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Abstract
Human and other genomes encode tens of thousands of long noncoding RNAs (lncRNAs), the vast majority of which remain 
uncharacterised. High-throughput functional screening methods, notably those based on pooled CRISPR-Cas perturbations, 
promise to unlock the biological significance and biomedical potential of lncRNAs. Such screens are based on libraries of 
single guide RNAs (sgRNAs) whose design is critical for success. Few off-the-shelf libraries are presently available, and 
lncRNAs tend to have cell-type-specific expression profiles, meaning that library design remains in the hands of research-
ers. Here we introduce the topic of pooled CRISPR screens for lncRNAs and guide readers through the three key steps of 
library design: accurate annotation of transcript structures, curation of optimal candidate sets, and design of sgRNAs. This 
review is a starting point and reference for researchers seeking to design custom CRISPR screening libraries for lncRNAs.

Introduction

The number of annotated long noncoding RNA (lncRNA) 
genes has grown dramatically in the past decade thanks to 
next-generation sequencing (NGS). However, our ability to 
functionally characterise these genes has failed to keep pace, 
meaning that the vast majority of lncRNAs are of unknown 
biological or disease relevance (Ma et al. 2019). Into this 
gap has stepped CRISPR-Cas genome editing, and to a lesser 
extent other forms of pooled and arrayed screening, which 
together promise to mine this large unexplored genetic space 
and reveal new biological players and disease targets. The 
design of screening libraries is a foundation for such studies 
and is the focus of this Review.

Although the majority of lncRNAs remain uncharacter-
ised, several hundred have already been linked to diseases 
or cell functions (Kung et al. 2013; Lekka and Hall 2018). 
Examples are MALAT1 and SAMMSON, which promote 
tumorigenesis in vitro and in vivo through relatively well-
defined molecular mechanisms (Gutschner et  al. 2013; 
Leucci et al. 2016). Somatic mutations and expression dys-
regulation of genes encoding these lncRNAs are observed 
in tumours, in addition to other clinical evidence such as 
expression correlation with patient survival (Vendramin 
et al. 2018; Chen et al. 2018; Vancura et al. 2021). This link 
to disease has raised considerable interest in lncRNAs as 
targets for precision RNA therapeutics (Arun et al. 2018; 
Esposito et al. 2019; Fathi 2020; Xiong et al. 2021).

Their exceedingly large numbers make it essential to 
screen for functional lncRNAs using high-throughput meth-
ods. Unfortunately, technologies developed for protein-cod-
ing genes (PCGs) face a number of barriers when applied 
to lncRNAs. First among these is that RNA interference 
(RNAi) is often ineffective for lncRNAs, possibly due to 
the latter’s relative enrichment in the nucleus (Maamar et al. 
2013; Stojic et al. 2016). RNAi also generates large num-
bers of off-target hits (Smith et al. 2017) and generating new 
RNAi arrayed libraries is expensive and involves complex 
robotics equipment. Another hindrance arises from the rela-
tively poor state of lncRNA gene annotation (Uszczynska-
Ratajczak et al. 2018), which has hindered the development 
of off-the-shelf arrayed or pooled screening libraries.
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These challenges have recently been overcome by rapid 
developments in gene perturbation technologies. Two effec-
tive perturbation methods are now available, which together 
map a path from initial screening to therapeutic use in 
patients. Clustered regularly interspaced short palindromic 
repeats (CRISPR) afford versatile and highly scalable pertur-
bations in the laboratory via direct targeting of the lncRNA 
gene itself (Shalem et al. 2015). Antisense oligonucleotides 
(ASOs) achieve co-transcriptional degradation, representing 
both a powerful experimental tool and effective therapeu-
tic, but at relatively low throughputs (Gutschner et al. 2013; 
Meng et al. 2015). Both CRISPR and ASOs are relatively 
low cost, practical, and have low off-target rates (Smith et al. 
2017; Yoshida et al. 2019). Nonetheless, each method has 
drawbacks that must be mitigated. For example, CRISPR can 
be economically scaled to high throughputs, but wild-type 
(WT) CRISPR-Cas9 causes double strand breaks (DSBs) in 
DNA, whose toxicity can lead to unintended consequences 
(Chapman et al. 2012). This and other CRISPR approaches 
are highly sensitive to gene annotation quality. On the other 
hand, ASOs are relatively more costly to synthesise and are 
incompatible with pooled screening, which together have 
largely prevented their use at high throughputs. Neverthe-
less, these technologies, particularly CRISPR, open the 
door to economic high-throughput functional screening of 
lncRNAs.

All screening projects, including CRISPR, require the 
careful design of libraries of perturbation constructs. A criti-
cal input for such designs is accurate gene maps or annota-
tions (Uszczynska-Ratajczak et al. 2018). The effectiveness 
of CRISPR perturbations is highly sensitive to correct tar-
geting to gene’s TSS (Sanson et al. 2018). Unfortunately, 
annotations for lncRNAs tend to suffer from several issues, 
making them a constraint in CRISPR screens. We will dis-
cuss these issues in more detail and outline solutions to max-
imise annotation quality.

When performing high-throughput experiments for lncR-
NAs, a critical question to address is the following: “Which 
genes will we target?”. Only a minority of genes are likely to 
be candidates in a given biological system, not least because 
the cell model will only express a small fraction of the total 
“lncRNA-ome” (Jiang et al. 2016; Seifuddin et al. 2020). 
For example, Cabili et al. demonstrated that 78% of lncR-
NAs are expressed in a tissue-specific manner (Cabili et al. 
2011). Depending on the type and aim of the screen, the pool 
of gene candidates can vary considerably. Also, the cost of 
the screen increases with the number of targets analysed. 
Therefore, the selection of the smallest optimal set of can-
didates is important for the economic and scientific success 
of a project.

Finally, the user must design perturbation constructs with 
optimised on-target efficacy and minimal off-target effects. 
In the case of CRISPR, this corresponds to single guide 

RNAs (sgRNAs). Our understanding of the sequence and 
genomic features determining these properties continues to 
evolve.

This Review aims to highlight the main aspects of an 
optimal high-throughput lncRNA screen and will cover these 
principle topics: evolution of lncRNA screen technologies, 
and the three steps of screening library design: gene annota-
tion, candidate selection, and sgRNA design.

Functional screens for lncRNAs

Long noncoding RNAs at the frontier of biology 
and medicine

LncRNAs are defined as RNA transcripts longer than 200 
nt that are not translated into proteins (Derrien et al. 2012). 
In comparison with the total number of PCGs, relatively 
stable at ~ 19,000 annotated genes (Frankish et al. 2019), 
the total number of lncRNA gene loci in humans is still 
under discussion with estimations ranging from 16,000 up 
to 140,000 (Ma et al. 2019; Frankish et al. 2019). Among 
these, just ~ 2000 have been functionally characterised in any 
detail (Ma et al. 2019).

Although an unknown number of lncRNAs may represent 
non-functional transcriptional noise (Palazzo and Lee 2015; 
Doolittle 2018) or be misannotated since they encode a small 
peptide (Ingolia et al. 2011), numerous studies have ascribed 
convincing roles and detailed molecular mechanisms to a 
core set of widely studied genes. For example, studies have 
demonstrated important roles for lncRNAs in regulation of 
embryonic development (Kung et al. 2013), DNA damage 
repair (Thapar 2018), chromatin remodelling and modifica-
tions (Marchese et al. 2017) among others. Similarly, lncR-
NAs play clear roles in human diseases, such as neuronal 
disorders (Sparber et al. 2019), cardiac diseases (Turton 
et al. 2019) and most notably cancer, where hundreds of 
lncRNAs have been functionally linked to tumorigenesis and 
cancer hallmarks (Schmitz et al. 2016; Schmitt and Chang 
2017). In the above cases, lncRNAs have met the levels of 
evidence required for identifying PCG function, including in 
some cases, phenotypes in knockout animals (Adriaens et al. 
2016; Wen et al. 2016; Akay et al. 2019; Gao et al. 2020). As 
a result, growing attention has gathered on the possibility of 
using lncRNAs as therapeutic targets to treat human diseases 
(Schmitt and Chang 2017; Chen et al. 2021).

LncRNAs present unique challenges to researchers. 
Their lack of encoded peptides means that the longstand-
ing and effective functional prediction tools for proteins 
are ineffective for lncRNAs (Johnsson et al. 2014). Numer-
ous attempts have been made to bioinformatically predict 
lncRNA functions; however, these usually rely on indirect 
evidence (for example, expression correlation) (Guo et al. 
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2013; Jiang et al. 2015; Pyfrom et al. 2019) whose predic-
tive power is uncertain (Perron et al. 2017). Another widely 
employed source of evidence for functionality is evolution-
ary conservation (Chodroff et al. 2010; Carlevaro-Fita et al. 
2019; Ruiz-Orera and Albà 2019), but here too lncRNAs are 
challenging: they tend to display low levels of evolutionary 
conservation at the sequence level, even for confidently func-
tional cases like Cyrano (Ulitsky et al. 2011), while many 
others have no identifiable orthologues at all (Vendramin 
et al. 2018; Washietl et al. 2014; Necsulea et al. 2014; Hez-
roni et al. 2015). These considerations drive the search for 
innovative approaches to prioritise lncRNAs for functional 
screens.

Amongst the tens of thousands of remaining lncRNAs, 
there is a lively debate as to what proportion represent func-
tional genes vs transcriptional noise (Palazzo and Lee 2015; 
Doolittle 2018). Regardless of the outcome, it is likely that 
thousands of novel genes with important biological and dis-
ease roles remain to be discovered. The enormous number of 
lncRNAs, coupled to our present lack of means of predicting 
their function a priori, makes high-throughput functional 
screens the only viable route to identifying the subset of 
functional genes.

Evolving tools for functional screening of lncRNAs

The large number of lncRNAs, coupled to our inability to 
predict their function, introduces the need for pooled func-
tional screening approaches. Functional screening depends 
on two key factors: effective methods to perturb gene activ-
ity, and the degree to which such methods can be practically 
and economically scaled to high throughputs. The availa-
bility, or lack, of such techniques has dictated progress in 
lncRNA screening. Available perturbations fall into three 
principal types: RNA interference (RNAi) (effected by either 
small interfering RNAs or short hairpin RNAs); CRISPR-
based perturbations; and ASOs (Fig. 1a–c). Here we intro-
duce the principle perturbation methods for lncRNAs, then 
how they may be scaled to high throughputs by pooling.

Perturbation approaches: RNA interference

Early approaches to screen lncRNAs came from RNAi, 
which had a long history in PCG screening (Berns et al. 
2004; Lord et al. 2008). RNAi depends on small (~ 22 bp) 
double-stranded RNAs that trigger degradation of com-
plementary RNAs by the Argonaute family of proteins 
(Napoli et al. 1990; Fire et al. 1998; Cullen 2005). RNAi 
can be achieved by two distinct means: small interfering 
RNA (siRNA) and short hairpin RNA (shRNA). The two 
approaches differ in their delivery method (Fig. 1a), with 
important implications for screening. siRNA are chemically 
synthesised double-stranded oligonucleotides that must be 

delivered individually in an arrayed format, introducing the 
need for robotics and the generation of relatively expensive 
libraries (Rao et al. 2009). shRNAs are microRNA-like 
transcripts that are expressed as a single-stranded precur-
sor, which folds into a hairpin structure and is recognised 
and processed into a double-stranded small RNA, similar to 
an siRNA (Elbashir et al. 2001; Caplen et al. 2001). shRNA 
genes may be delivered with a lentiviral plasmid, making 
them compatible with pooled screening (Sims et al. 2011). 
Given the topic of this Review, we here devote more space to 
shRNA; however, several important arrayed siRNA screens 
have been published (Whitehurst et al. 2007; Tiessen et al. 
2019; Stojic et al. 2020).

shRNA has been used widely and successfully to screen 
PCGs, for example in Project Achilles (Tsherniak et al. 
2017), although it is being rapidly supplanted by CRISPR 
(Bassik et al. 2009). The first pooled shRNA library for 
lncRNAs was designed to target 1280 intergenic mouse 
lncRNAs annotated in the ENSEMBL database (Lin et al. 
2014). In a screen to identify lncRNAs involved in mainte-
nance of pluripotency, the authors identified 20 hits, includ-
ing TUNA. The size and focus of shRNA libraries can be 
adapted. For example, a larger library was designed for 
3842 lncRNAs to identify those promoting proliferation of 
NIH3T3 mouse fibroblasts (Beermann et al. 2018). RNAi 
can also be adapted for in vivo experiments to study dis-
eases. 120 lncRNAs were screened with a pooled shRNA 
library in a mouse model of acute myeloid leukemia, iden-
tifying 20 hits necessary for disease maintenance (Joaquina 
Delás et al. 2017).

Despite these successes, RNAi suffers from some nota-
ble drawbacks. First, RNAi perturbations often result in 
widespread unintended “off-target” repression of non-tar-
geted genes (Smith et al. 2008). This is thought to occur 
as a result of the relatively short “seed” region through 
which RNAi target recognition takes place, resulting in 
large numbers of fortuitous matches in non-target genes 
(Birmingham et al. 2006; Sudbery et al. 2010). The out-
come of this is observed phenotypic effects that arise 
independent of the intended target gene, i.e. false posi-
tives (Sudbery et al. 2010). The second principal draw-
back of RNAi is that it yields a variable and often low 
knockdown for lncRNAs (Lennox and Behlke 2016). 
The precise reasons for this remain unclear, and certainly 
many exceptions exist (Mondal et al. 2015; Gore-Panter 
et al. 2016), but it may be due to the preferential nuclear 
enrichment of lncRNAs (Carlevaro-Fita et  al. 2019), 
whereas siRNA is more effective in the cytoplasm (Len-
nox and Behlke 2016; Zeng and Cullen 2002). A follow-
on effect of this, is that it is suspected that even when 
successful lncRNA knockdown is observed, it may be 
the cytoplasmic RNA population that is preferentially 
affected, leaving nuclear activity intact (Maamar et al. 
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2013; Stojic et al. 2016). A more recent explanation came 
with the finding that siRNA requires translation to be 
effective, and hence only lncRNAs that are engaged by 
ribosomes will be impacted (Carlevaro-Fita et al. 2016; 
Biasini et al. 2021).

Thus, while a number of fruitful screens have been 
carried out for lncRNAs, both in pooled (Lin et al. 2014; 
Beermann et al. 2018; Joaquina Delás et al. 2017) and 
arrayed (Whitehurst et al. 2007; Tiessen et al. 2019; Stojic 
et al. 2020) formats, RNAi has not impacted the lncRNA 
field to the same extent as for PCGs, and researchers had 
to content themselves for many years with more conven-
tional and low-throughput differential gene expression 
evidence as the starting point for identifying functional 
lncRNAs (Whitehurst et al. 2007; Lin et al. 2014).

Perturbation approaches: antisense oligonucleotides

A second perturbation approach worth mentioning is based 
on ASOs (Fire et al. 1998). While ASOs are not compat-
ible with pooled screening, nevertheless they have become 
an indispensable tool for validating screen results. ASOs 
are short single-stranded oligonucleotides (13–25nt) that 
are chemically modified to achieve stability and potency 
(Dias and Stein 2002). ASOs hybridise by sequence com-
plementarity to cellular RNAs and activate degradation 
by the enzyme RNase H (Crooke 2017) (Fig. 1c). ASOs 
display low off-target effects and are appropriate for use in 
humans for therapeutic applications (Crooke et al. 2021). 
Further advantages are their ability to be delivered into cells 
without the need of a delivery vehicle (“free uptake”), and 

Fig. 1  Perturbation methods and mechanisms. Molecular mechanism 
of a RNA interference, b various CRISPR perturbations (CRISPR/
Cas9 activity occurs in the nucleus, while CRISPR/Cas13 activity can 

occur in either the nucleus or the cytoplasm), and c antisense oligo-
nucleotides (ASOs). d The main steps of a pooled CRISPR screen
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particularly important for lncRNAs, they appear to degrade 
nascent RNAs in the process of transcription, thus accessing 
nuclear target populations (Pallarès-Albanell et al. 2019). 
However, due to the difficulty in designing effective on-
target ASOs (typically around 40% are effective), the lower 
uptake efficiency when compared with vehicle mediated 
delivery methods (Stein et al. 2010; Hs et al. 2012) and the 
cost of their chemical synthesis, so far just one ASO screen 
for growth-modulating lncRNAs has been reported to date 
(Ramilowski et al. 2020).

Perturbation approaches: CRISPR

The advent of CRISPR genome editing has profoundly 
impacted the field of lncRNA functional genomics. For 
the first time, researchers have an effective tool that can be 
adapted to a variety of perturbations (repression, silencing, 
activation), can be targeted to the gene locus or the RNA 
product, displays reduced off-target effects, and most impor-
tantly, can be conveniently scaled to high throughputs (San-
son et al. 2018; Doench et al. 2016; Zhu et al. 2016; Diao 
et al. 2017; Gasperini et al. 2017).

CRISPR comprises an RNA:protein complex. The sin-
gle guide RNA (sgRNA) consists of a 20 nt variable RNA 
sequence or “spacer”, which recognises by homology a spe-
cific genomic site followed by a protospacer adjacent motif 
(PAM) (Jinek et al. 2012; Mali et al. 2013; Cong et al. 2013; 
Sander and Joung 2014). The spacer is fused to an invariant 
structured “scaffold” that is recognised by the Cas9 protein. 
Researchers may target this complex to desired regions by 
simply identifying a PAM in that region, and designing the 
spacer sequence to recognise the adjacent 20mer. In turn, the 
Cas9 protein “cargo” may be engineered to perform various 
tasks at its destination, from DNA endonucleolytic cleavage 
in its wild-type form, to catalytically dead mutants (dCas9) 
fused to a growing array of effector domains (Fig. 1b) (Qi 
et al. 2013; Gilbert et al. 2013; Dominguez et al. 2016). 
Fusions carrying transcriptional inhibitor or activator 
domains form the basis for CRISPR inhibition (CRISPRi) 
and CRISPR activation (CRISPRa), respectively (Gilbert 
et al. 2013). This programmability enables CRISPR to be 
rapidly deployed for a wide range of desired perturbations 
(Doench et al. 2016). Because sgRNAs can be delivered by 
lentiviral vectors (Kosicki et al. 2018), CRISPR perturba-
tions enable almost unlimited scalability in pooled screening 
format. Together these features make CRISPR a versatile 
and useful tool for discovering functional lncRNAs.

Nonetheless, CRISPR does present a number of hur-
dles that must be overcome. First of all, Cas9 is a bacte-
rial protein and thus is highly immunogenic (Charlesworth 
et al. 2019). Induced Cas9 systems can help to mitigate this 
harmful effect in cells. WTCas9 nuclease activity results 
in double strand breaks (DSBs) that can cause genome 

rearrangements and cell death (Chapman et  al. 2012; 
Kosicki et al. 2018; Leibowitz et al. 2021). The latter effect 
is stronger in cells expressing P53 (Bowden et al. 2020). The 
outcome is that sgRNAs may lead to non-specific apoptosis 
caused by the technique itself and not by the effect of the 
CRISPR modification. This must be addressed in screens by 
the careful design of phenotypically neutral controls: sgR-
NAs targeting intergenic regions give a better indication 
of background including DSB toxicity, rather than (often 
used) non-targeting controls, such as scrambled sequences, 
which will not cause DSBs and can lead to false positive 
hits (Aguirre et al. 2016; Haapaniemi et al. 2018). A second 
issue is off-targeting: while far lower than for shRNA (Smith 
et al. 2008), many sgRNAs do recognise non-targeted sites 
at non-zero frequency, resulting in off-target effects (Zhang 
et al. 2015). These effects can be largely avoided by careful 
sgRNA design using strict off-target filtering (Shalem et al. 
2015). Higher concentrations of Cas9/sgRNA can lead to 
increased off-targets rates (Wu et al. 2014), therefore it is 
necessary to control for these concentration when perform-
ing in vivo experiments.

The first means of perturbing lncRNAs by CRISPR har-
nesses the ability of wild-type Cas9 to generate DSBs. This 
approach requires an understanding of the cellular processes 
that repair the resulting DSBs. The most prevalent pathway 
is non-homologous end joining (NHEJ), which is a non-
templated method that repairs breaks but often introduces 
untemplated insertions and deletions (indels) at the repair 
site (Ceccaldi et al. 2016). These properties proved highly 
useful for knocking out PCGs, since sgRNAs targeted to 
open reading frames (ORFs) generate frameshift mutations 
that scramble the encoded peptide sequence (Shalem et al. 
2015). Because, by definition, lncRNAs contain no encoded 
peptide, it is uncertain whether small indels are sufficient 
to impact lncRNA activity. Therefore, loss of function by 
CRISPR calls for more elaborate strategies. The most fre-
quent approach is “CRISPR deletion” (CRISPR-del), where 
two wild-type CRISPR-Cas9 complexes are recruited to sites 
flanking a targeted genomic region (Aparicio-Prat et al. 
2015). Simultaneous NHEJ gives rise to genomic deletion. 
Efficiency tends to lie in the range 40–60% of alleles (Gasp-
erini et al. 2017; Aparicio-Prat et al. 2015; Kraft et al. 2015; 
Ran et al. 2013; Canver et al. 2014; Vidigal and Ventura 
2015; Antoniani et al. 2018; Pulido-Quetglas et al. 2017), 
although often much less, and these rates broadly decline 
with the size of the deleted region(Canver et al. 2014).

CRISPR-del may be employed for lncRNA loss of 
function in several ways. The first and most obvious is by 
deletion of the entire gene body (Durruthy-Durruthy et al. 
2015). However, this strategy entails several drawbacks. 
LncRNA genes can span several hundred kilobases. Such 
deletions tend to have low efficiency (Canver et al. 2014), 
and may well remove other overlapping functional elements, 
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including PCGs and enhancers and thereby lead to false 
positive phenotypes. Removal of lncRNA TSS via targeted 
deletion of ~ 0.5 to 5 kb is a more practical alternative, by 
reducing the length of the deletion to a few hundreds to thou-
sands of bases, increasing efficiency and uniformity, and 
decreasing the chance of deleting unrelated elements (Zhu 
et al. 2016; Pulido-Quetglas et al. 2017; Lavalou et al. 2019). 
Even effective deletions may not result in hoped for loss 
of gene expression: compensatory promoter activation has 
been reported in some cases (Lavalou et al. 2019). Given the 
deletion size mentioned, the TSS deletion strategy requires 
accuracy of lncRNA annotations at the 5′ end with a resolu-
tion of ~ 1 kb.

Other flavours of CRISPR can perturb lncRNA expres-
sion without permanently mutating DNA. By engineering 
appropriate fusion proteins with catalytically dead Cas9 
(dCas9), one may achieve gene activation (CRISPRa) or 
inhibition (CRISPRi) (Liu et al. 2017; Horlbeck et al. 2016). 
Importantly, both these technologies require recruitment to 
a rather small window of ~ 200 bp with respect to the TSS, 
making them highly sensitive to accurate TSS annotation 
(Sanson et al. 2018). Resulting chromatin reorganisation of 
both methods can have and indirect effect on neighbouring 
genes. CRISPRa mechanism is capable of open the chro-
matin and allows transcription machinery to access genes 
located nearby the targeted region increasing their expres-
sion. Similarly, indirect reduction in gene expression can 
be observed when targeting genes with CRISPRi (Horlbeck 
et al. 2016; Groner et al. 2010). Researchers should there-
fore validate the results obtained by these methods analys-
ing any unintended changes in expression of nearby genes. 
These approaches avoid issues of DSB toxicity, while having 
the additional benefit of being compatible with a variety of 
inducible systems, affording the researcher temporal control 
over gene perturbations (Sun et al. 2019).

Pooled screening

Genetic screens are a powerful method to test the effect of 
gene perturbations in a high-throughput way (Sanson et al. 
2018; Doench et al. 2016; Zhu et al. 2016; Liu et al. 2017). 
Screens in cultured cells can be performed in two formats: 
arrayed and pooled. Arrayed screens apply a single pertur-
bation to multiple cells in one well. They require robotics 
equipment, due to the large number of wells involved, and 
they require synthesis of many individual perturbation rea-
gents (siRNAs or sgRNAs) (Lord et al. 2008; Whitehurst 
et al. 2007). Screen results are read out from each individual 
well, and as a result are relatively unconstrained in terms of 
the phenotypic features that can be measured, extending to 
microscopy and image analysis (Stojic et al. 2020).

Pooled screens, in contrast, involve introducing a 
mixed pool of perturbation constructs into a single cell 

population (Fig. 1d). Libraries are synthesised as a mixture 
using increasingly inexpensive oligonucleotide “megasyn-
thesis” (Doench 2017), and delivered with genomically 
integrating lentiviruses (Sanson et al. 2018). Viruses are 
usually applied at low titres (multiplicity of infection, 
MOI, ~ 0.3), so that every cell in the population carries 
one perturbation. A selection is applied in order to isolate 
two or more cell populations with different phenotypes. 
Genomically integrated perturbation sequences, usually 
sgRNAs, are then used as barcodes to determine the dif-
ferences in library composition between cell populations 
of different phenotypes, and hence infer functional lncR-
NAs contributing to said phenotypes (Zhu et al. 2019; 
Boettcher et al. 2019). This highlights the key constraint 
of pooled screening: phenotypic readouts are restricted 
to those which can be sorted in some way (Sanson et al. 
2018; Shalem et al. 2015). These include cell fitness/pro-
liferation, fluorescence, survival in response to insult, or 
migration(Sanson et al. 2018; Zhu et al. 2016; Shalem 
et al. 2015; Liu et al. 2018), but rules out imaging-based 
readouts.

Even with the requirements of pooled screens—i.e. phe-
notypic selection, next generation sequencing, and deconvo-
lution of the data to determine perturbation abundances—the 
benefits these screens provide compared to arrayed screens 
are significant. In pooled screens, libraries can be created, 
delivered to cells and analysed as a single sample, consider-
ably reducing the cost and hands-on time. This also avoids 
the capital investment and training required for robotics 
necessary for arrayed screening. The fact that only a single 
sample has to be analysed, helps to reduce batch effects and 
increases the statistical power of the analysis, since all per-
turbations, tests and controls, are treated with the same exact 
conditions. These advantages have led to growing adoption 
of pooled CRISPR screens.

A key requirement of pooled screens is the screening 
library. Libraries targeting all or subsets of PCGs are rapidly 
growing in quality, and are available from multiple suppli-
ers (Doench et al. 2016). In contrast, few such resources are 
presently available for lncRNAs, due to a number of fac-
tors. Firstly, the number and quality of lncRNA annotations 
increases so rapidly that libraries rapidly become obsolete. 
Secondly, lncRNAs have highly cell-type-specific expres-
sion profiles, meaning that available libraries designed for a 
given purpose, may not cover a useful proportion of targets 
in a different biological assay or cellular background. These 
factors mean that researchers are likely to have to design 
custom lncRNA screening libraries for the immediate future. 
Provide a uniform guideline is the purpose of the present 
Review. The process of designing a screening library can 
be broken into three principle steps: gene annotation, candi-
date selection, and sgRNA design (Fig. 2a). These steps are 
explained in more detail in the following sections.
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Accurate transcript annotations

Gene perturbation, particularly by CRISPR, depends criti-
cally on recruiting Cas9 to a narrowly defined window 
around the TSS (Sanson et al. 2018). Consequently, accu-
rate maps of gene and transcript structures are essential for 
functional screening (Sanson et al. 2018; Bergadà-Pijuan 
et al. 2020). These maps are referred to as annotations, and 
specify the exact location of gene’s constituent transcripts, 
introns and exons (Harrow et al. 2006). Most importantly in 
the present context, annotations record the expected location 
of TSSs, being simply the start position of the first exon for 
the transcript(s) comprising a gene (Fig. 2b).

Despite their importance, lncRNA annotations remain 
an imperfect reflection of the underlying biological reality, 
and are best regarded as work in progress, provided by sev-
eral different sources and created with different approaches 
(Uszczynska-Ratajczak et al. 2018). GENCODE, for exam-
ple, provides lncRNA annotations for ENSEMBL and is 
a mixture of manual and high-quality experimental anno-
tations, which ensures a good quality but relatively small 
size and incomplete coverage for many cell types (Uszc-
zynska-Ratajczak et al. 2018; Derrien et al. 2012; Lagarde 
et al. 2017). This and the other principle manually curated 
resource, RefSeq, have formed the basis for several shRNA 
and CRISPR screen designs for human and mouse genomes 
(Lin et al. 2014; Beermann et al. 2018; Zhu et al. 2016). A 
more complete and detailed lists of resources for lncRNA 
annotations can be found in two reviews: Uszczynska-Rata-
jczak et al. (Uszczynska-Ratajczak et al. 2018) and Richard 
et al. (Charles Richard and Eichhorn 2018).

An important drawback of the above public annotations, 
is that they are not comprehensive—they omit many genu-
ine lncRNAs (Uszczynska-Ratajczak et al. 2018). This may 

occur due to the distinct annotation protocols and criteria 
employed. However, another important cause is the fact that 
annotations are based on published transcriptomic resources, 
or from focussed studies in a small number of cell types 
(Lagarde et al. 2017). Thus, the lncRNAs they contain are 
biassed towards those expressed in widely studied cell lines 
and organs. This will impact researchers who wish to per-
form a screen in any cell model that is not well represented 
in the above datasets.

Two solutions are available to the researcher to address 
this lack of annotation comprehensiveness in their model 
of interest. The first is to merge several public annotations 
into a single, larger and more comprehensive one. Several 
software packages are available for this (Trapnell et al. 
2010; Pertea et al. 2015). A second, more time-consuming 
but more effective approach, is to create a custom anno-
tation through transcriptome assembly (Grabherr et  al. 
2011; Kovaka et al. 2019; Hölzer and Marz 2019). By using 
RNA-sequencing data from the cell model of interest, a new 
“assembly” of transcriptome annotation can be built bioin-
formatically (Liu et al. 2020). The advantage here is that the 
assembly reflects the transcriptome in the cells where the 
screen is to be performed. Thus, it might contain many novel 
and cell specifically expressed lncRNAs that are missing in 
public annotations (Roberts et al. 2011). Novel assemblies 
are usually further merged with public assemblies for extra 
confidence (Joaquina Delás et al. 2017; Liu et al. 2017). 
Transcriptome assemblies are algorithmically predicted 
from short RNA-sequencing fragments and therefore they 
might not be 100% accurate. In future, this gap can be miti-
gated by using long read RNAseq data, which captures the 
full sequence of lncRNA transcripts and the assembly step 
will not be necessary (Lagarde et al. 2017).

A second key feature of annotations is their complete-
ness—or whether they accurately record the location of the 
TSS (Uszczynska-Ratajczak et al. 2018). LncRNAs can 
present multiple TSSs and correct identification is crucial 
(Mattioli et al. 2019; Kindgren et al. 2018). As mentioned 
before, CRISPR perturbations depend on recruitment to a 
small window around the TSS, meaning that even minor 
inaccuracies in TSS annotation may result in false negative 
results. Unfortunately, lncRNA annotations are poor at cor-
rectly recording TSS locations, as defined by gold-standard 
evidence from Cap Analysis of Gene Expression (CAGE), 
a sensitive method to map 5′ ends of transcripts (Uszczyn-
ska-Ratajczak et al. 2018; Hon et al. 2017). Although tran-
scriptome assemblies have particularly poor performance at 
identifying TSS (Lagarde et al. 2017) the FANTOM group 
has accurately re-annotated lncRNA TSSs from multiple 
transcripts collections by including CAGE analysis into the 
analysis (Hon et al. 2017).

Both of these issues with lncRNA annotations, missing 
genes or incompleteness at 5′ end, will ultimately result in 

Fig. 2  Accurate annotations for CRISPR screens. a The principal 
steps in custom pooled screening library design. b Refining the anno-
tation of lncRNA transcription start sites (TSS) for library design
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false negatives. This was demonstrated recently by reanaly-
sis of published CRISPRi screens, where it was found that 
lncRNAs are significantly less likely to be hits when their 
TSS is inaccurately annotated (as judged by CAGE data) 
(Bergadà-Pijuan et al. 2020).

Another key variable for researchers is the species under 
study. Despite their drawbacks, lncRNA annotations in 
human and mouse are far more advanced than other model 
organisms (Sundaram et al. 2017). Less is known about 
lncRNA populations in non-model species, although we 
have no reason to believe they are any less important or 
numerous. Researchers working on non-model species will, 
given their lack of lncRNA annotations, have to rely even 
more on transcriptome assemblies for library design.

Narrowing down the best candidates

The number of genes that can be included in a screen is 
limited by cost and other practical parameters. A typical 
CRISPR screen requires multiple sgRNAs per target gene 
(usually ~ 10), a coverage of 100–1000 individual cells 
per sgRNA sequence, and 100 s of NGS reads per sgRNA 
(Sanson et al. 2018; Doench 2017). Therefore, materials 
cost increases with the number of candidates tested. Fortu-
nately, it is not necessary to screen the entire population of 
100,000 + annotated lncRNAs (Fang et al. 2018), because 
only a small subset are present in a given cell model. Thus, 
the second step of library design involves filtering to focus 
on a reduced set of candidate lncRNAs that are most likely 
to contain screen hits. More so than the other two steps, this 
one is most specific to the particular biological system under 
study and requires the greatest amount of user discretion.

Several filtering methods can be applied in order to enrich 
the final list of candidates for likely hits (Fig. 3a). The pri-
mary and most obvious filter is expression in the cells of 
interest. In principle, only expressed transcripts should 
be biologically active, and the majority of silent lncRNA 
genes can be omitted. Thus, it will be necessary to quan-
tify specific RNAseq data from the screen model to select 
those lncRNAs expressed. For example, in Liu et al. only 
ENSEMBL lncRNAs expressed in the cell lines used in the 
study were included in the screen (Liu et al. 2018). Due to 
the low expression levels of lncRNAs, thresholds as low as 

0.1 transcripts per million (TPM) can be required to not miss 
any relevant lncRNAs, especially given the exceedingly low 
expression observed for some functional lncRNAs (Seiler 
et al. 2017). This step alone will substantially narrow the 
candidate set, and indeed may alone be sufficient to reach 
the desired library size.

Another important consideration for candidate selection 
is gene copy number. When the goal is a complete knockout, 
it will be more challenging to achieve for genes present at 
> 2 copies per cell. Furthermore, targeting these genes with 
CRISPR will generate multiple DSBs, increasing the likeli-
hood of non-specific toxicity to the cell (Aguirre et al. 2016). 
Information for the gene copy number in multiple cell lines 
can be obtained from the Cancer Cell Line Encyclopedia 
(CCLE; https:// sites. broad insti tute. org/ ccle/). These consid-
erations are further complicated by the fact that oncogenes 
are frequently amplified in tumours, meaning that pheno-
typic effects of targeting oncogenic lncRNAs may be a mix-
ture of both specific and non-specific effects. To our knowl-
edge, this issue remains to be satisfactorily resolved, apart 
from careful validation by ASOs or other DSB-independent 
perturbations. Differential expression can also be used as a 
method for selection. For example, when screening for lncR-
NAs involved in cancer development, tumor samples can 
be compared against its healthy counterpart to find tumour-
upregulated lncRNAs (Zhu et al. 2016).

Some of the filters will be already imposed by the screen 
method itself. For example, if we use a CRISPR deletion 
approach, only intergenic (non-PCG overlapping) lncRNAs 
might be targeted, so as to avoid perturbation of a nearby 
PCG. In this case a minimum distance from the TSS of lncR-
NAs to the nearest PCG can be applied as a filter.

Many lncRNAs have been associated with diseases. 
Several online databases have compiled such lncRNAs, 
and may be used as a valuable filter for candidate selection 
(Vancura et al. 2021; Bao et al. 2019; Wang et al. 2019; 
Zhao et al. 2020). The drawback of this approach is that it 
will omit novel lncRNAs from transcriptome assemblies. 
Other useful evidence for lncRNA function in disease may 
come from germline variants lying nearby (Giral et al. 2018; 
Aznaourova et al. 2020) (or better, that are also quantitative 
expression trait loci or eQTLs) (Goede et al. 2021). Simi-
larly, somatic single nucleotide variants or copy number 
variants are also important evidence for prioritising cancer 

Fig. 3  Selection of screen 
candidates. a Schematic repre-
sentation of possible filters to 
apply for candidate selection for 
screens

https://sites.broadinstitute.org/ccle/
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lncRNAs (Lanzós et al. 2017; Minotti et al. 2018; Gao et al. 
2019). The latter datasets (with the exception of eQTLs) 
have the added benefit of being compatible with novel tran-
scriptome assemblies.

LncRNAs are evolutionarily less conserved than PCGs 
(Uszczynska-Ratajczak et al. 2018). However, the conserva-
tion of their exon structure and expression pattern in differ-
ent developmental stages across related species is important 
evidence for functionality (Chodroff et al. 2010; Hezroni 
et al. 2015; Sarropoulos et al. 2019; Carlevaro-Fita et al. 
2020). Although conservation is not a limitation (Ruan et al. 
2020), the presence of orthologues in other species can be 
used as a filter for screen candidates.

After filtering and selecting the optimal lncRNA can-
didates only one step remains: the design of an optimised 
library of perturbation constructs.

Designing sgRNA libraries

CRISPR perturbation efficiency is directly linked to sgRNA 
design. Improved designs will increase the performance 
of the screen and avoid false negatives. The 20 nt sgRNA 
spacer sequence will dictate the on-target activity and the 
number of possible off-target regions (Doench et al. 2016; 
Abadi et  al. 2017; Liu et  al. 2020). Although sgRNA 
sequence itself and folding stability are key to increase the 
efficiency for the on-target region, orientation of the guide 
in relation to the target gene has also been reported to impact 
sgRNA efficiency (Wang et al. 2014). Various algorithms 
and tools are available to design and calculate on-target 
efficiency of sgRNAs from query sequences or gene IDs 
(Doench et al. 2016; Horlbeck et al. 2016; Xu et al. 2015; 
Wong et al. 2015; Concordet and Haeussler 2018). One 
of these algorithms also account for CRISPRi/a designs 
(Sanson et al. 2018; Doench et al. 2016). Of relevance for 
lncRNAs screens, tools for paired sgRNA designs are also 
available (Pulido-Quetglas et al. 2017; Perez et al. 2017). 
An important drawback of tools accepting only gene IDs, is 
that sgRNAs can only be designed for known genes, leaving 
novel genes and non-genic regions untargetable. Some tools 

only provide sgRNA designs for one or a limited number of 
targets at a time, which makes them unsuitable for scaling 
up to high throughputs, while others can provide designs 
for an unlimited number of target regions (Pulido-Quetglas 
et al. 2017) (https:// porta ls. broad insti tute. org/ gppx/ crisp ick/ 
public). A summary of these tools can be found in Table 1.

Genomic regions with complementarity to the sgRNAs 
can cause undesired off-target effects. Off-target regions 
can tolerate mismatches, particularly when they fall more 
distal to the PAM end of the sgRNA-DNA hybrid (Hsu 
et al. 2016). Removing sgRNAs with potential off-target 
matches is routinely performed in library designs (Doench 
et al. 2016). Several online tools are also available to find 
off-target regions and calculate their scores (Doench et al. 
2016; Bae et al. 2014; Stemmer et al. 2015). Different scor-
ing algorithms will rank sgRNAs differently, thus, concord-
ance between predicted and measured activity of the guide 
can vary (Labuhn et al. 2018). To mitigate the fluctuation 
of efficiency and to increase statistical power, it is common 
practice to design several sgRNA (4–10) per target region 
(Bodapati et al. 2020) (Fig. 4). This number can be reduced 
to two with optimal sgRNAs targeting known essential con-
trol genes (Wong et al. 2015). While broadly used genome-
wide Cas9 libraries targeting PCGs have on average  105 sgR-
NAs, this number is halved for lncRNA targeting CRISPR 
screens.

Not only the characteristics of the sgRNA are important 
but also the location of the on-target regions. For example, in 
CRISPR deletion screens, the distance between the two sgR-
NAs will have an impact on the efficiency. Although large 
deletions have been achieved (Mizuno-Iijima et al. 2020) 
efficiency decreases for deletions larger than 0.5—5 k bps 
(Fig. 4a) (Zhu et al. 2016; Canver et al. 2014; Han et al. 
2014; Zheng et al. 2014). CRISPRi and CRISPRa effi-
ciency also depends on the distance of the on-target region 
to the targeted TSS. Optimal sgRNA design ranges for 
this approaches are extremely narrow, lying between + 25 
to + 75nts downstream of the TSS for CRISPRi and − 150 
to − 75 nts upstream of the TSS for CRISPRa (Sanson et al. 
2018; Bergadà-Pijuan et al. 2020; Radzisheuskaya et al. 
2016) (Fig. 4b and c). CAGE data can be used to select 

Table 1  Summary of sgRNA design tools referenced in this review

Tool name Design type Limitation Link References

CRISPick ko/i/a 500 gene IDs https:// porta ls. broad insti tute. org/ 
gppx/ crisp ick/ public

Doench et al. (2016)

CRISPETa ko – http:// crisp eta. crg. eu/ Pulido-Quetglas et al. (2017)
SCC ko/i/a Sequence length < 10,000 bp http:// crispr. dfci. harva rd. edu/ SSC Xu et al. (2015)
WU-CRISPR ko 1 sequence; 26–30 k bp http:// crisp rdb. org/ wu- crispr/ Wong et al. (2015)
CRISPOR ko 1 sequence: < 2300 bp http:// crisp or. tefor. net/ Concordet and Haeussler (2018)
GuideScan ko – http:// www. guide scan. com/ Perez et al. (2017)

https://portals.broadinstitute.org/gppx/crispick/public
https://portals.broadinstitute.org/gppx/crispick/public
https://portals.broadinstitute.org/gppx/crispick/public
https://portals.broadinstitute.org/gppx/crispick/public
http://crispeta.crg.eu/
http://crispr.dfci.harvard.edu/SSC
http://crisprdb.org/wu-crispr/
http://crispor.tefor.net/
http://www.guidescan.com/


321Designing libraries for pooled CRISPR functional screens of long noncoding RNAs  

1 3

optimal transcript TSSs to optimise CRISPRi/a designs 
(Sanson et al. 2018).

Positive and negative controls are crucial to properly 
analyse the performance of the library and to measure the 
CRISPR perturbation effect. A total of at least 300 sgRNAs 
targeting positive control genes are needed to effectively 
control the false discovery rate (Bodapati et al. 2020). Genes 
known to influence the screening phenotype are typically 
used as positive controls (Aguirre et al. 2016; Haapaniemi 
et al. 2018). Essential genes, such as those encoding ribo-
somal proteins, or growth-promoting genes, are frequently 
employed as positive controls in CRISPR screens based on 
cell fitness/proliferation (Zhu et al. 2016; Liu et al. 2018), 
as their sgRNAs should disappear or “drop out” in the final 
population of cells. A minimum of three sgRNAs should be 
used to target these controls. Negative controls (sometimes 
referred as neutral controls) are not expected to influence 
phenotype and are used as a reference with which to iden-
tify screen hits. Intergenic regions (Zhu et al. 2016) or the 
Adeno-Associated Virus Integration Site 1 (AAVS1) where 
deletions have been proved non-deleterious (Smith et al. 
2008; Chu et al. 2015; Hayashi et al. 2020) are good choices 
for design of negative control sgRNAs (Zhu et al. 2016; Liu 
et al. 2018). In experiments with wild-type Cas9, we recom-
mend the use of targeting negative controls (i.e. that target 
a non-functional genomic region) rather than non-targeting 

controls (i.e. containing a spacer with no genomic match), 
since the former more accurately model the non-specific tox-
icity arising from DSBs.

Outlook

The discovery of functional lncRNAs has been revolution-
ised by pooled screening technology, particularly that imple-
mented with CRISPR and its variants. CRISPR screening is 
capable of functionally interrogating thousands of lncRNAs 
in a single experiment, without the overheads associated 
with arrayed screening. Its favourable performance across 
multiple features (reduced off-targets, high on-target effi-
ciency, flexible delivery method and high programmability) 
has led to its rapid adoption over RNAi-based approaches. 
As the volume of CRISPR data increases, further improve-
ments are likely in aspects such as sgRNA on-target and 
off-target activity.

Space constraints meant that we could not discuss an 
upcoming variation of CRISPR screening based on direct 
RNA perturbation with Cas13 and other enzymes (Anton 
et al. 2018; Cox et al. 2017; Abudayyeh et al. 2017; Xu et al. 
2020). Instead of targeting the gene, RNA-targeted CRISPR 
directly destabilises or otherwise perturbs the RNA tran-
script itself. Although it is still in development, several pub-
lications have already demonstrated its efficiency in different 
organisms (Yang et al. 2019; Kushawah et al. 2020; Huynh 
et al. 2020). Similar to CRISPRi/a, Cas13 can be converted 
into a programmable RNA binding platform by mutating its 
catalytic site (dCas13) and fusing it to a catalytic enzyme 
with desired activities. In this way, dCas13 could be use, for 
example, as a tool for live cell RNA imaging (Palaz et al. 
2021). This may be a promising option for gene therapy 
applications, where DNA mutation is undesirable (Anton 
et al. 2020).

The practicality and versatility of CRISPR screening 
makes it capable of identifying lncRNAs mediating a wide 
variety of cellular processes in healthy and diseased bio-
logical contexts. We expect that as annotations improve and 
screen components become standardised, this approach will 
become increasingly widely used to identify molecular com-
ponents and therapeutic targets among the tens of thousands 
of uncharacterised lncRNA genes.
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