratory maintenance. Therefore, following the release of the initial human reference 
genome, the generation of the mouse reference genome was prioritised and represented an important scientific resource for 
the mouse genetics community. In 2002, the Mouse Genome Sequencing Consortium published an initial draft of the mouse 
reference genome which contained ~ 96% of the euchromatic genome of female C57BL/6 J mice. Almost two decades on 
from the publication of the initial draft, sequencing efforts have continued to increase the completeness and accuracy of the 
C57BL/6 J reference genome alongside advances in genome annotation. Additionally new sequencing technologies have 
provided a wealth of data that has added to the repertoire of annotations associated with traditional genomic annotations. 
Including but not limited to advances in regulatory elements, the 3D genome and individual cellular states. In this review 
we focus on the reference genome C57BL/6 J and summarise the different aspects of genomic and cellular annotations, as 
well as their relevance to mouse genetic research. We denote a genomic annotation as a functional unit of the genome. Cel-
lular annotations are annotations of cell type or state, defined by the transcriptomic expression profile of a cell. Due to the 
wide-ranging number and diversity of annotations describing the mouse genome, we focus on gene, repeat and regulatory 
element annotation as well as two relatively new technologies; 3D genome architecture and single-cell sequencing outlining 
their utility in genetic research and their current challenges.

Established annotations in the mouse 
reference genome

Good annotations are reliant on the accuracy and high qual-
ity of the reference genome assembly. The Genome Refer-
ence Consortium is responsible for building, improving and 
providing the mouse genome assembly to the scientific com-
munity. For example a recent and major assembly release, 
GRCm39, saw a change in chromosome coordinates with 
100s of issues resolved. This was the first major release for 
nine years although the consortium continually produces 
improvements with minor releases. Once a release is com-
pleted it is annotated by GENCODE and RefSeq (Frankish 
et al. 2021; O’Leary et al. 2016).

The GENCODE resource is based at the European 
Bioinformatics Institute (EBI-EBML). Where its goal 
is the 'description of all non-redundant transcripts 
associated with protein-coding genes and non-coding 
RNAs (small and long), along with the identification of 
all pseudogenes.'(Frankish et al. 2019) (Table 1). The 
GENCODE annotation process includes manual annota-
tion from ‘Ensembl Human and Vertebrate Analysis and 
Annotation’ (HAVANA) and computational annotations 
produced by the Ensembl gene build team. The result-
ing Ensembl/GENCODE geneset forms the basis of the 
Ensembl genome browser resource (Howe et al. 2021; 
Frankish et al. 2021). Both the computational and manual 
annotations are held in a single database where manual 
annotators curate the entries by approving, updating or 
removing computationally annotated models. Novel genes 
are then assigned their Ensembl stable IDs (ENSX). New 
technologies such as Long-read transcriptomic sequenc-
ing; Pacific Biosciences (PacBio) and Oxford Nanopore 
Technologies (ONT) are now utilised in their manual 
and automated annotation workflows where they look for 
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evidence of putative transcripts and RNA-seq supported 
introns. In addition GENCODE uses many other exter-
nal resources and technologies to improve their annota-
tions especially those with low or weak support, including 
UniProt (UniProt Consortium 2019), APPRIS (Rodriguez 
et al. 2018), PhyloCSF (Lin et al. 2011), Ensembl gene 
trees (Yates et al. 2020), mass spectrometry and variation 
data (Frankish et al. 2021).

RefSeq is based at the National Centre for Biotechnology 
Information (NCBI). The database contains genomic DNA, 
transcripts and proteins for a multitude of organisms includ-
ing mice (O’Leary et al. 2016). It aims to provide compre-
hensive and non-redundant annotations of protein coding 
genes, pseudogenes and non coding genes (McGarvey et al. 
2015) (Fig. 1a). Broadly, RefSeq annotations can be split 
into two categories: “known” (N) and “model” (X), and 
helpfully their annotation accession prefixes contain infor-
mation pertaining to these categories. “Known” annotations 
are largely manual annotations from Genbank transcripts 

and have RefSeq accessions with the prefixes NM_, NR_, 
NP_, or NG_. Annotations which are generated based on the 
NCBI’s automated eukaryotic annotation pipeline (Thibaud-
Nissen et al. 2013) are termed ‘Model’ annotations, these 
have RefSeq accessions with the prefixes XM_, XR_ and 
XP_ (McGarvey et al. 2015). Where NM_/XM_ refers to 
protein coding transcripts, NR_/XR_ refers to non-coding 
transcripts, NP_/XP_ refers to proteins translated from 
NM_/XM_ transcripts (or from a gene if no annotated tran-
script exists), and NG_ refers to a genomic region (O’Leary 
et al. 2016).

Gene annotation methods applied by NCBI/RefSeq and 
Ensembl/GENCODE differ. This can lead to differing anno-
tations in the same regions between resources. In order to 
resolve these differences the Consensus coding sequence 
(CCDS) project was established. CCDS aims to produce a 
consensus dataset for the mouse and human genomes, of 
protein coding regions which have the same coding sequence 
coordinates between resources. In order to achieve this, 

Table 1  RefSeq and GENCODE Established Annotations

Feature Function / definition

Small cytoplasmic RNA (scRNA) Small RNAs located in the cytoplasm
Ribosomal RNA (rRNA) Non-coding RNAs that aid translation of messenger RNA to protein
Misc RNA RNAs that cannot be denoted by other RNA classes/biotypes
Small nuclear RNA (snRNA) Small RNA molecules, on average 150 bases long, found in the nucleus
Small nucleolar RNA (snoRNA) Non-coding RNAs located in the nucleolus that modify other RNAs—mainly ribosomal RNAs
MicroRNA (miRNA) Single stranded non-coding RNA elements that regulate gene expression
Long non coding RNA (LncRNA) RNAs longer than 200 nucleotides that are not translated into functional proteins
All Pseudogenes Mutated or deactivated sequences that mirror genes but lack introns and other sequences
Protein-coding gene A functional unit of heredity, which contributes to a function or a phenotype
Signal recognition particle RNA (srpRNA) RNAs located in the cytoplasm that aid the signal recognition particle complex by targeting proteins
Transer RNA (tRNA) Transfer RNAs are highly abundant RNAs ~ 70–100 bases in length that aid in translation
Small nuclear RNA (snRNA) Small RNA molecules found in splicing speckes and cajal bodies within the nucleus. They are ~ 150 

nucleotides in length and process pre-messenger RNA

Fig. 1  Number of annotations in: a GENCODE and RefSeq for mm39. Only annotations that could be obviously matched between resources 
have been included. b RepeatMasker for mm39
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expert curators from the collaborating members (including 
those involved with the RefSeq and GENCODE projects) 
review regions where protein coding annotations differ 
between resources and attempt to reach a consensus anno-
tation. Consensus protein coding regions are identified by 
stable tracked IDs which can be accessed via the CCDS web 
browser, FTP and other resources such as Ensembl. Expert 
curators also continually review existing CCDS IDs which 
have been flagged by quality assurance tests, curators, or 
users, ensuring the quality of the resource (Pruitt et al. 2009; 
Pujar et al. 2018). The most recent mouse CCDS release 
(release 23) contains 27,219 CCDS IDs corresponding to 
20,484 gene IDs.

Annotations of repetitive genomic elements are per-
formed externally from the typical annotation pipeline that 
annotates the mouse genome. They are commonly anno-
tated and masked using RepeatMasker (Smit, Hubley, and 
Green 2013–2015). The RepeatMasker software screens for 
interspersed repeats and low complexity regions within the 
input DNA. To do this repeatmasker uses the annotations 
within either the Repbase library from the Genetic Infor-
mation Research Institute (GIRA) (Jurka 2000) or Dfam 
(Storer et al. 2021) which are databases of repetitive ele-
ments. For many popular research species including mouse, 
pregenerated RepeatMasker annotations can be downloaded 
from the RepeatMasker website (Smit, Hubley, and Green 
2013–2015) or University of California Santa Cruz (UCSC) 
Table Browser (Karolchik et al. 2004). In the mouse genome, 
RepeatMasker annotates a large number of repeats belonging 
to the SINE, Simple repeats, LTRs and LINE repeat classes 
(Fig. 1b) (see Table 2 for definitions).

Two of the main mouse specific resources which benefit 
from the clear, concise and auditable annotations described 
above are the Mouse Genome Project (Keane et al. 2011) 
and Mouse Genome Informatics (MGI) (Bult et al. 2019). 
The most widely used isogenic strain is C57BL/6 J, and 
is the primary subject of this review; however the scien-
tific community uses a plethora of mouse strains for their 
research. Due to the sequencing of different mouse strains 
via the Mouse Genome Project researchers are able to 
compare the sequence and polymorphisms underlying 

annotations in the C57BL/6 J genome to different mouse 
strains. To date sixteen different mouse strains are available 
via Ensembl and UCSC with more available via the Mouse 
Genome Project portal. Another vital portal in mouse genet-
ics is the Mouse Genome Informatics resource (MGI) (Bult 
et al. 2019). MGI curates and disseminates information on 
mouse phenotypic characteristics, mouse strains, alleles, 
gene ontologies, nomenclature and gene annotations, etc. 
where many of these features rely on the correct annotation 
of the reference genome. For example, The Mouse Genome 
Database Nomenclature Committee provides advice and 
assistance in assigning new symbols and names to genes. 
Typically researchers will use the human readable MGI gene 
symbols provided by MGI to describe their gene of inter-
est, gene symbols are typically 3–5 characters, beginning 
with a capital and italicised, e.g. Atoh1, as opposed to all 
capitalised for a human gene. The challenge for both these 
resources and others is how to incorporate other genomic 
and cellular annotations described below.

Chromatin and cis‑regulatory elements 
annotations

Regulatory elements tightly control the spatio-temporal 
expression of each gene, giving rise to an abundance of dif-
ferent cell types. They offer a critical layer of information in 
understanding how the same set of gene annotations, which 
exist in almost every cell, can give rise to complex multicel-
lular organisms like mice and humans. This is a fast evolving 
field in genetics and it is important to put these annotations 
in context. There are two categories of regulatory elements, 
the first are trans-regulatory elements, which are sequences 
encoding transcription affecting molecules such as transcrip-
tion factors, and are not the focus of this section (Wittkopp 
and Kalay 2011). The second is cis-regulatory elements 
which are genomic sequences that regulate the transcription 
of nearby target genes by recruiting proteins, such as those 
encoded by trans-regulatory elements (Wittkopp and Kalay 
2011). Three common cis-regulatory elements are promot-
ers, enhancers and boundary elements (Oudelaar and Higgs 

Table 2  RepeatMasker Established Annotations

Feature Function / definition

Satelite Largely repeating short elements of AT-rich non-coding DNA that form centromeres and heterochromatin
Low Complexity Repetitve elements of low complexity
LINE ‘Long interspersed retrotransposable elements, respectively, that invade new genomic sites using RNA intermediates.'
Long Terminal Repeat 

(LTR)
Paired sequences of DNA hundreds of base pairs long that often occur after a section of protein coding sequences

Simple Repeat Simple duplicated sets of DNA bases
SINE ‘Short interspersed retrotransposable elements, respectively, that invade new genomic sites using RNA intermediates.'
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2021). Other classes exist including silencers/repressors, 
however they are less characterised and are not discussed in 
this section (Halfon 2020; Ngan et al. 2020). Each class is 
commonly associated with specific chromatin modifications 
or protein binding profiles which can be detected via Next 
Generation Sequencing (NGS) methods such as ChIP-seq. 
Promoters are enriched for H3K4me3 and H3K27ac histone 
modifications, whereas enhancers are enriched for H3K4me1 
and H3K27ac histone modifications. Boundary elements are 
enriched for CTCF and Cohesin binding (Table 3)(Oudelaar 
and Higgs 2021; Wittkopp and Kalay 2011). Although these 
annotation classes have traditionally been thought of as dis-
tinct, there is a growing body of evidence suggesting that 
some regulatory elements have features typical of multiple 
classes (Andersson and Sandelin 2020; Oudelaar and Higgs 
2021). In this section we outline resources which annotate or 
contextualize these annotation classes. However, it is worth 
noting that there are other resources, which can use different 
annotation classes to those outlined here e.g. ORegAnno 
uses “regulatory elements', not “transcription factor bind-
ing sites”, “miRNA binding sites” etc. (Lesurf et al. 2016).

There are numerous databases which contain cis-regu-
latory annotations. One of which is the functional annota-
tion of the mammalian genome project (FANTOM5) which 
generated Cap Analysis of Gene Expression (CAGE) seq 
in mouse and human cells (Lizio et al. 2015, 2019). This 
allowed the precise annotation of known promoter locations 
and the identification of new promoters, as well as annota-
tion of promoter activity in different cell types (measured 
by expression level of CAGE peaks). The use of CAGE seq 
also enabled the detection of transcribed enhancers (Nogu-
chi et al. 2017; Arner et al. 2015). FANTOM5 annotations 
are available via the FANTOM web portal as data files or 
promoter/transcription start site (TSS) annotations, and can 
be queried through the web interface: Semantic catalog of 
Samples, Transcription initiation And Regulators (SSTAR) 
(Abugessaisa et al. 2016). A second regulatory annotation 
resource is the Vista Enhancer Browser (Visel et al. 2007). 
The Vista Enhancer Browser contains mouse and human 
enhancers which have been experimentally validated for 
enhancer activity using a lacZ reporter gene in transgenic 
mouse embryos. The spatial expression pattern of each 
enhancer, as detected by lacZ staining is also provided. Cur-
rently 3231 regulatory elements have been tested and 1653 
were found to have enhancer function.

A key complexity in cis-regulatory element annotation 
is that regulatory elements can be active or inactive in dif-
ferent cell types and timepoints, whilst active they regulate 
the transcription of genes. In order to understand the activ-
ity of a regulatory element annotation within a given cell 
type, it is useful to consider its context in terms of the chro-
matin annotations in that cell type. Chromatin annotations 
can be broadly split into primary order and higher order 

chromatin architecture annotations which are hierarchi-
cally organised in 3D space (Chang et al. 2018). Primary 
order chromatin architecture is less complex and is further 
organised into higher order structures with greater com-
plexity. Primary order chromatin architecture refers to the 
level of compaction/accessibility of chromatin caused by the 
nucleosome density (Chang et al. 2018). Heterochromatin 
is tightly packed and genes within it are transcriptionally 
inactive (Vignaux, Bregio, and Hathaway 2019; Murakami 
2013; Saksouk et al. 2015; Libbrecht et al. 2019). Con-
versely, euchromatin is loosely packed and contains actively 
transcribed genes (Vignaux, Bregio, and Hathaway 2019) 
(Table 3). Therefore, cis-regulatory elements falling within 
a euchromatin annotation may be more likely to be active. 
The primary order chromatin structure of a cell type can 
be profiled and annotated using techniques such as ATAC-
seq, DNase hypersensitivity, FAIRE-seq and MNase-seq 
(Chang et al. 2018). Higher order chromatin architecture 
annotations refer to loops, topologically associating domains 
(TADs) and compartments. Cis-regulatory elements are 
largely thought to impact their target genes by physically 
interacting with them, forming structures known as a loops 
(Yu and Ren 2017). This means that loop annotations can be 
used as direct evidence to link enhancers and target genes. 
The majority of loops fall within larger chromatin structures 
known as TADs (Dixon et al. 2012; Nora et al. 2012). TADs 
are sections of the genome which preferentially interact with 
themselves in 3D space. They are thought to colocalise cis-
regulatory elements and their target genes and have insu-
lators at their boundaries which reduce inter-TAD interac-
tions (Dixon et al. 2012, 2016). This means TAD boundary 
annotations can often narrow down the possible candidate 
target genes of an enhancer. TADs are then further organ-
ised within two chromatin structures known as the A and B 
compartments, where the A compartment is highly enriched 
for euchromatin and the B compartment is highly enriched 
for heterochromatin (Lieberman-Aiden et al. 2009). Com-
partment identity annotations of cis-regulatory elements 
can help to inform which regulatory elements are likely to 
be active in a given cell type or developmental timepoint. 
Higher order chromatin structures are commonly profiled 
and annotated using chromatin conformation capture (3C) 
techniques (Dekker et al. 2002) e.g. Hi-C (Lieberman-Aiden 
et al. 2009) or ligation free methods such as GAM (Beagrie 
et al. 2017) or SPRITE (Quinodoz et al. 2018).

There are several resources which provide cis-regulatory 
annotations along with primary and/or higher order chro-
matin architecture annotations. One of the most popular is 
the Encyclopedia of DNA Elements project (ENCODE) 
(Davis et al. 2018), which has coordinated an effort to gen-
erate datasets to analyse primary order and higher order 
chromatin architecture, transcription, DNA methylation, 
histone modification, transcription factor occupancy and 
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RNA binding proteins, in different cell/tissue types from 
model organisms including mouse. ENCODE datasets have 
been generated using standardised pipelines which ensure 
consistency between datasets. All data is accessible via the 
ENCODE portal, making ENCODE an invaluable resource 
for identifing and/or characterising the function of cis-
regulatory elements in a particular cell type. Additionally 
the ENCODE data has been used to develop a registry of 
candidate cis-regulatory elements which currently includes 
339,815 mouse annotations covering 3.4% of the mouse 
genome. These annotations can be accessed using a web-
based server called SCREEN (ENCODE Project Consortium 
et al. 2020). The ENCODE dataset has also been utilised 
by Ensembl to create the mouse Ensembl regulatory build 
which can be accessed via the Ensembl web browser (Howe 
et al. 2021; Zerbino et al. 2015).

In addition to large scale data generation efforts such 
as ENCODE there is a wealth of publicly available data 
in online repositories such as Gene Expression Omnibus 
(GEO) that can be downloaded and used to identify cis-regu-
latory elements (e.g. chromatin modification or protein bind-
ing profiles) or contextualise them (e.g. primary or higher 
order chromatin assays) (Barrett et al. 2013). EnhancerAtlas 
2.0 has utilised 16,055 data sets from GEO (Barrett et al. 
2013), ENCODE (Davis et al. 2018), FANTOM5 (Anders-
son et al. 2014) and the Epigenome Roadmap (Roadmap 
Epigenomics Consortium et al. 2015) to annotate 13,494,603 
enhancers in nine species including mouse. Enhancers are 
predicted for each cell type using an unsupervised learning 
approach and their target genes are predicted using an algo-
rithm called Enhancer And Gene based Learning Ensemble 
(EAGLE) (in which 3C based methods e.g. Hi-C are used 
as the training data). All enhancer predictions and target 
genes can be downloaded from the web based portal (Gao 
and Qian 2020).

In addition to resources containing both cis-regulatory 
annotations and higher/primary order chromatin architec-
ture annotations, there are now dedicated resources contain-
ing only higher order chromatin architecture annotations. 
A popular database containing TAD and loop annotations 
for mouse tissues is the 3D Genome Browser (Wang et al. 
2018). However, TADs are currently algorithmically defined 
and several studies have noted huge variation in TAD anno-
tations depending on the algorithm used (Dali and Blan-
chette 2017; Forcato et al. 2017; Zufferey et al. 2018). Fur-
ther advances in the biological definition of TADs and the 
adoption of a gold standard method for their detection may 
increase their future utility (de Wit 2020; Eres and Gilad 
2021).

Many of the resources outlined above allow users to 
access pre-identified/predicted enhancers and chromatin 
annotations for multiple cell types and tissues. However, 
is often desirable to use newly generated data as well as 

integrating other publicly available data sets to identify and 
contextulise cis-regulatory elements from scratch. A popu-
lar algorithm to achieve this is ChromHMM which uses a 
hidden markov model (HMM) method to predict chromatin 
states (active promoter, strong enhancer, poised enhancer 
etc.) from input data such as histone modifications in a given 
cell type (Ernst and Kellis 2017). Precomputed Chrom-
HMM predictions are also available for some cell types 
in ENCODE (Davis et al. 2018) and the UCSC genome 
browser (Kent et al. 2002).

The resources outlined in this section provide freely avail-
able cis-regulatory element annotations and primary/higher 
order chromatin architecture annotations for many cell types. 
However cis-regulatory elements and their activity are very 
cell type specific, future improvements will come from the 
generation and integration of data from an increasingly 
comprehensive selection of mouse cell types and tissues. It 
should also be noted that several of the resources outlined 
here provide annotations of the same features but using dif-
fering data modalities as evidence, differing algorithmic 
methods and/or differing levels of confidence. Therefore, 
users should select the resource most appropriate to their 
specific study with care. The field may also benefit in the 
future from greater attempts to validate annotations and 
provide consensus between resources (similar to the protein 
coding gene annotations performed by the CCDS project).

Single‑cell annotations

Understanding the activity of the genomic annotations in 
a multicellular context has been vastly improved by the 
advent of single-cell methods (Eberwine et al. 1992; Tang 
et al. 2009; Huang 2009) and the resulting annotations. The 
annotations provide detailed information about the spatio-
temporal activity of genomic features, such as genes and 
enhancers, at a cellular resolution. These annotations can 
be generated by multiple methods including imaging and 
sequencing. In this section we focus on single-cell annota-
tions with particular emphasis on single-cell RNA sequenc-
ing (scRNA-Seq) in which the transcriptome of each cell is 
sequenced separately.

In order to study the activity of genomic features using 
single-cell data we must first annotate the cell type iden-
tity of each sequenced cell. Therefore, we define a single-
cell annotation as any description of an individual feature 
of a cell, including cell type classification and the genes 
expressed. The first few mouse scRNA-Seq experiments 
were carried out on blood and brain tissues, this was fol-
lowed by the generation of atlases of organ development and 
the whole mouse (Han et al. 2018; Cao et al. 2019). Despite 
these rapid advances, annotations for single-cell expression 
are still in their adolescence, with research continuing to 
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explore new tissues. For some tissues, dissection and cel-
lular dissociation are difficult (e.g. adipose and neuronal); 
therefore in order to generate single-cell annotations for 
these tissues alternate techniques such as single-cell nuclei 
sequencing are required.

The first step in single-cell annotation involves grouping 
single-cells with similar expression patterns together into 
a cluster and predicting the cell type identity of the clus-
ter. Traditional single-cell analyses perform the clustering 
step using an unsupervised identification of cell types and 
are adept at finding novel cell types in an unbiased manner 
(Kiselev et al. 2019). A simple pipeline carries out sequence 
alignment, dimensionality reduction and feature selection 
(Andrews et al. 2021). Thereafter, there is a choice between 
a wealth of different clustering algorithms and analysis tools 
(Traag et al. 2019; Kiselev et al. 2017, 2019) Fig. 2). These 
tools produce a set of clusters, each cluster representing 
a cell-type (Fig. 2, pt. D). Once cells have been clustered 
into cell types, their cell type identity must be annotated. 
During cluster annotation the highest and most specifically 
expressed genes in each cluster are used to characterise cells. 
Typically this unsupervised method is accompanied by man-
ual annotation involving either an established consensus for 
a cell annotation, previous scRNA-Seq, or other expression 
datasets e.g. Lifemap (Edgar et al. 2013) or marker identifi-
cation from other literature (Fig. 2, pt F).

Alternatively clusters can be identified and annotated 
via supervised methods, namely classifiers, defined here as 
computational models used to annotate new single-cell data 
using annotations from previous single-cell data. (Fig. 2, 
pt E/G). Many classifiers have been developed e.g. Garnett 
(Pliner et al. 2019), Alona (Franzén and Björkegren 2020), 
scMCA (Sun et al. 2019), clustifyr (Fu et al. 2020) and 
SCPred (Alquicira-Hernandez et al. 2019). Automated clas-
sifiers such as ScMCA and Alona can reduce the computa-
tional barrier to single-cell analysis (Franzén and Björkegren 
2020; Sun et al. 2019). Other supervised classifiers Garnett, 
SCPred and clustifyr require more expertise but allow the 
training of a classifier based on any reference tissue – and 
therefore are less reliant on what reference datasets are avail-
able. As more scRNA-Seq experiments become common-
place, the more concise and community lead single-cell clus-
ter annotation will be. This may lead to classifiers becoming 
more regularly used to annotate single-cell data.

There are numerous resources which provide pre-anno-
tated single-cell data (Table 4). However, they are cur-
rently disparately provided across many different resources, 
which may result in inconsistencies in cell-type annotation. 
Among the most easily accessible are cell browsers showing 
data from atlases for whole adult mouse and mouse organ 
development e.g. Tabular Muris which allows exploration 
of single-cell data in multiple mouse organs through a web 
browser (Han et al. 2018; Cao et al. 2019; Tabula Muris 

Consortium et al. 2018). Tabular Muris data is also avail-
able through the UCSC genome browser which displays the 
cell-type expression profile for each gene within a gene track 
(Kent et al. 2002). There are also single-cell databases that 
store and categorise single-cell datasets (GEO (Barrett et al. 
2013), PangaloDB (Franzén, Gan, and Björkegren 2019), 
EBI expression atlas (Papatheodorou et al. 2020), Single 
Cell Portal—Broad Institute (https:// singl ecell. broad insti 
tute. org/ single_ cell). The EBI expression atlas has reana-
lysed all experiments present in its database; however, not 
all data from the original experiments are available due to 
quality control measures, and not all data is scRNA-Seq (tra-
ditional RNA-Seq and microarray data is also available).

scRNA-Seq data has notable technical aspects that poten-
tially limit the ability to interpret single-cell data. The most 
commonly anticipated technical limitation of scRNA-Seq 
is the high level of dropouts. Dropouts are defined as zero 
values that are due to a failure to capture RNA for individual 
genes, specific to individual cells (Kharchenko et al. 2014). 
This happens commonly where there are insufficient quanti-
ties of starting RNA during sequencing. Typically, scRNA-
Seq only captures a fraction of the total RNA per cell (Stegle 
et al. 2015; Grün et al. 2014). However, zero inflation is also 
potentially a reflection of biological variation (as “genes in 
the same pathway tend to exhibit similar dropout pattern” 
(Qiu 2020)), and that the proportion of zeros in the dataset 
can be used to inform clustering analyses (Kim et al. 2020). 
Qiu et al. speculate that dropouts can be as instructive as 
highly variable gene selection (Qiu 2020). In contrast, many 
tools exist to eradicate dropouts via differing methods of 
imputation while preserving “biologically silent” genes 
(Talwar et al. 2018; van Dijk et al. 2018; Ran et al. 2020). 
In time, increases in sequencing depth and improvements in 
RNA capture per cell should help alleviate these symptoms 
of single-cell analysis. Doublets also are a cause for con-
cern; they can occur when two or more cells are identified 
as a single cell mainly due to the cell capture process on a 
micro-fluidics device. However, there are multiple methods 
to combat this, including those that model for the potential 
combination of cell types present in the dataset (DePasquale 
et al. 2019). High cell counts per sample will also help tools 
to distinguish doublets that appear to be due to ‘hybrid-
profiles’, combinations of different cell types from genu-
ine processing errors. The advancement of these methods 
will provide confidence to spurious, rare or low expression 
data that may be genuine biological results that occur when 
studying RNA splicing as well as epigenetic analysis.

There are also important technical considerations when 
using single-cell annotations from the literature or resources, 
which are often compounded by the number of different 
resources, the lack of consistency between resources and 
the lack of searchable metadata. When looking for a data-
set to use as a reference, tissue specificity is the priority. 

https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
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Expression can change drastically within a lineage, a tissue, 
between strains, between species and at different time points. 
Therefore, finding a matching tissue or cell-type can be an 
issue. Power is also critical to ensure a dataset will contain 
cells of interest. As the number of cells increases within 
an experiment, the likelihood of identifying rare cell types 
increases. Tools such as https:// satij alab. org/ howma nycel ls/ 

can help identify the total number of cells necessary in a 
dataset to find cell types of interest. Sequencing depth is also 
important but should be balanced against the number of cells 
(Menon 2018). Lastly, the current plethora of computational 
tools to determine every step in the single-cell pipeline can 
affect the annotation, highlighting the need for a consensus 
workflow/pipeline.

Fig. 2  Annotation of scRNA-Seq data. A Single-cell experimental 
data is taken as input. B Input data is analysed using either unsu-
pervised or supervised analysis. C Unsupervised analysis is done 
via clustering, for which there are many algorithms and single-cell 
tools, such as Seurat, Signac, Monocle and ScanPy D Clustering is 
done with the guidance of supporting evidence from previous data to 
identify known clusters, and where necessary identify novel clusters, 
leading to a new single-cell cluster annotation. E The cluster annota-

tions then form part of the reference datasets which feed into support-
ing evidence, F and also are the basis for supervised classification of 
single-cell data. G Supervised classification of single-cell data relies 
on reference annotations to label cells. Some tools such as Alona and 
scMCA enable automated annotation, but other tools such as Garnet 
and ScPred are self-trained. H Supervised classification then pro-
duces annotated cells based off of a reference dataset of choice

https://satijalab.org/howmanycells/
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Conclusion and future of genomic 
and cellular annotations

The challenges for the future of genomic and cellular annota-
tions are unbound and go far beyond what has been described 
in this review. Established annotations such as gene annota-
tions often form the foundation of research projects. Mean-
while, chromatin and regulatory annotations provide an 
important layer of information widening our understanding 
of how these genomic annotations give rise to the complex 
array of cell types found in multicellular organisms. To this 
end, the layers of annotations discussed in this review should 
be integrated to provide detailed information about spati-
otemporal gene regulatory networks in different cell types. 
Efforts are underway, some outlined here but the challenges 
are vast due to the high-dimensionality of the data.

Recent spatio-temporal annotations including the 3D 
genome and genes expressed in different single-cell types 
are heavily influenced by NGS datasets which are currently 
produced by individual labs and some large initiatives. Some 
less established annotation classes are not yet standardised 
and methods are not fully community sanctioned making 

the results harder to interpret. Furthermore we are rapidly 
moving towards annotating time course data where the cur-
rent concerns may be heightened. Exciting technological 
advances are facilitating the addition of invaluable new 
classes of annotations but despite the good example set by 
many initiatives, we should be cautious when utilising recent 
annotations until they reach a level of standardisation similar 
to the established annotations.

In our opinion the best way to combat the challenges 
of annotating results from multi-omic datasets as well as 
aiding the standardisation of these datasets is two fold; 
one to develop more advanced methods to interpret the 
data produced by different resources/labs by the devel-
opment of multivariate statistics and Machine Learning 
(ML) methods. And two, to develop multiple frameworks 
or ontologies where researchers must adopt this framework 
to their data prior to publication. Both these directions are 
underway in various aspects ranging from multi-omic 
atlases’ that adopt ML methods, to data repositories with 
compulsory rules, to new ontology developments. However 
a lack of consensus to the methods required for users to 
derive robust reproducible results, as well as the fast paced 

Table 4  Resources to aid annotating a cell

Table of resources available for single-cell level data, detailing the tissue types available, the metadata stored there and the modality in which the 
single-cell data has been captured in

Resource Tissue availability Metadata Data used to build resources

Single-cell Mouse Cell Atlas 
scMCA

Whole Mouse Adult, Cell Type, Tissue, Developmental 
Stage

scRNA-Seq

Mouse Organogenesis Cell Atlas Whole Mouse Adult Cell Type, Developmental Stage scRNA-Seq
UCSC Cell Browser Adult Mouse, Embryonic Mouse, 

Mouse Nervous System
Cell Type, Tissue, Developmen-

tal Stage, Tissue, Experiment 
Specific Data

scRNA-Seq

EBI expression Atlas Mouse, Brain, Heart, Gonadal Species, Cell Type, Tissue, Tech-
nology

scRNA-Seq, RNA-Seq, snRNA-
Seq, Microarray, scATAC-Seq

Monocle / Garnett Mouse Brain and Spinal Cord, 
Lung

Cell Type, Species, Tissue scRNA-Seq

Pangalo DB Brain, Intestine, Skin, Thymus, 
Spleen, Heart, Lung,

Cell Type, Tissue, Library Pro-
tocol, Number of Cells, Strain 
and or Genotype, Number of 
Expressed Genes, Accession 
number

scRNA-Seq

Alona Brain, Bone Marrow, Skin, 
Epididymus and vas deferens

Cell Type, Accession Number, 
Species, Tissue

scRNA-Seq

Single Cell Portal Broad Brain, Lung, Aging Mouse Brain Species, Cell Type, Tissue, Tech-
nology, Disease, Sex, Library 
Protocol, Age

scRNA-Seq, scATAC-Seq

Mouse Brain Atlas Whole Mouse Brain Cell Type, Developmental Stage scRNA-Seq
LifeMap Developmental Mouse and Stem 

Cells
Cell Type, Anatomical Compart-

ment, Developmental Path, 
Progenitor Status, Developmental 
Time, Number of associated 
Genes, Signals, High throughput, 
Matched Cultured Cells, Disease,

RNA-Seq, Microarray, In situ 
hybridisation

Allen Brain-Map Whole Mouse Brain Cell Type scRNA-Seq
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advancements in NGS will continue to make annotating 
these datasets challenging.
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