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Abstract
Alphaviruses, members of the positive-sense, single-stranded RNA virus family Togaviridae, represent a re-emerging public 
health concern worldwide as mosquito vectors expand into new geographic ranges. Members of the alphavirus genus tend 
to induce clinical disease characterized by rash, arthralgia, and arthritis (chikungunya virus, Ross River virus, and Semliki 
Forest virus) or encephalomyelitis (eastern equine encephalitis virus, western equine encephalitis virus, and Venezuelan 
equine encephalitis virus), though some patients who recover from the initial acute illness may develop long-term sequelae, 
regardless of the specific infecting virus. Studies examining the natural disease course in humans and experimental infection 
in cell culture and animal models reveal that host genetics play a major role in influencing susceptibility to infection and 
severity of clinical disease. Genome-wide genetic screens, including loss of function screens, microarrays, RNA-sequencing, 
and candidate gene studies, have further elucidated the role host genetics play in the response to virus infection, with the 
immune response being found in particular to majorly influence the outcome. This review describes the current knowledge 
of the mechanisms by which host genetic factors influence alphavirus pathogenesis and discusses emerging technologies that 
are poised to increase our understanding of the complex interplay between viral and host genetics on disease susceptibility 
and clinical outcome.

Introduction

Alphaviruses are a genus of enveloped, positive-sense, 
single-stranded RNA viruses belonging to the Togaviridae 
family (Kuhn 2007; Strauss and Strauss 1994). Alphavirus 
virions are approximately 70 nm in size and consist of capsid 
proteins surrounding a single RNA genome and two trans-
membrane glycoproteins, E1 and E2, which facilitate entry 
into cells by clathrin-mediated endocytosis (DeTulleo and 
Kirchhausen 1998). The genome ranges from 11 to 12 kb in 
length and contains a 5′methylguanylate cap and 3′polyade-
nylated tail and encodes both structural and nonstructural 
proteins. The four nonstructural proteins (nsp1, nsp2, nsp3, 

and nsp4) are encoded at the 5′ end; the five structural pro-
teins, which include the capsid and E1 and E2 glycoproteins, 
are encoded at the 3′ end and translated from a subgenomic 
RNA. As a positive-sense RNA virus, the alphaviral genome 
is infectious, meaning when introduced into a permissive 
cell, the RNA can automatically replicate and produce infec-
tious virus particles.

Most alphavirus members are transmitted by arthro-
pods, specifically mosquitoes, which make the alphavi-
ruses a re-emerging public health threat as arthropod vec-
tors expand into new territories. The natural sylvatic cycle 
occurs between mosquitos and bird, rodent, or nonhuman 
primate (NHP) reservoirs, but occasionally promiscuous 
mosquitos feed on larger mammals such as humans, induc-
ing clinical disease (Griffin 2013). Other alphaviruses are 
horizontally transmitted without an insect vector, such as 
salmon alphavirus (SAV), which causes pancreas disease in 
salmon and trout; SAV is horizontally transmitted primarily 
through water and responsible for massive economic losses 
during outbreaks in commercial fish populations in North-
ern Europe (Aunsmo et al. 2010; McLoughlin and Graham 
2007).

Arthropod-borne alphaviruses are found worldwide and 
are generally divided into two major groups based on the 
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disease syndrome that typically manifests in humans dur-
ing natural infection (Ryman and Klimstra 2008). The Old 
World alphaviruses, which include Sindbis virus (SINV), 
chikungunya virus (CHIKV), Semliki Forest virus (SFV), 
and Ross River virus (RRV), are generally found in Europe, 
Africa, Asia, and Oceania and typically produce a clinical 
syndrome characterized by fever, rash, and arthritis (Hol-
lidge et al. 2010). In contrast, the New World alphaviruses, 
which include eastern equine encephalitis virus (EEEV), 
western equine encephalitis virus (WEEV), and Venezue-
lan equine encephalitis virus (VEEV), are naturally found 
in North and South America, and induce encephalomyeli-
tis in humans. However, it is important to note that atypi-
cal disease manifestations are sometimes reported, such as 
encephalitis in individuals infected with CHIKV or SFV 
(Ganesan et al. 2008; Willems et al. 1979).

Mortality rates following infection with arthropod-borne 
alphaviruses vary depending on the virus species; Old World 
alphaviruses such as CHIKV rarely cause death, while some 
New World alphaviruses, such as EEEV, have mortality rates 
reported to be as high as 70% in symptomatic individuals 
(Steele et al. 2007). Alphaviruses are typically considered 
to cause an acute disease process in humans, but reports 
of chronic debilitating sequelae are not uncommon. This 
includes myalgia and arthralgia lasting months to years 
following infection with Old World alphaviruses (Alla 
and Combe 2011; Hawman et al. 2013; Sane et al. 2012) 
and lifelong neurological deficits in individuals infected 
with New World alphaviruses (Bruyn and Lennette 1953; 
Palmer and Finley 1956; Villari et al. 1995). No vaccines 
against alphaviruses are currently available for civilian use 
in humans, and treatment is limited to supportive care (Go 
et al. 2014; Griffin 2010). This propensity to cause lasting 
physical debilitations that can induce significant physical, 
emotional, and financial disability makes it increasingly 
important to understand the pathogenesis of alphavirus-
induced disease so that better preventatives and treatments 
may be developed.

Understanding the pathogenesis of alphavirus infection 
has been greatly advanced thanks to animal models. As 
obligate intracellular parasites, alphaviruses require find-
ing a permissive cell in order to replicate within and then 
exit in order to move to a new location. In order to cause 
disease, a virus must enter the host (usually through a mos-
quito bite for alphaviruses), replicate locally, and then dis-
seminate to target organs. For the Old World alphaviruses, 
those target organs are mostly skin, joints, and muscle dur-
ing acute infection. For the New World alphaviruses, those 
target organs are the brain and spinal cord. While natural 
strains of the Old World alphavirus SINV tend to induce 
fever and arthritis in humans (Adouchief et al. 2016), strains 
used for experimental infection are more neurotropic, mak-
ing SINV the prototypic alphavirus for examining infection 

of the CNS (Dubuisson et al. 1997). The well-characterized 
mouse model of alphavirus encephalomyelitis using SINV 
has helped elucidate the pathogenesis of CNS alphaviral 
infection and the role the immune response plays in both 
inducing CNS damage and facilitating virus clearance (Bax-
ter et al. 2017; Griffin et al. 1992).

Virus entry into the CNS requires bypassing the blood 
brain barrier. Most neurotropic viruses enter the CNS via 
one of three methods: (1) hematogenous entry via infec-
tion of endothelial cells, (2) hematogenous entry through 
breakdown of the BBB; (3) access to the CNS by routes 
other than through the BBB, such as through peripheral 
nerves or the blood-cerebrospinal fluid (CSF) barrier, and 
(4) through virus-infected leukocytes that naturally cross 
the BBB (“Trojan horse” model) (Swanson and McGavern 
2013). WEEV, VEEV, and the SINV model of New World 
alphavirus infection enter the CNS through hematogenous 
spread to circumventricular organs that lack a normal BBB 
or via axonal transport via olfactory sensory or peripheral 
neurons (Charles et al. 1995; Phillips et al. 2016; Passoni 
et al. 2017; Thach et al. 2001). In contrast, EEEV and neu-
roinvasive CHIKV have been shown to enter the brain pri-
marily through a vascular route (Honnold et al. 2015; Pas-
soni et al. 2017; Vogel et al. 2005). Following intranasal 
VEEV infection, pro-inflammatory cytokines IFN-β, TNF-α, 
and IL-6 mediate the breakdown of the BBB in conjunc-
tion with monocyte infiltration into the brain, allowing for 
a second wave of neuroinvasion by the virus, and inhibi-
tion of BBB opening by using a MMP-9 inhibitor results in 
delayed disease onset (Cain et al. 2017; Schäfer et al. 2011). 
Mice deficient in ICAM-1, an adhesion molecule important 
in regulating leukocyte transmigration across blood vessels, 
show reduced severity of clinical disease and improved sur-
vival with reduced perivascular cuffing and downregulation 
of pro-inflammatory cytokine expression following VEEV 
infection, suggesting transmigration of leukocytes across the 
blood brain barrier is important in clinical disease develop-
ment (Sharma et al. 2011).

Both the innate and adaptive immune response have been 
shown to play a major role in the pathogenesis of both the 
Old World and New World alphaviruses via both protec-
tive and pathologic mechanisms. Synovial effusions of 
humans infected with RRV and CHIKV are characterized 
by monocytes/macrophages and CD4 + T cells, (Fraser 
et al. 1981; Hoarau et al. 2010; Rulli et al. 2007). Muscle 
biopsies from patients naturally infected with CHIKV have 
shown variable infiltration of macrophages and T cells, and 
histological changes to the muscle tissue include atrophy, 
vacuolization, and necrosis in muscle fibers (Muelas et al. 
2017; Ozden et al. 2007). Nonhuman primate and mouse 
models of CHIKV and RRV infection show extensive infil-
tration of mononuclear cells into lymphoid tissues, muscle, 
and synovial tissues (Couderc et al. 2008; Labadie et al. 
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2010; Morrison et al. 2006, 2011). Histological changes of 
CNS tissue of humans and horses infected with New World 
alphaviruses are characterized by massive infiltration of neu-
trophils early in the disease process, but as infection pro-
gresses, lymphocytes soon replace them as the predominant 
immune cell population (Greenlee 2014; Hatanpaa and Kim 
2014). In the mouse model of fatal alphavirus encephalomy-
elitis using the NSV strain of SINV, pathological changes 
include marked loss of neurons, particularly hippocampal 
neurons of the brain and motor neurons of the brainstem 
and spinal cord, accompanied by perivascular cuffing and 
parenchymal infiltration of mononuclear cells (Kimura and 
Griffin 2003). The character, magnitude, and timing of the 
immune response are highly influenced by host genetics, and 
genetic variability within and between populations results 
in differences in this immune response to virus infection, 
affecting infection susceptibility and disease outcome.

Natural genetic variation can affect disease outcome and 
susceptibility through a variety of mechanisms. Changes in 
noncoding promoter or repressor regions, 3′ and 5′ UTRs, 
coding sequences, and gene splice sites can result in a variety 
of differences in gene and protein expression and functional-
ity. Multiple changes to the same gene can be found within 
an individual or population, and these genetic changes both 
individually and collectively can influence the response to 
a virus infection. While some genetic variants may result in 
an extreme phenotype, such as individuals homozygous for a 
defective CCR5 chemokine receptor being highly resistant to 
HIV infection (Huang et al. 1996), most result in much more 
moderate or subtle differences. The combined interaction of 
environmental, demographic, and genetic influences plays a 
major role in an individual or population’s susceptibility to 
developing disease.

Host genetics can impact different aspects of virus infec-
tion and resulting disease. Genetic mutations to receptor 
proteins can affect a virus’s ability to infect its target cells, 
such as “non-secretor” individuals with a homozygous non-
sense mutation in the FUT2 gene being resistant to norovi-
rus infection of the gut epithelium (Le Pendu et al. 2006). 
Genetic variability can also alter the disease manifestation, 
severity, or outcome once a successful infection is obtained, 
such as children with certain SNPs in innate immune genes 
VDR, IFNA5, and NOS2 being more likely to develop bron-
chiolitis requiring hospitalization following respiratory 
syncytial virus infection (Janssen et al. 2007). Our current 
understanding of the role host genetics plays in alphavirus 
pathogenesis is fairly limited despite evidence indicating 
host genetic variability impacts development and severity 
of clinical disease. Subclinical infections are extremely com-
mon for many alphaviruses, and incidence of neurological 
disease development in adults following successful infec-
tion with EEEV and WEEV has been found to be less than 
5% and 0.1%, respectively (Calisher 1994; Goldfield et al. 

1968). During two different CHIKV outbreaks associated 
with a high incidence of CNS infection, specific neurological 
disease manifestations largely differed despite the causative 
viruses belonging to the same phylogenetic group; in La 
Reunion, encephalitis was most frequently reported, while 
in India, peripheral neuropathy with a presumed underly-
ing autoimmune mechanism was most commonly reported 
(Cerny et al. 2017). This review summarizes our current 
understanding of the role that host genetic factors play in 
alphavirus pathogenesis through both genome-wide genetic 
approaches and candidate gene studies. We also discuss 
emerging technologies that are poised to rapidly expand our 
understanding of how genetic variation impacts disease sus-
ceptibility and outcome to alphavirus infection.

Alphavirus pathogenesis in humans

Most of our understanding of the genetic control of alphavi-
rus pathogenesis in humans comes from case reports and 
studies of Old World alphaviruses, particularly CHIKV. 
The incubation period for CHIKV is generally thought to 
last from 3 to 7 days, at which point symptoms typically 
start with a biphasic fever that can last up to 2 weeks (Sta-
ples et al. 2009). Debilitating symmetrical polyarthralgia 
most commonly affecting the wrists, elbows, fingers, knees, 
and ankles soon follows. Maculopapular rash on the trunk 
and extremities appearing with the onset of fever is a more 
variable finding; other common symptoms during the acute 
phase include headache, fatigue, nausea, conjunctivitis, and 
myalgia.

Several case reports and studies have examined the pres-
ence of biomarkers in serum or plasma during acute and 
convalescent CHIKV infection. Early in the clinical phase of 
acute infection, pro-inflammatory cytokines and chemokines 
are commonly elevated, including interleukins (IL) 1, 6, 7, 
12, 13, 15, 17, and 18, tumor necrosis factor alpha (TNF-
α), interferons alpha (IFN-α) and gamma (IFN-γ), granu-
locyte–macrophage colony-stimulating factor (GM-CSF), 
granulocyte-colony-stimulating factor (G-SCF), mono-
cyte chemoattractant protein 1 (MCP-1/CCL2), CXCL9, 
and CXCL10 (Chaaitanya et al. 2011; Chirathaworn et al. 
2013; Chopra et al. 2014; Chow et al. 2011; Kelvin et al. 
2011; Lohachanakul et al. 2012; Reddy et al. 2014; Teng 
et  al. 2015; Venugopalan et  al. 2014; Wauquier et  al. 
2011); elevated IL-10 is a more variably reported finding 
(Chaaitanya et al. 2011). Levels of these pro-inflammatory 
cytokines are associated with a higher CHIKV load in the 
serum, as is lymphopenia, decreased monocyte numbers, 
and neutrophilia (Chow et al. 2011; Reddy et al. 2014; Teng 
et al. 2015). Higher IL-1β, IL-6, and IL-8 levels but lower 
RANTES levels in the serum are associated with more 
severe disease during the acute phase (Lohachanakul et al. 
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2012; Ng et al. 2009). Elevated serum mannose-binding lec-
tin (MBL), a pattern recognition receptor involved in acti-
vation of the complement system, correlates with disease 
severity in individuals infected with RRV, another Old World 
alphavirus (Gunn et al. 2012). During the recovery phase of 
CHIKV infection, many pro-inflammatory cytokines con-
tinue to be elevated, though at lower levels than during acute 
infection; this includes IL-6, IL-13, GM-CSF, CCL2, CCL4, 
CXCL10 (Chirathaworn et al. 2013; Chopra et al. 2014). 
Other cytokines, such as IL-1β, IL-5, IL-12, IL-10, IL-18, 
TNF-α, and IFN-γ, have been reported to be at higher levels 
in convalescent serum compared to acute phase serum (Chi-
rathaworn et al. 2010; Kelvin et al. 2011).

Chronic arthralgia is a common sequelae of CHIKV 
infection and has been reported in up to 68% of patients 
over a year following recovery from acute febrile illness 
(Borgherini et al. 2008; Chang et al. 2017; Gauri et al. 2016; 
Gérardin et al. 2011; Sissoko et al. 2009). Development of 
chronic arthralgia is more commonly seen in older patients, 
females, and individuals with co-morbidities, especially dia-
betes mellitus (Badawi et al. 2018; Elsinga et al. 2017; Heath 
et al. 2018). The chronic phase of infection has been char-
acterized by continued elevation of pro-inflammatory levels 
of IL-6, IL-8, GM-CSF, CCL2, CCL3, CCL4, CXCL9, and 
CXCL10 (Chaaitanya et al. 2011; Chow et al. 2011; Kelvin 
et al. 2011; Reddy et al. 2014). Compared to patients who 
completely recover from CHIKV infection, individuals with 
persistent arthralgia and arthritis have an anti-viral immune 
response characterized by peripheral blood mononuclear 
cells (pBMCs) possessing high levels of IFN-α mRNA, high 
numbers of TNF-α and IFN-γ-secreting NKT cells, and high 
circulating levels of IL-6 and IL-12 (Hoarau et al. 2010; 
Sepúlveda-Delgado et al. 2017; Thanapati et al. 2017). A 
study performed during the 2008 CHIKV outbreak in Sin-
gapore found that IgG3 dominated the CHIKV-specific 
antibody response, and while patients who developed high 
IgG3 levels during the acute phase initially developed more 
severe febrile disease, they had faster virus clearance and 
were less likely to develop chronic arthralgia; in contrast, 
low viremia and a delayed IgG3 response were associated 
with persistent arthralgia (Kam et al. 2012). Hyperferri-
tinemia during the acute phase of infection was positively 
associated with chronic arthralgia in patients examined dur-
ing the 2014–2015 CHIKV outbreak in Curacao (Anfasa 
et al. 2017). Atypical disease manifestations, particularly 
neurological symptoms, have been reported in CHIKV 
patients. Neurological CHIKV infection has been associ-
ated with increases of TNF-α, IFN-α, IL-6, IL-8, CCL2, 
CCL5/RANTES, CCL17, and CXCL9 in the cerebrospinal 
fluid (CSF), with elevation of IL-6 and IL-8 in the CSF 
compared to the serum correlating to neurological involve-
ment (Kashyap et al. 2014). Identifying biomarkers that 
can predict the development of chronic disease provide an 

opportunity for early treatment intervention that can hope-
fully mitigate chronic symptom development.

A few studies have examined genetic susceptibility 
behind alphavirus-induced clinical disease, particularly pol-
ymorphisms involving specific components of the immune 
response. Human leukocyte antigens (HLA) play a major 
role in adaptive immune response initiation and have been 
reported to be associated with disease outcome (reviewed 
in Dendrou et al. 2018). Polymorphisms in genes encod-
ing HLA class II molecules, which present peptides to 
CD4 + T cells, were examined to determine the effect on 
susceptibility or protection against CHIKV-induced disease 
(Chaaithanya et al. 2013); HLA-DQ molecules were found 
to bind more CHIKV peptides than HLA-DRB1 molecules, 
and HLA-DQB1*03:03 and other HLA-DQB1 genotypes 
containing glutamic acid at position 86 of peptide-bind-
ing pocket 1 were found at a lower frequency in CHIKV 
patients compared to the control population. Toll-like recep-
tors (TLRs) that recognize viral RNA genomes, including 
TLR-3, TLR-7, and TLR-8, are key activators of the innate 
immune response, including pro-inflammatory cytokine 
induction. Examination of single-nucleotide polymorphisms 
(SNPs) of TLR-7 and TLR-8 revealed that the rs179010-
CC, rs3853839-GC, and rs3853839-CC genotypes for TLR7 
and the GC genotype for the rs3764879 polymorphism of 
TLR8 were associated with enhanced CHIKV susceptibility 
to disease (Dutta and Tripathi 2017). In a study examining 
CHIKV prevalence in blood donations in Guadeloupe and 
Martinique, increased seroprevalence was positively asso-
ciated with A, Rhesus positive, Kell negative blood group 
in Martinique (Gallian et al. 2017); while the mechanisms 
behind this association are not known, the study authors 
speculated that individuals with these blood groups may 
have differential innate immune responses involved in virus 
elimination or that biological, epidemiological, or socio-
logical effects influencing susceptibility to mosquito bites 
might be driving this outcome. Genetic variation related to 
the immune response can also affect disease outcome. Dur-
ing infection with RRV, patients carrying the G allele of the 
IL-6-174 G/C SNP, which is associated with high cytokine 
production, demonstrated poorer neurocognitive perfor-
mance during acute sickness response (Cvejic et al. 2014).

Effect of host genetics on experimental 
alphavirus infection

Genome‑wide genetic screens

Several genome-wide genetic screens have been used to 
study the pathogenesis of alphaviruses. Genome-wide 
screens using RNA-mediated interference (RNAi) have in 
particular been used to identify genes involved in SINV 
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entry and replication using a Drosophila system (Fig. 1a). 
NRAMP, a metal ion transporter found on host cell surfaces, 
was found to be required for SINV binding and entry into 
Drosophila cells by siRNA screen, with dNRAMP mutant 
flies and mammalian homolog NRAMP2-deficient murine 
cells resistant to SINV infection (Rose et al. 2011). SEC61A 
and valosin-containing protein (VCP) regulate traffick-
ing of NRAMP2 to the cell surface, and depletion of these 

proteins via dsRNA treatment in Drosophila cells signifi-
cantly impairs SINV infection (Panda et al. 2013). Another 
siRNA screen found that Nup98, involved in antiviral gene 
induction, cooperates with the transcription factor FoxK to 
regulate gene expression and thus restrict SINV replication 
in both Drosophila cells and adult flies, and siRNA deple-
tion of the mammalian homolog FOXK1 in human HEK-
293T cells increases SINV infection (Panda et al. 2015). 

Fig. 1  Approaches for studying the role of host genetics on alphavirus 
pathogenesis. a Loss of function screen using siRNA to knockdown 
host gene expression. b Examination of differential gene expression 
in alphavirus-infected versus mock-infected mouse tissues using 
microarray. c Quantification of relative amounts of transcripts in 

alphavirus-infected versus mock-infected mouse tissues using RNA-
sequencing (RNA-Seq). d Examination of the effect of individual 
genes on alphavirus pathogenesis through candidate gene studies. 
YFG your favorite gene
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A genome-wide RNAi screen of West Nile virus infection 
using the Drosophila system found 50 genes conserved 
across invertebrates and vertebrates that restricted virus rep-
lication, with dXPO1 and dRUVBL1, part of the chromatin-
remodeling Tip60 complex that regulates transcription, con-
tributing to antiviral defense following infection with a wide 
variety of viruses, including SINV (Yasunaga et al. 2014).

siRNA screens have also been used to identify host fac-
tors that promote or inhibit infection exclusively in mam-
malian cells. A genome-wide siRNA screen examining sus-
ceptibility to SINV, SFV, and CHIKV infection in human 
cells identified FUZ, involved in cell polarity and mam-
malian embryonic development, and TSPAN9, involved in 
membrane organization and cellular adhesion, as novel host 
factors that promote alphavirus entry into cells (Ooi et al. 
2013). Genes involved in selective autophagy during SINV 
infection have also been identified through RNAi screens, 
with murine embryonic fibroblasts (MEFs) deficient in 
Smurf1 showing increased SINV capsid levels following 
infection (Orvedahl et al. 2011). A high-content imaging-
based siRNA screen of VEEV-infected HeLa cells identified 
an actin-remodeling pathway involving RAC1, PIP5K1-α, 
and Arp3 important in alphavirus infection, with Rac1 and 
Arp3 essential for E2 trafficking from the trans-Golgi net-
work to the cell surface via actin remodeling (Radoshitzky 
et al. 2016). A genome-wide loss of function screen per-
formed with siRNAs in CHIKV-infected HEK-293T cells 
identified 156 pro-viral and 41 antiviral factors, and genera-
tion of cells deficient for 16 of these pro-viral factors using 
CRISPR/Cas9 identified post-translation modification, cellu-
lar function and maintenance, and RNA post-transcriptional 
modification as major pathways for future therapeutic target-
ing (Karlas et al. 2016). Another study used siRNA delivery 
through replication competent SINV constructs to perform 
RNAi screens in C57BL/6 mice and identified effectors that 
directly inhibited virus infection and indirectly inhibited 
virus infection through modulation of the antiviral response, 
such as Mga, which plays an important role in stimulating 
IFN-β production and thus inducing type I IFN ISG expres-
sion (Varble et al. 2013).

Whole-genome microarrays have also been performed 
to evaluate genes, particular immune response genes, and 
microRNAs (miRNA) involved in alphavirus pathogenesis 
(Fig. 1b). Transcriptome analysis of whole blood samples 
from human patients immunized with the TC-83 strain of 
VEEV revealed that early in infection, upregulated path-
ways are dominated by the innate sensing and immune 
response, including classic interferon response and asso-
ciated factors, activation of PRRs, and engagement of the 
inflammasome (Erwin-Cohen et al. 2017). Later in the 
infection process at 14 days, major upregulated pathways 
include oxidative phosphorylation, protein ubiquitination, 
and immune processes such as NK cell signaling and B 

cell development (Erwin-Cohen et al. 2017). A microar-
ray performed on mice infected with either a highly neu-
rovirulent V3000 strain of VEEV or the partially neuro-
virulent V3034 strain of VEEV revealed V3000 induced 
a stronger inflammatory and apoptotic response, with 
expression of Ccl2, Ccl5, Ccl6, and Ly6 upregulated in 
V3000-infected brains and correlating with extensive 
brain inflammation (Gupta et al. 2017). Examination of 
differentially expressed genes by genome-wide microarray 
following infection of human skeletal muscle myoblasts 
with CHIKV revealed several host pathways involved 
in innate immune responses, cell growth and death, and 
virus replication (Hussain et al. 2016). A microarray of 
CHIKV-infected HEK-293T cells used to examine post-
transcriptional regulation of gene expression identified 152 
differentially regulated miRNAs that targeted three major 
pathways: TGF-β, endocytosis, and the cell cycle (Saxena 
et al. 2013).

Next generation RNA-sequencing (RNA-Seq) has also 
been used to identify alterations in the mRNA transcrip-
tome following alphavirus infection (Fig. 1c). Examination 
of differentially expressed genes in VEEV Trinidad don-
key-infected human astrocytoma U87MG cells by RNA-
Seq of poly(A) and mRNAs has identified major involved 
pathways including the interferon and unfolded protein 
response (Baer et al. 2016). RNA-Seq analysis of lymph 
nodes and feet of CHIKV-infected mice found a marked 
upregulation of type I IFN-induced ISGs, as well as gran-
zymes A, B, and K (Wilson et al. 2017). Deep sequencing 
of genes from a knockout human cell library infected with 
a vesicular stomatitis virus pseudotype bearing CHIKV 
envelope proteins or CHIKV Thai#16,856 isolate identi-
fied N-sulfation of heparin sulfate as critical for CHIKV 
infectivity (Tanaka et al. 2017).

Genetic screens using emerging technology, such as 
CRISPR/Cas9, are rapidly enhancing our ability to identify 
host cellular and immune factors that are important in virus 
infection and pathogenesis. A genome-wide CRISPR/Cas9 
screen targeting over 20,000 mouse genes delivered by lenti-
viruses identified Mxra8, a cell adhesion molecule expressed 
on multiple cell types, as a receptor for several arthritogenic 
alphaviruses, including CHIKV, RRV, Mayaro virus, and 
O’nyong nyong virus, but not encephalitic alphaviruses 
(Zhang et al. 2018). CHIKV was shown to bind to Mxra8 
on cells, resulting in enhanced attachment and internaliza-
tion, and mice administered anti-Mxra8 antibodies showed 
lower titers and reduced foot swelling following infection 
with CHIKV or O’nyong nyong virus. Increased use of 
these newer genetic screening technologies will continue 
to expand our knowledge of host proteins and receptors that 
play an important role in the pathogenesis of alphavirus 
infection and may help identify potential targets for antivi-
ral therapies.
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Candidate gene studies

While genome-wide genetic screens have identified many 
ways in which host genetics affect how alphaviruses rep-
licate and induce clinical disease, most of our understand-
ing of genetic control of alphavirus pathogenesis comes 
from candidate genes studies in mice (Fig. 1d). The SINV 
mouse model of alphavirus encephalomyelitis has been 
used extensively to examine the role of individual genes on 
immunopathogenesis, and the innate viral immune response 
is critical for early control of SINV replication. Pattern 
recognition receptor (PRR) signaling induces an antiviral 
state through inducing expression of type I IFNs, ISGs, and 
pro-inflammatory cytokines and chemokines by interferon 
regulatory factors (IRFs) and NF-kB translocating into the 
nucleus. UNC93b1-mutant mice, which lack endosomal 
TLR signaling due to a point mutation in an endoplas-
mic reticulum protein that fails to transfer TLR3, TLR7, 
and TLR8 to endosomes, showed accelerated mortality 
compared to wild-type (WT) controls but still mounted an 
adequate type I IFN response (Esen et al. 2012). This accel-
erated mortality was hypothesized to be due to impaired 
recruitment of leukocytes to the brain rather than due to 
impaired TLR response, indicating natural redundancy in the 
PRR system. Mice deficient in TLR3 alone or MyD88, an 
adaptor protein for several TLRs, did not show differences 
in mortality compared to WT mice, further supporting this 
hypothesis (Esen et al. 2012; Wollish et al. 2013). In con-
trast, Trif−/− mice, which lack the adaptor protein for TLR3, 
show accelerated mortality, suggesting that the TRIF may 
play a larger role in modulating SINV pathogenesis (Woll-
ish et al. 2013).

However, it is well established that intact type I IFN 
(IFN-α and IFN-β) signaling is essential for control of early 
viral replication and survival during alphavirus encephalo-
myelitis. Mice deficient in IRF7, a transcription factor acti-
vated by PRR signaling that plays a major role in activation 
of IFN-α and IFN-β transcription, show 100% mortality fol-
lowing SINV NSV infection (Esen et al. 2012). Treatment 
of VEEV-infected mice with an inhibitor of IKKβ, part of 
the NF-κB-modulating IKK complex, leads to a reduction 
in mortality in mice (Amaya et al. 2014). Mice deficient in 
Type I IFN (Ifnb−/−), Type I IFN receptor (Ifnar−/−), or 
downstream Type I IFN signaling (Stat1−/−) show higher 
mortality and increased SINV replication in the CNS, par-
ticularly at early time points (Burdeinick-Kerr et al. 2007; 
Byrnes et al. 2000; Ryman et al. 2000; Wollish et al. 2013).

Type I IFN signaling induces transcription of hundreds of 
ISGs involved in the antiviral response, and many of these 
ISGs have been shown to play an important role in the patho-
genesis of alphavirus encephalomyelitis. Overexpression of 
ISG15 in Ifnar−/−, Isg15−/−, or CD1 mice infected with 
SINV reduces mortality and decreases SINV replication 

without affecting viral dissemination by promoting protein 
conjugation between ISG15 and UbE1L (Giannakopoulos 
et al. 2009; Lenschow et al. 2005, 2007; Zhang et al. 2007). 
Peripheral infection of Irf2−/− mice with the neurovirulent 
but non-neuroinvasive SVN strain of SINV leads to viral 
replication in the brain, clinical encephalitis, and death, indi-
cating that IRF2, an ISG that negatively regulates IFN sign-
aling, protects mice from neuroinvasion through promotion 
of immune cell development (Li et al. 2016). Mice deficient 
in zinc antiviral protein (ZAP), a type I IFN-induced antivi-
ral protein that binds viral mRNAs and inhibits virus replica-
tion, and deficient in the related but type I IFN-independent 
TIPARP have increased mortality compared to WT mice 
following SINV infection (Kozaki et al. 2015, 2017; Wang 
et al. 2016). Overexpression of other type I IFN-induced 
ISGs during SINV infection, including Viperin/RSAD2 
and ISG20, reduces neonatal CD1 mouse mortality (Zhang 
et al. 2007). In contrast, Ddx60−/− mice, which lack a type 
I IFN-inducible RNA helicase reported to bind viral RNA 
and associate with RIG-I-like receptors to enhance MAVS 
signaling in the cytoplasm, showed no change in disease 
outcome following SINV infection (Goubau et al. 2015). 
Infection of mice that lack IFIT1, an ISG that interacts with 
5′UTRs of several alphaviruses to inhibit viral translation 
during infection, restores neurovirulence of the attenuated 
TC83 strain of VEEV (Cain et al. 2017; Hyde et al 2014; 
Reynaud et al. 2015).

The role of the innate immune response in the patho-
genesis of CHIKV and other Old World alphaviruses has 
also been studied. Multiple PRRs have been shown to be 
involved in CHIKV control in vivo. Endosomal PRRs such 
as TLR3 and its downstream adaptor molecule TRIF pro-
vide a protective role, as Tlr3−/− and Trif−/− mice show 
increased foot swelling, viremia, and tissue viral burden 
following CHIKV infection (Her et al. 2015; Rudd et al. 
2012). MYD88, the downstream adaptor of endosomal 
viral-RNA-sensing TLR7 among other TLRs, inhibits viral 
dissemination, particularly at later time points (Schilte et al. 
2010). MyD88-mediated signaling through TLR7 appears 
to be especially important during RRV pathogenesis, with 
Tlr7−/− and Myd88−/− mice each showing more severe 
clinical disease, impaired weight gain, and enhanced mus-
cle damage following infection (Neighbours et al. 2012). 
Reduced foot swelling and increased viral replication is also 
seen in CHIKV-infected mice deficient in MAVS/CARDIF, 
though not in mice deficient in upstream RIG-I or MDA5, 
indicating redundancy in cytoplasmic RIG-I-like receptors 
in CHIKV RNA sensing (Rudd et al. 2012; Schilte et al. 
2010). Viral glycan interactions with c-type lectin recep-
tors (CLR) have been shown to modulate alphavirus infec-
tion, with CHIKV-infected DCIR−/− mice developing more 
severe foot swelling and joint inflammation (Long et al. 
2013). The pathological changes are not due to a general 
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CLR mechanism, as disease course and outcome in CHIKV-
infected SIGNR3−/− and CD-SIGN−/− mice was indistin-
guishable from WT mice (Long et al. 2013). Downstream 
PRR-activated transcription factors IRF3 and IRF7 appear to 
play a redundant role in type I IFN induction, as Irf3−/− and 
Irf7−/− single knockout mice all survive CHIKV infection; 
however, Irf3−/−Irf7−/− double knockout mice show 100% 
mortality and massive upregulation of pro-inflammatory 
cytokines TNF-α, IL-6, and CCL2 (Rudd et al. 2012; Schilte 
et al. 2012). Deficiency of IRF-1 results in increased foot 
swelling and enhanced viral dissemination due to altered 
local pro-inflammatory cytokine and chemokine responses 
in mice during CHIKV infection (Nair et al. 2017). Similar 
to SINV studies, Ifnar−/− or Stat1−/− mice are highly sus-
ceptible to CHIKV and show increased mortality following 
infection (Couderc et al. 2008; Gardner et al. 2012; Partidos 
et al. 2011; Schilte et al. 2010).

ISGs induced following CHIKV infection are not as well 
described compared to SINV. Neonatal Isg15−/− mice 
show 100% mortality to CHIKV infection, but in contrast to 
SINV, via a mechanism independent of UbE1L-ISG15 pro-
tein conjugates (Werneke et al. 2011). Ifitm3−/− mice show 
increased ipsilateral ankle joint swelling with higher virus 
titers and pro-inflammatory cytokines and chemokines early 
in infection (Poddar et al. 2016). Viperin is highly upregu-
lated in CHIKV-infected monocytes, and Rsad2−/− mice, 
which are deficient in the gene encoding Viperin, show 
increased joint inflammation and viremia compared to WT 
mice (Teng et al. 2012). Bone marrow stromal antigen 2 
(BST-2), an ISG that tethers virions to cell surfaces and pre-
vent budding, reduces CHIKV dissemination in mice and 
promotes IFN-α, IFN-γ, and CD40L expression (Mahauad-
Fernandez et al. 2014). Pre-weanling Gadd34−/− mice show 
increased mortality and more severe myocardial inflamma-
tion following CHIKV infection, indicating its importance 
in type I IFN induction and IL-6 production (Clavarino et al. 
2012).

Inflammation has been shown to drive most of the patho-
logical changes during arthritogenic alphavirus infection. 
Monocytes/macrophages in particular play a complex role 
in CHIKV-induced joint and muscle damage. Inhibition of 
MCP-1/CCL2 synthesis, which is critical for macrophage 
recruitment, through administration of bindarit mitigates 
CHIKV disease development and bone loss and reduces 
inflammatory infiltrates in joints and muscle (Chen et al. 
2015; Rulli et al. 2011). However, Ccl2−/− mice actually 
demonstrate more severe clinical disease characterized by 
a reduction in monocytes/macrophages but enhanced neu-
trophil-mediated cartilage damage and pro-inflammatory 
cytokine gene expression (Poo et al. 2014). Depletion of 
 Ly6ChiCCR2 + monocytes in CCR2-DTR transgenic mice 
using diphtheria toxin leads to more severe disease follow-
ing CHIKV or RRV infection, via a process independent of 

adaptive immunity but dependent on IRF3/IRF7 and MAVS-
induced type I IFN gene expression (Haist et al. 2017). 
Macrophages present in RRV- or CHIKV-induced lesions 
show a gene expression pattern consistent with M2-like mac-
rophages, and mice deficient for Arg1, a gene central to M2 
macrophage skewing, in macrophages and neutrophils show 
improved pathology and reduced viral loads, suggesting a 
mechanism by which viral persistence in macrophages may 
occur (Stoermer et al. 2012).

During RRV infection of mice, the complement system 
has been shown to significantly contribute to tissue dam-
age in joints and muscles (Morrison et al. 2007, 2008). 
C3−/− mice, which are deficient in the central component 
of the complement system, and CD11b−/− mice, which are 
deficient in complement receptor 3, whose ligands include 
the C3 cleavage fragment iC3b, develop less severe disease 
and show reduced tissue destruction compared to WT mice 
despite similar tissue tropism, viral replication in tissues, 
and inflammatory cell recruitment, indicating that the com-
plement system plays a large role in the effector phase of 
RRV-induced disease (Morrison et al. 2007, 2008). Though 
recruitment of inflammatory cells was not affected, absence 
of C3 or CR3 did decrease expression of several pro-inflam-
matory genes, including genes for S100A9, S100A8, and 
IL-6 (Morrison et al. 2008). Activation of the complement 
cascade during RRV infection is dependent on the mannose-
binding (MBL) pathway, as MBL−/− mice, but not mice 
deficient in components of the classical (C1q−/− mice) 
or alternative (fB−/− mice) pathways, show a similar dis-
ease course as C3−/− mice (Gunn et al. 2012). In contrast, 
C3−/− mice peripherally infected with the V3533 strain of 
VEEV show a more rapid invasion of the CNS, more severe 
signs of encephalitis, and delayed virus clearance from the 
serum, suggesting that complement is critical for periph-
eral virus clearance to protect against neuroinvasion during 
encephalitic alphavirus infection (Brooke et al. 2012).

The adaptive immune response presents a double-edged 
sword, inducing both protective and pathological processes 
during alphavirus infection. The adaptive immune response, 
particularly T cells, has been shown to induce most of the 
pathological changes during alphavirus encephalomyelitis. 
Inhibition of lymphocyte proliferation through treatment 
with a glutamine antagonist partially prevents development 
of clinical disease and persistent neurological sequelae in 
a mouse model of nonfatal alphavirus encephalomyelitis 
(Baxter et al. 2017; Potter et al. 2015). SCID mice, which 
lack both B cells and T cells, infected with the AR339 
strain of SINV do not develop signs of neurological dis-
ease despite supporting high levels of virus replication in 
the brain (Levine et al. 1991). SINV NSV-induced clinical 
disease development and mortality coincide with infiltration 
of T cells into the brain, and when mice deficient in vari-
ous components of cellular immunity, including TCRα−/−, 
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TCRβδ−/−, β2m−/−, TAP1−/−, and CD4−/− mice, but 
not CD8−/− mice, are infected with SINV NSV, the rate 
of mortality significantly decreases compared to WT mice 
(Kimura and Griffin 2000; Kulcsar et al. 2014; Rowell and 
Griffin 2002). The pathogenic role of T cell effector mol-
ecules has also been evaluated in the SINV mouse model. 
In one study, NSV-induced mortality was not altered in mice 
lacking several T cell effector molecules, including perforin 
(Pfp−/−), Fas  (Faslpr), TNF-α receptor (TNFαR1−/−), IL-6, 
or IL-12; however, IFN-γ-deficient mice (Ifng−/−) showed a 
significantly reduced mortality rate compared to WT mice, 
suggesting that IFN-γ plays a role in fatal alphavirus enceph-
alomyelitis (Rowell and Griffin 2002). However, a subse-
quent study with SINV NSV showed similar mortality rates 
between WT and Ifng−/− and Ifngr1−/− (IFN-γ receptor-
deficient) mice, though mice deficient in IFN-γ signaling 
showed increased infiltration of perforin + cells and reduced 
mRNA expression of Tnf and Il6 in the brain (Lee et al. 
2013). Compared to WT mice, Ifng−/− and Ifngr1−/− mice 
show reduced weight loss and a less severe decrease in feed 
intake due to reduced pro-inflammatory cytokine produc-
tion, particularly TNF-α, in the brain during infection with 
the nonfatal TE strain of SINV (Baxter and Griffin 2016). 
Deficiency of the regulatory cytokine IL-10 in mice during 
SINV NSV infection accelerates mortality and promotes an 
increase of pathogenic Th17 cells producing GM-CSF and 
granzyme B (Kulcsar et al. 2014). Infection of Il10−/− mice 
with TE12, a recombinant SINV strain of intermediate 
virulence, leads to increased mortality and slower virus 
clearance compared to WT mice and is associated with an 
enhanced Th1 response and delayed anti-SINV antibody in 
the CNS (Martin and Griffin 2017). Together these studies 
indicate that T cells, particularly CD4 + T cells, and their 
pro-inflammatory effector molecules mediate CNS damage 
during SINV infection.

While responsible for most of the pathology in the CNS, 
the adaptive immune response is also required for noncytol-
ytic clearance of SINV from neurons. Virus clearance from 
the CNS is accomplished through a synergistic cooperation 
between IFN-γ and antibody directed towards the E2 gly-
coprotein of SINV (Binder and Griffin 2001; Levine et al. 
1991). Following infection with the nonfatal TE strain of 
SINV, while WT C57BL/6 mice are able to clear infectious 
virus by 7–10 days post-infection, virus titers are readily 
detectable in brains of SCID mice (Burdeinick-Kerr et al. 
2007). µMT mice, which are deficient in mature B cells, are 
also unable to clear infectious virus, though persistent titers 
remain lower than that of SCID mice, and while Ifng−/− and 
Ifngr1−/− mice are initially able to clear infectious virus, 
reactivation of virus can be detected between 14 and 28 days 
post-infection. µMT/Ifng−/− double knockout mice show 
virus titer trends intermediate to that of SCID and µMT sin-
gle knockout mice, indicating that antibody and IFN-γ work 

cooperatively to clear virus (Burdeinick-Kerr et al. 2007). 
While Ifng−/− and Ifngr1−/− mice produce comparable 
amounts of IgM and IgG in the serum compared to WT 
mice, IgM, IgG2a, and IgG2b levels are reduced in the CNS 
(Baxter and Griffin 2016). Ifng−/− and Ifngr1−/− mice also 
have significantly fewer B cells and lower mRNA expres-
sion levels of B cell attracting chemokines, including Cxcl9, 
Cxcl10, and Cxcl13, compared to WT mice, suggesting 
cooperative virus clearance between IFN-γ and anti-SINV 
antibody occurs via IFN-γ promotion of antibody-secret-
ing B cell chemotaxis into the CNS (Baxter and Griffin 
2016). Germline IgM or IgG alone is sufficient for SINV 
clearance from the CNS, with AID−/− mice (only pro-
duce IgM) and sIgM−/− mice (secrete IgG but not IgM) 
showing comparable morbidity and virus clearance com-
pared to WT mice (Nilaratanakul et al. 2018). In contrast, 
AID−/−sIgM−/− double knockout mice are unable to clear 
infectious virus from the brain and show persistently high 
viral RNA levels, further supporting the important role of 
anti-SINV antibody in virus clearance (Nilaratanakul et al. 
2018). Further studies examining the exact mechanism by 
which anti-SINV antibody clears infectious virus from neu-
rons in a noncytolytic manner are underway.

Compared to SINV infection, the role of the adaptive 
immune response in inducing pathology and promoting 
clearance during arthritogenic alphavirus infection has not 
been as heavily studied. However, particularly for CHIKV, 
both the immune response and clinical disease closely 
mimic that seen in patients with rheumatoid arthritis, 
an autoimmune disease (Miner et al. 2015). Rag1−/− or 
Rag2−/− mice, which lack both T cells and B cells, show 
minimal inflammation in joints and muscle but persistent 
viremia and high viral titers in joints following CHIKV and 
RRV infection, suggesting that the double-edged sword 
analogy of the immune response applies to arthritogenic 
alphavirus infection (Burrack et al. 2015; Hawman et al. 
2013; Seymour et al. 2015; Teo et al. 2013). During CHIKV 
infection, CD4 + T cells specifically appear to play the major 
pathogenic role in inducing joint swelling; as compared to 
WT and Cd8a−/− mice, Cd4−/− mice show reduced foot-
pad swelling and polymorphonuclear cell infiltration (Teo 
et al. 2013). In a study examining the pathologic role of 
effector proteins of NK cells and CD4 cells, Ifng−/− mice 
only showed mild reduction in arthritic disease following 
CHIKV infection (Wilson et al. 2017). In contrast, mice 
deficient in granzyme A (GrzA−/−), and to a lesser extent 
granzyme K (GrzK−/−), showed significantly reduced foot 
swelling and fewer NK cells and T cells compared to WT 
mice (Wilson et al. 2017). γδ T cells appear to play a pro-
tective role in CHIKV infection, as γδ T cell−/− mice show 
enhanced disease development with increased foot swelling 
and poorer weight gain with increased oxidative damage in 
ipsilateral foot and ankle joints compared to WT mice (Long 
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et al. 2015). µMT mice show persistent viremia for a year 
following CHIKV infection, indicating that similar to SINV, 
virus-specific antibody mediates clearances of CHIKV (Lum 
et al. 2013). Also similar to SINV studies in SCID mice, 
monoclonal CHIKV antibody treatment prevents establish-
ment of persistent virus and allows tissue-specific clearance 
of persistently infected tissues in Rag1−/− mice (Hawman 
et al. 2013). CHIKV-infected Cd4−/− mice show reduced 
CHIKV-specific IgM and IgG levels that are able to fully 
neutralize virus, indicating that CD4 + T cells enhance, but 
are not required for, antibody-mediated clearance of CHIKV 
(Lum et al. 2013). RRV-infected CD8a−/− mice demon-
strate increased viral RNA levels in muscle but not joint tis-
sues, suggesting CD8 + T cells mediate viral RNA clearance 
in a tissue-specific manner, and passive transfer of T cells to 
Rag1−/− mice results in reduced viral RNA loads in muscle, 
suggesting that T cells are capable of clearing viral RNA 
independent of B cells/anti-RRV antibody (Burrack et al. 
2015). Further studies are warranted to better understand 
the role of the adaptive immune response in virus clearance, 
particular whether IFN-γ and virus-specific antibody medi-
ate clearance in a cooperative manner, as with SINV.

Emerging technologies for studying host genetic 
variation and alphavirus pathogenesis

Examination of alphavirus infection in various inbred mouse 
strains has provided clues on the power of host genetics in 
influencing disease susceptibility and outcome. SJL mice 
infected with the AR339 strain of SINV develop more severe 
encephalitic disease than BALB/c mice and have increased 
inflammation characterized by decreased Il4 expression 
and increased CD4 + T cells producing IL-10 (Rowell and 
Griffin 1999). When infected with SINV NSV, C57BL/6 
mice develop ascending paralysis with 100% mortality by 
7–10 days post-infection, while BALB/c mice only develop 
mild disease and survive (Thach et al. 2000). Spinal cords 
of NSV-infected BALB/c mice have higher motor neuron 
survival rates with decreased IL-1β production and reduced 
decline in GLT-1 expression, a marker for glutamate exci-
totoxicity, which is shown to contribute to neuronal death 
in alphavirus encephalitis (Prow and Irani 2008). C57BL/6 
mice, in contrast, show higher CNS virus titers with higher 
levels of infiltrating inflammatory cells and pro-inflamma-
tory cytokine production (Kulcsar et al. 2015). Intranasal 
infection with the TC-83 strain of VEEV results in high mor-
tality in C3H mice but 100% survival in C57BL/6 mice, 
with NK cells shown to mediate severe disease in C3H mice 
(Taylor et al. 2012). These observed phenotypic differences 
among mouse strains have lead the way for more advanced 
systems genetic approaches towards the role of host genetic 
variation on disease outcome, such as the Collaborative 
Cross (CC) (Fig. 2).

Studies of quantitative trait loci (QTL) allow for iden-
tification of genomic DNA and associated genes that cor-
relate with variation in phenotype, providing a mechanism 
by which the role of host genetics in alphavirus pathogen-
esis may be examined. While QTL analysis represents an 
increasingly used technology in examining complex trait 
contributions to infectious disease outcome and has been 
examined in several RNA viruses, including as influenza 
virus and Theiler’s murine encephalitis virus (Abbas et al. 
2018; Bieber et al. 2010; Boivin et al. 2012; Butterfield et al. 
2003; Ferris et al. 2013; Spach et al. 2010), to date only one 
study has been published examining mammalian alphavi-
rus infection. Expanding on known phenotypic differences 
in disease outcome between C57BL/6 and BALB/c mice 
infected with SINV NSV, interval mapping of CXB recom-
binant inbred (RI) mice identified a QTL on chromosome 2 
near marker D2Mit447, designated as Nsv1, that correlated 
with viral load, development of paralysis, and death (Thach 
et al. 2001). Infection susceptibility to salmonoid alphavirus 
(SAV), a non-mammalian alphavirus, and severity of patho-
logical lesions has been found to vary by strain of Atlantic 
salmon and region during natural infection (McLoughlin 
et al. 2003, 2006). Experimental SAV infection of different 
salmon populations revealed a moderate to high heritability 
for host resistance to SAV-induced disease, with a disease 
resistance QTL mapped to chromosome 3 (Gonen et al. 
2015). SNPs identified to be in linkage disequilibrium with 
this QTL are now being used in selective breeding programs 
in commercial fisheries to enhance disease resistance. Future 
studies identifying QTL involved in disease outcome will 
further our understanding in the role complex trait variation 
plays in alphavirus pathogenesis.

The Collaborative Cross (CC) is a genetic resource 
population consisting of approximately one hundred fully 
inbred, and therefore completely reproducible, recombi-
nant inbred (RI) lines, with both genotypes and whole-
genome sequences available (Churchill et al. 2004). The 
eight founder lines used to create the CC consist of five 
classical inbred strains (A/J, C57BL/6J, 129S1/SvImJ, 
NOD/ShiLtJ, and NZO/HILtJ) and three wild-derived 
strains from Mus musculus subspecies (CAST/EiJ, PWK/
PhJ, and WSB/EiJ), which capture approximately 90% of 
known genetic variation in laboratory mice in a randomly 
distributed manner across the genome and create for more 
genetic diversity than standard RI lines created from two 
inbred strains. Studies using the CC have been performed 
using multiple viruses, including influenza virus, Ebola 
virus, SARS-CoV, and West Nile virus, and show that 
there is significant genetic variation associated with viral 
infection (Ferris et al. 2013; Graham et al. 2015; Gralinski 
et al. 2015, 2017; Rasmussen et al. 2014). Other emerg-
ing mouse systems genetics tools include the Diversity 
Outbred (DO) mouse population, which was derived from 
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and shares the same genetic information as the CC, but is 
maintained using a strict randomized breeding scheme, 
maximizing allelic heterozygosity (Churchill et al. 2012). 
These emerging genetic resources permit the mapping of 
complex traits and allow for characterization of polymor-
phic genes that influence disease outcomes across diverse 
populations.

Summary

Completed studies examining the natural course of infec-
tion in humans and experimental infection using cell 
culture and animal models show we have only scratched 
the surface of understanding how host genetics influence 

Fig. 2  Systems genetics approach to studying the role of host genet-
ics on alphavirus pathogenesis using the Collaborative Cross (CC). a 
CC mouse populations are created by crossing eight inbred founder 
lines (yellow = A/J, gray = C57BL/6J, pink = 129S1/SvlmJ, dark 
blue = NOD/ShiLtJ, light blue = NZO/HiLtJ, green = CAST/EiJ, 
red = PWK/PhJ, purple = WSB/EiJ) and then inbreeding them to cre-
ate a panel of fully reproducible lines. b In a model experiment, mice 
from different CC lines are infected with an alphavirus, and c disease 
phenotypes are evaluated across all infected CC lines. d QTL map-
ping is used to identify genome regions that contribute to phenotypic 
variation among alphavirus-infected CC lines. A QTL associated 
with variation in clinical disease severity is identified within chromo-
some 10, with the lower red line indicating p = 0.1 and the upper red 

line indicating p = 0.05. e An allele effects plot for the QTL shows 
that the locus is primarily driven by a WSB/EiJ founder effect. f 
Sequence data for genes within the QTL can be accessed using the 
Sanger Mouse Genomes Database (https ://www.sange r.ac.uk/sange r/
Mouse _SnpVi ewer/rel-1303) to identify haplotypes across the eight 
founder strains (Haplotype 1 = A/J, C57BL/6J, 129S1/SvlmJ, CAST/
EiJ, PWK/PhJ; Haplotype 2 = NOD/ShiLtJ, NZO/HiltJ; Haplotype 
3 = WSB/EiJ). Polymorphisms are denoted by arrows, with coding 
changes denoted by large arrows, and noncoding changes denoted 
by small arrows. Founder strains possessing each polymorphism are 
denoted by colors indicated above. g Candidate gene studies are per-
formed to better understand the contribution of specific genes within 
the QTL to the phenotype in question. (Color figure online)

https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1303
https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1303
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alphavirus infection. Genome-wide genetic screens and 
candidate gene studies provide insight to how host genes 
mediate or resist virus entry and replication within a cell 
or respond to virus infection to affect disease outcome. 
These studies show that the immune response in particu-
lar plays a complicated role in alphavirus infection, both 
mitigating and contributing to disease development and 
severity. While the innate immune response plays a critical 
role in restricting initial virus infection and replication, 
and the adaptive immune response mediates clearance of 
virus following successful infection, both arms have been 
shown to significantly facilitate clinical disease and tissue 
pathology. In addition to host genetics, alphavirus patho-
genesis is further complicated by the role viral genetics 
play in disease development and outcome. Effective treat-
ments for alphaviruses infection will require acknowledge-
ment and consideration of how both viral and host genetics 
contribute to the pathogenesis of disease. Emerging tech-
nologies, such as systems genetics approaches using the 
Collaborative Cross, will further our understanding of the 
how host genetics contribute to alphavirus pathogenesis, 
and effectively harnessing this knowledge and parlaying 
it into successful therapies will be critical for effectively 
responding to new emergences and disease manifestations 
produced by these re-emerging and constantly evolving 
alphaviruses.
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