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Abstract
Rhesus macaques (Macaca mulatta) are among the most extensively studied of nonhuman primates. This species has been 
the subject of many investigations concerning basic primate biology and behavior, including studies of social organization, 
developmental psychology, physiology, endocrinology, and neurodevelopment. Rhesus macaques are also critically important 
as a nonhuman primate model of human health and disease, including use in studies of infectious diseases, metabolic diseases, 
aging, and drug or alcohol abuse. Current research addressing fundamental biological and/or applied biomedical questions 
benefits from various genetic and genomic analyses. As a result, the genome of rhesus macaques has been the subject of 
more study than most nonhuman primates. This paper briefly discusses a number of information resources that can provide 
interested researchers with access to genetic and genomic data describing the content of the rhesus macaque genome, avail-
able information regarding genetic variation within the species, results from studies of gene expression, and other aspects of 
genomic analysis. Specific online databases are discussed, including the US National Center for Biotechnology Information, 
the University of California Santa Cruz genome browser, Ensembl genome browser, the Macaque Genotype and Phenotype 
database (mGAP), Rhesusbase, and others.

Introduction

Rhesus macaques (Macaca mulatta) are one of the most 
widely studied nonhuman primate species. Biomedical 
researchers investigating the “normal” physiology, endocri-
nology, immunology, and neuroscience of primates depend 
extensively on analyses of this species (Chiou et al. 2020; 
Kenwood and Kalin 2021; Rossion & Taubert 2019; Wise-
man et al. 2013). Studies of fundamental questions in devel-
opmental psychology, social behavior, and other aspects of 
the psychology of complex social mammals have benefited 
tremendously from analyses conducted in rhesus macaques 
(Barr et al. 2003, 2004; Beisner et al. 2020; Fawcett et al. 
2014; Morin et al. 2020; Schwandt et al. 2010; Shannon 
et al. 2005; Talbot et al. 2020). In addition, rhesus macaques 
are widely used as nonhuman primate models of human 
health and disease (Bimber et al. 2017; Gibbs et al. 2007; 
Phillips et al. 2014). This species is the primary animal 
model for studies of infectious diseases such as HIV-AIDS 

(Liang et al. 2019) and tuberculosis (Sharan et al. 2020) and 
recently has been employed to understand SARS-CoV-2 and 
COVID-19 (Klasse et al. 2021). The Expert Panel report 
titled “Nonhuman Primate Evaluation and Analysis” submit-
ted to the US National Institutes of Health in 2018 indicated 
that rhesus macaques accounted for 65% of all nonhuman 
primates (NHP) used in NIH-funded research studies over 
the period 2013 to 2017.

Given the importance of rhesus macaques for a diverse 
array of basic and disease-related research questions, it is 
not surprising that this species has received a great deal of 
attention from geneticists. The present paper cannot be a 
comprehensive review of genetic and genomic studies of 
rhesus macaques, as that literature is voluminous. The goal 
here is to provide a brief introduction to some of the major 
sources of genomic information and other genomic resources 
relevant to rhesus macaques that are available to the research 
community. Of course, the most significant “resource” for 
genetic and genomic analysis of rhesus macaques is the 
population of rhesus maintained and made available to the 
research community by the NIH-funded National Primate 
Research Centers (NPRCs). Investigators using this species 
have long depended both on this animal resource itself and 
on the veterinary and scientific expertise that are part of the 
NPRC program. Information about each of the individual 
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primate centers and the resources they make available can 
be found at www. nprc. org. Each of the seven centers has its 
own website and all have active programs that can collect 
and provide DNA, tissue, or other biomaterials to investiga-
tors. Additional information is available at www. nprcr esear 
ch. org.

In order to fully appreciate and effectively use the genetic 
information available for rhesus macaques, one must rec-
ognize that this species is geographically widespread and 
consequently genetically diverse. Rhesus macaques have the 
largest geographic distribution of any NHP (Groves 2001), 
ranging from Pakistan and Afghanistan in the west (Gold-
stein and Richard 1989) across Asia to the Pacific Ocean 
(Groves 2001). In its eastern range, the species extends from 
as far north as the Taihang Mountains in China (Wenyuan 
et al. 1993) southward into central Vietnam, Thailand, and 
Burma (Groves 2001; Ito et al. 2020). While taxonomists 
consider all these populations to be members of M. mulatta, 
the number of subspecies recognized differs among authors 
(Groves 2001; Rowe and Myers 2016). There is neverthe-
less agreement that the populations of rhesus macaques 
across this wide geographic range differ in body size, pel-
age, temperament and other phenotypes, some with biomedi-
cal relevance (Ling et al. 2002). The prior recognition of 
this morphological and behavioral variation suggested to 
researchers that there were likely to be meaningful genetic 
differences among rhesus populations. Thus, researchers 
have performed various comparisons of Indian-origin rhe-
sus macaques (which constitute most although not all of the 
rhesus in US research colonies) and Chinese-origin rhesus 
macaques (which are now extensively studied in China).

Early studies of the genetics of rhesus 
macaques

Researchers have been studying genetic variation within 
rhesus macaque populations for more than fifty years. The 
first analyses were led by Christine Duggleby and exam-
ined blood group antigens (Duggleby et al. 1971; Duggleby 
and Stone 1971), which provided only limited information 
but did generate repeatable data documenting molecular 
differences among individuals. Several years later geneti-
cists applied methods to detect electrophoretic variation in 
a wider range of proteins and thus extended analyses beyond 
blood group antigens (Cheverud et al. 1978; Melnick et al. 
1986). One of the rhesus macaque populations that received 
substantial attention from these early primate geneticists 
was the free-ranging population of Indian-origin rhesus 
macaques introduced onto Cayo Santiago Island, Puerto 
Rico (Widdig et al. 2016). Subsequently, Melnick and other 
researchers began to quantify genetic variation within and 
between natural populations of rhesus macaques (Melnick 

et al. 1986, 1984) and asked other types of questions, such 
as evidence for natural selection (Smith and Small 1982).

In the early 1990’s geneticists working on the human 
genome identified a new class of DNA sequence polymor-
phisms that was rapidly adopted as a useful tool in a wide 
range of applications. The human genome, as well as the 
genomes of other mammals, contains thousands of short 
sequences that consist of tandem repeats of two, three, or 
four base pairs. These loci, called microsatellites or some-
times simple sequence repeats, are susceptible to mutations 
that alter the number of repeats, and consequently any given 
microsatellite locus will tend to accumulate substantial 
allelic variation in any moderately sized population. Pri-
matologists studying many different primate species have 
used microsatellite variation to quantify the amount and 
geographic patterns of variation among individuals within 
species and to conduct paternity testing or manage the genet-
ics of captive colonies (Kanthaswamy et al. 2006; Vigilant 
et al. 2001). Researchers most often genotype microsatellites 
using PCR to amplify across the variable set of repeats and 
detect differences among alleles by comparing the length 
of PCR products. One valuable result of this approach to 
microsatellite genotyping was that the investigator could use 
PCR primers for known microsatellites in one species to test 
orthologous loci in closely related species (Langergraber 
et al. 2007). Microsatellite variation in Indian rhesus was 
described early in this field (Hadfield et al. 2001; Kayser 
et al. 1996; Morin et al. 1997) and polymorphic loci have 
been identified in both Indian-origin and Chinese-origin 
rhesus (Satkoski et al. 2008). A whole genome linkage map 
for the rhesus genome was initially developed using micro-
satellites (and associated PCR primers) originally identified 
in the human genome (Rogers et al. 2006). The map was 
subsequently extended using new microsatellite polymor-
phisms identified in the rhesus genome (Raveendran et al. 
2006). Lists of polymorphic microsatellite loci are available 
in these various publications, but this author is not aware of 
any structured online database collating this type of macaque 
polymorphism.

Reference genomes for rhesus macaques

In order for investigators to conduct efficient, large-scale 
genomic analyses of any species, it is critical to have an 
accurate reference genome sequence for that species. 
For some types of analysis, such as discovery of single-
nucleotide variants, one can use a reference genome 
from a closely related species (Guevara et al. 2021; Rog-
ers et al. 2019). But this approach is not appropriate for 
many genomic analyses because the genomes of even 
closely related species contain differences. For example, 
gene copy number in particular gene families can differ 
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between species within a primate genus, as can synony-
mous mutations in protein coding genes or the presence 
of individual enhancers for specific coding loci. There are 
today a number of strategies for producing a reference 
genome adequate to support basic genome-wide studies. 
It is outside the scope of this paper to discuss the advan-
tages and disadvantages of these different approaches to 
genome assembly. But a brief history of reference genome 
sequences for rhesus macaques may be useful. Both assem-
bled sequence scaffolds and relevant supporting informa-
tion for rhesus macaque genomes are available on several 
publicly accessible databases, such as Ensembl.org, the 
US National Center for Biotechnology Information, the 
Univ. of California Santa Cruz genome browser, and the 
National Genomics Data Center in China (Table 1).

The first NHP species for which researchers generated 
a reference genome sequence was the chimpanzee, Pan 
troglodytes. Published in 2005, this work was motivated by 
a desire to compare the newly completed human reference 
genome to our closest evolutionary relatives (Consortium 
2005). The importance of rhesus macaques for biomedi-
cal research was the driving motivation for producing an 
initial reference genome for M. mulatta just two years 
later (Gibbs et al. 2007). Both the chimpanzee and rhesus 
macaque first-pass reference genomes were produced using 
Sanger sequencing methods, making them expensive and 
time-consuming efforts. As it does for many mammalian 
genomes, the National Center for Biotechnology Infor-
mation (NCBI) maintains an online database of genome 
assemblies that is readily accessible at www. ncbi. nlm. nih. 
gov/ assem bly. This database (Table 1) collects reference 
genomes from prokaryotes and eukaryotes and accumu-
lates new references for a given species as new versions 
or improvements are submitted. Thus, on the NCBI site 
there is now a historical record of seven different reference 
genomes for rhesus macaques, five of them produced using 
DNA from Indian-origin rhesus and two sequenced from 
Chinese-origin individuals (He et al. 2019).

The most recent and most complete version of the Indian-
origin rhesus genome is Mmul_10, recently published and 
analyzed by a consortium of investigators (Warren et al. 
2020). This new reference assembly was produced using 
a combination of molecular methods to generate a refer-
ence genome more complete and more contiguous (i.e., 
fewer gaps) than previous rhesus macaque assemblies. 
The researchers used Pacific Biosciences RSII long-read 
sequencing technology to generate initial contigs that were 
sequence corrected using Illumina short-read data. Bion-
ano optical mapping information was then applied to build 
extended scaffolds. Next Dovetail Genomics Hi-C proxim-
ity ligation sequencing was used to further correct scaffold-
ing and finally a series of quality control assessments were 
performed. The result is a reference genome that is only 
about 100 megabases longer than the previous Mmul_8.0.1 
reference, but has contig N50 length of 42 Mb and more 
than 99% of the gaps in the Mmul_8.0.1 assembly have been 
closed. The assembly of long-read sequence data and inte-
gration with optical mapping and proximity ligation Hi-C 
sequencing are able to produce dramatically improved ref-
erence assemblies for macaques and for other nonhuman 
primates (Kronenberg et al. 2018).

The Ensembl genome browser (Howe et al. 2021) is a 
valuable source for a wide range of genomic information. 
At www. ensem bl. org one can access several versions of the 
rhesus genome, including Mmul_10. Like the NCBI site, the 
Ensembl database also provides easy access to a wide range 
of annotation data and other information. One should be aware 
that there are also assemblies for genomes from other macaque 
species (M. fascicularis and M. nemestrina) on Ensembl. The 
rhesus reference genome is found by following the “macaque” 
link in the pull-down list, while the cynomolgus or long-tailed 
macaque (M. fascicularis) reference is listed under “crab-
eating macaque” and the pigtail macaque (M. nemestrina) 
reference is listed as “pig-tailed macaque.” The UC-Santa 
Cruz genome browser (Navarro Gonzalez et al. 2021); www. 
genome. ucsc. edu) provides access to Mmul_10 in a convenient 

Table 1  Databases providing various types of genomic data for rhesus macaques

Database URL Reference 
genome

Genetic vari-
ation

Gene 
expres-
sion

National Center for Biotechnology Information (USA) https:// ncbi. nlm. nih. gov/ X X
Ensembl https:// ensem bl. org/ X X X
mGAP https:// mgap. ohsu. edu/ X
Rhesusbase https:// Rhesu sbase. cbi. pju. edu. 

cn/ index. jsp/
X X X

National Genomics Data Center (China) https:// ngdc. cncb. ac. cn/ X X X
Immuno Polymorphism Database https:// ebi. ac. uk/ ipd/ X
International ImmunoGenetics Information System https:// imgt. org/ X
Karolinska Macaque Database https:// kimdb. gkhlab. se/ X

http://www.ncbi.nlm.nih.gov/assembly
http://www.ncbi.nlm.nih.gov/assembly
http://www.ensembl.org
http://www.genome.ucsc.edu
http://www.genome.ucsc.edu
https://ncbi.nlm.nih.gov/
https://ensembl.org/
https://mgap.ohsu.edu/
https://Rhesusbase.cbi.pju.edu.cn/index.jsp/
https://Rhesusbase.cbi.pju.edu.cn/index.jsp/
https://ngdc.cncb.ac.cn/
https://ebi.ac.uk/ipd/
https://imgt.org/
https://kimdb.gkhlab.se/
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browser view that many investigators find user-friendly and 
valuable. The Mmul_10 reference can be found by clicking 
the “rhesus” link on the phylogenetic tree at the left of the 
UCSC genome browser landing page. Older versions of the 
rhesus reference genome are also available on UCSC. How-
ever, readers are warned that the Mmul_10 assembly is labeled 
“rheMac10” on UCSC. The original reference assembly from 
2007 was labeled “rheMac2” and this naming format has been 
maintained in some databases as new upgrades appear.

In some cases, the new version of a reference genome is 
produced using DNA from a different individual than the prior 
assembly (e.g., Macaca_fascicularis_6.0 vs. Macaca_fascicu-
laris_CE_1.0). In these cases, one should expect sequence 
and possibly even copy number differences due to legitimate 
biological differences among individuals within a species. In 
other cases, investigators have added new data from the origi-
nal animal used to generate a reference assembly and using 
the additional data improved the prior version. One example 
of this is the MacaM reference that in 2014 upgraded the rhe-
Mac2 assembly based on Sanger sequencing by incorporating 
new Illumina data, newer assembly algorithms, and newer 
gene annotations (Zimin et al. 2014). On any of the genome 
browsers, one should carefully check the date of submission 
and the origin of the DNA sample used, to confirm that you 
are looking at the version of the genome you wish to use. For 
many NHP species (e.g., chimpanzee, gorilla, marmoset, and 
others), the recent reference genome sequences are more accu-
rate and complete than older versions, so versioning matters.

The National Genomics Data Center (https:// ngdc. cncb. 
ac. cn/) is maintained by the Beijing Institute of Genomics in 
China. This database provides searchable access to a number 
of data types related to the RheMacS assembly of the Chinese 
rhesus macaque genome, which is labeled rheMacS_1.0 on 
NCBI. This is a high-quality reference for the Chinese rhesus 
sequenced using long-read Pacific Biosciences technology 
and assembled using FALCON. As with other recent long-
read assemblies the contig N50 (8.2 Mb) and scaffold N50 
(148.4 Mb) are better (longer) than older primate assemblies 
not employing long-read methods. Information including 
genome sequence, gene annotations, gene expression, and 
other data are managed there (Cncb_Ngdc_Members and 
Partners 2021). The Institute of Molecular Medicine, Peking 
University, Beijing maintains RhesusBase (Zhang et al. 2013; 
Zhong et al. 2016), a database that also contains a genome 
browser for viewing the rhesus genome, as well as various 
types of annotation information.

Current resources for single‑nucleotide 
variants

As mentioned above, genetic variation within rhesus 
macaque populations has been the subject of study for 
decades (Duggleby et al. 1971; Melnick et al. 1986). The 
present paper will not attempt a comprehensive review but 
will address recent efforts to document single-nucleotide 
variants (SNVs) discovered through one or another form of 
DNA sequencing. The first reports of SNVs this author is 
aware of include data published as part of the initial refer-
ence genome sequencing for rhesus macaques (Gibbs et al. 
2007; Hernandez et al. 2007), as well as smaller-scale 
studies by Ferguson, Norgren, and Smith (Malhi et al. 
2007; Street et al. 2007). Researchers are commonly more 
interested in polymorphisms that influence protein cod-
ing sequences as opposed to non-coding or UTR regions. 
Early studies identifying substantial numbers of coding 
sequence variants soon followed the first set of SNV analy-
ses (Fawcett et al. 2011; Yuan et al. 2012). It is now clear 
that rhesus macaques, like many other nonhuman primate 
species, are segregating for a larger number of SNVs per 
individual than are humans. Although at this time we know 
little about SNV diversity in natural populations of Indian 
rhesus, the Indian-origin rhesus from the US national pri-
mate centers have high levels of nucleotide heterozygosity 
in both coding and non-coding sequences (Warren et al. 
2020). Natural populations of Chinese rhesus macaques 
are currently better studied than wild Indian rhesus, and 
the Chinese populations also exhibit substantial levels of 
variation, likely higher than their Indian-origin conspecif-
ics (Liu et al. 2018; Xue et al. 2016).

There are several databases cataloging information 
about SNVs in rhesus macaques. The UCSC genome 
browser has the capacity for investigators to generate cus-
tom tracks illustrating SNVs in their genomic positions, 
and all the > 85 million SNVs identified through the recent 
consortium study of variation among US research colonies 
(Warren et al. 2020) can be viewed on the annotated SNV 
track within the UCSC rhesus macaque browser (https:// 
genome. ucsc. edu/; then choose the rhesus rhemac10 
genome and open the “Rhesus SNVs” track). A relatively 
new and tremendously useful database of rhesus macaque 
sequence polymorphism is the Macaque Genotype and 
Phenotype (mGAP) database (Bimber et al. 2019) devel-
oped and maintained by the Oregon National Primate 
Research Center (https:// mgap. ohsu. edu/). Like the UCSC 
browser, mGAP is a searchable database that allows inves-
tigators to identify SNVs in any region or gene within the 
rhesus genome. Within mGAP one can also obtain infor-
mation about allele frequencies across all individuals cov-
ered by the mGAP database, as well as allele frequencies 
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specific to different research colonies. Most of the infor-
mation in mGAP relates to Indian-origin rhesus macaques 
in US research colonies. The mGAP database provides 
easy quick access to a great deal of SNV information and 
metadata, but does not include all the variants found on 
the UCSC SNV track. Rhesusbase is a database that pro-
vides information on variation in Chinese-origin rhesus 
macaques, developed and maintained by the Institute of 
Molecular Medicine, Peking University (rhesusbase.cbi.
pku.edu.cn).

Other information concerning macaque 
genomic variation

There are multiple different applications for information 
regarding genetic variation in rhesus populations, includ-
ing studies of population genetics (Hernandez et al. 2007; 
Liu et al. 2018), analyses of the genetic causes of macaque 
pathology relevant to human disease (Bimber et al. 2017; 
Dray et al. 2018; Moshiri et al. 2019; Peterson et al. 2019; 
Rogers et al. 2013), applications of genetic markers to assist 
in the genetic management of captive breeding colonies 
(Kanthaswamy et al. 2014, 2006; Petty et al. 2021; Smith 
1980, 1982), or studies of functional variation influencing 
normal (non-pathogenic) phenotypic diversity (Warren et al. 
2020). Furthermore, while SNVs are the most common type 
of polymorphism in the macaque genome, gene copy num-
ber variants, structural variation, and other types of inser-
tion/deletion polymorphisms may account for a larger num-
ber of affected base pairs. The first analysis of gene copy 
number variation among rhesus macaques was published 
by Perry and colleagues (Lee et al. 2008). Some analyses 
have addressed focused questions of genotype–phenotype 
relationships (Degenhardt et al. 2009), while others have 
surveyed copy number differences more broadly (Braso-
Vives et al. 2020; Thomas et al. 2021; Warren et al. 2020). 
To my knowledge, there is no large-scale searchable data-
base of copy number variation yet available for this species. 
However, structural variation (SV) is now recognized as a 
significant element of human genetic variation and an impor-
tant contributor to disease risk. As long-read sequencing 
technologies become more accessible to researchers working 
on nonhuman primate models, we can expect that informa-
tion concerning SVs in rhesus macaques and other labora-
tory primates will increase. Given the potential importance 
of identifying and studying SVs that influence functional 
genes in nonhuman primate populations, it will be useful 
to develop primate databases for SVs similar to those now 
available for human genetics.

Within the arena of biomedical research, one of the major 
applications of rhesus macaques is the study of immunol-
ogy and infectious diseases. The major histocompatibility 

complex (MHC) loci of this species are more complex than 
the MHC loci in the human genome because macaques 
display both sequence variation within particular coding 
genes and copy number variation such that different rhe-
sus macaques can have different numbers of functional, 
expressed Class I MHC genes (Wiseman et al. 2013). The 
Immuno Polymorphism Database (https:// ebi. ac. uk/ ipd/) 
maintained by the European Bioinformatics Institute pro-
vides extensive information concerning genetic polymor-
phism in MHC and Killer Immunoglobulin-like Receptor 
(KIR) genes in rhesus macaques. For other immune-related 
genes, the IMGT reference database (https:// imgt. org/) pro-
vides extensive information on macaque immunoglobulin 
and T-cell receptor gene sequences, as well as equivalent 
information for a wide range of other species (Giudi-
celli et al. 2006). Further data on immunoglobulin gene 
sequences can be found in various publications (e.g., (Cire-
lli et al. 2020)). Additional information on immunoglobulin 
IGH genes is available at the Karolinska Macaque Database: 
https:// kimdb. gkhlab. se/ (Vazquez Bernat et al. 2021).

Gene expression data for rhesus macaques

Analyses of gene expression in rhesus macaques are obvi-
ously important for a wide range of biomedical and basic 
science questions. Large-scale data describing gene expres-
sion in rhesus are available as a result of various publications 
(e.g., (Bakken et al. 2016; Bakken et al. 2015; W. Zhang 
et al. 2021; Zhu et al. 2018). Much of this work has focused 
on gene expression in the brain and during neurodevel-
opment, but other tissues have also been examined (Peng 
et al. 2015; Zhang et al. 2021). Data on gene expression are 
available through the Nonhuman Primate Reference Tran-
scriptome Resource (https:// nhprtr. org/), the UCSC genome 
browser, the Rhesusbase browser, NCBI, and Ensembl. As 
discussed above, significant attention has been given to 
immunogenetics in rhesus macaques due to their impor-
tance in studies of infectious disease. Consequently, sub-
stantial data are available regarding the expression of genes 
involved in immunity and immune system activation (e.g., 
(Palesch et al. 2018)). Transcriptome data for various T-cell 
populations from SIV-infected macaques have been analyzed 
(Mavigner et al. 2019) as has expression data from dendritic 
cells (M. Y. Lee et al. 2021).

Other genomic resources

Researchers have also generated other genetic and genomic 
resources for rhesus macaques. One aspect that has received 
modest attention is recombination and genetic linkage in 
the rhesus macaque genome. The first linkage studies using 
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polymorphisms known at the time were published in the 
mid-1980’s (Ferrell et al. 1985). Investigators subsequently 
produced a whole genome pedigree-based linkage map 
using microsatellite loci (Rogers et al. 2006) and then later 
a higher-resolution recombination map using SNV geno-
types (Xue et al. 2016, 2020). Variation in mitochondrial 
DNA sequences have also received substantial attention. It 
is not possible to cite all mtDNA studies of rhesus macaques 
here, but several large-scale analyses deserve mention. 
Comparisons of mtDNA sequence data both among pri-
mate species, including genus Macaca (Evans et al. 2020; 
Roos et al. 2019) and among populations within M. mulatta 
(Hasan et al. 2014; Smith and McDonough 2005; Su et al. 
2019) have been informative for population genetics and 
phylogeny.

One aspect of primate genomics that has been difficult to 
study until the recent decrease in the cost of whole genome 
sequencing is the rate of de novo single-base mutations. 
Studies in human pedigrees have calculated the rate of de 
novo nucleotide mutation by comparing DNA sequences 
of offspring to their parents. Such studies find that most 
de novo mutations are transmitted by males and that the 
number of de novo mutations transmitted increases with 
increasing paternal age (Besenbacher et al. 2015; Jonsson 
et al. 2017). The same approach is now being applied to non-
human primates with interesting results (Besenbacher et al. 
2019; Thomas et al. 2018; Wu et al. 2020). Among rhesus 
macaques, as in humans, more de novo mutations are trans-
mitted by males than females and increasing paternal age 
does increase the rate of observed de novo mutations (Wang 
et al. 2020). We should expect that over time researchers 
will learn more about the rate and pattern of de novo DNA 
sequence mutations in rhesus macaques and other primates 
and that this information will become a resource for addi-
tional downstream analyses of various aspects of molecular 
genetics, embryonic and postnatal developmental, aging, 
disease risk, and other fundamental questions.

Closing Comments

Rhesus macaques are one of the most intensively studied 
nonhuman primate species. Analyses of the genetics and 
genomics of rhesus cover a wide range of topics relevant 
to evolutionary biology, population genetics, genome struc-
ture, genome function, and models of human disease. This 
level of interest and investigation is unlikely to change in the 
future as rhesus macaques continue to be a mainstay of bio-
medical and basic primatological research. The amount of 
genomic information available for rhesus macaques contin-
ues to grow rapidly and the number of specialized databases 
collecting, archiving, and presenting those data is also likely 
to grow. This partial summary of the information resources 

available will serve to provide an introduction to what is 
available today, but is not intended to be comprehensive.
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