Skip to main content

Advertisement

Log in

Transformation of West-Carpathian primeval woodlands into high-altitude grasslands from as early as the Bronze Age

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The drivers of the long-term development of high-mountain woodlands are still unexplored in the central European mountains north of the Alps, where archaeologists and palaeoecologists traditionally report no significant human influences on vegetation before the late Middle Ages. Recent but fragmentary palaeoecological reports are gradually changing this paradigm. We analysed a peat profile from a high-elevation fen on the southern edge of the Western Carpathians, where proximity to warm lowlands may have facilitated prehistoric use of the higher elevations. We found that the formation of the studied fen in the Bronze Age could have been triggered by anthropogenic deforestation. This event is indicated by an extraordinarily high amount of micro- and macro-charcoals and the presence of secondary anthropogenic and open-landscape indicators. Grazing of the summit areas was further evidenced by records of spores of coprophilous fungi (Sporormiella, Sordaria-t. and Podospora-t.). As microcharcoals were present only in the prehistoric period and almost disappeared later (after ad 200), fires were likely used to deforest the range to obtain open land, which was later intensively grazed. Archaeological reports from the area, especially Bronze Age records from foothills and mountain basins, suggest that people settled in the vast area and might have needed to graze the nearby summit range during the summer. The most significant and abrupt transition from woodlands to grasslands coincided with the Mining and Wallachian colonisation waves. These waves altered the original course of the development and composition of mountain forests, highlighting their sensitivity to severe anthropogenic disturbance. In the last two centuries, the exploitation of the woodlands has decreased. Secondary succession, together with commercial planting, has led to the dominance of the Norway spruce. Together with the previous patchy record, our results call for a new paradigm to consider early prehistoric anthropogenic influences like grazing in the Central European high mountains. The history of treeless vegetation at higher altitudes is likely substantially older than has been thought so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akeret Ö, Jacomet S (1997) Analysis of plant macrofossils in goat/sheep faeces from the Neolithic lake shore settlement of Horgen Scheller—an indication of prehistoric transhumance? Veget Hist Archaeobot 6:235–239. https://doi.org/10.1007/BF01370444

    Article  Google Scholar 

  • Baker AG, Bhagwat SA, Willis KJ (2013) Do dung fungal spores make a good proxy for past distribution of large herbivores? Quat Sci Rev 62:21–31. https://doi.org/10.1016/j.quascirev.2012.11.018

    Article  Google Scholar 

  • Bal MC, Pelachs A, Perez-Obiol R, Julia R, Cunill R (2011) Fire history and human activities during the last 3300 cal yr BP in Spain’s Central Pyrenees: the case of the Estany de Burg. Palaeogeogr Palaeoclimatol Palaeoecol 300:179–190. https://doi.org/10.1016/j.palaeo.2010.12.023

    Article  Google Scholar 

  • Bartolomé J, Boada M, Saurí D, Sánchez S, Plaixats J (2008) Conifer dispersion on subalpine pastures in northeastern Spain: characteristics and implications for rangeland management. Rangel Ecol Manage 61:218–225

    Article  Google Scholar 

  • Behling H, Street M (1999) Palaeoecological studies at the Mesolithic site at Bedburg-Königshov near Cologne, Germany. Veget Hist Archaeobot 8:273–285. https://doi.org/10.1007/BF01291779

    Article  Google Scholar 

  • Behre K-E (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245

    Google Scholar 

  • Bennett KD (2007) Psimpoll and pscomb programs for plotting and analysis. https://chrono.qub.ac.uk/psimpoll/psimpoll.html. Version 4.27. Accessed 20 Mar 2020

  • Berthel N, Schwörer C, Tinner W (2012) Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev Palaeobot Palynol 174:91–100. https://doi.org/10.1016/j.revpalbo.2011.12.007

    Article  Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10. https://doi.org/10.1177/095968369200200101

    Article  Google Scholar 

  • Brombacher C, Klee M, Martinoli D (2007) Bronzezeitliche und mittelalterliche Pflanzenfunde aus dem Kloster St. Johann in Müstair. In: Sennhauser HR (ed) Müstair, Kloster St. Johann. 4: Naturwissenschaftliche und technische Beiträge. Vdf Hochschulverlag AG an der ETH Zürich, Zürich, pp 75–98

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 5:337–360. https://doi.org/10.1017/S0033822200033865

    Article  Google Scholar 

  • Brun C (2011) Anthropogenic indicators in pollen diagrams in eastern France: a critical review. Veget Hist Archaeobot 20:135–142. https://doi.org/10.1007/s00334-010-0277-8

    Article  Google Scholar 

  • Bunce RGH, Pérez-Soba M, Jongman RHG, Gómez Sal A, Herzog F, Austad I (2004) Transhumance and biodiversity in European mountains. Alterra, Wageningen

    Google Scholar 

  • Carcaillet C, Muller SD (2005) Holocene tree-limit and distribution of Abies alba in the inner French Alps: anthropogenic or climatic changes? Boreas 34:468–476. https://doi.org/10.1080/03009480500231377

    Article  Google Scholar 

  • Carrión JS, Fernández S, González-Sampériz P et al (2010) Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev Palaeobot Palynol 162:458–475

    Article  Google Scholar 

  • Carter VA, Moravcová A, Chiverrell RC et al (2018) Holocene-scale fire dynamics of central European temperate spruce-beech forests. Quat Sci Rev 191:15–30. https://doi.org/10.1016/j.quatscirev.2018.05.001

    Article  Google Scholar 

  • Chapman J (2018) Climatic and human impact on the environment?: A question of scale. Quat Int 496:3–13. https://doi.org/10.1016/j.quaint.2017.08.010

    Article  Google Scholar 

  • Čierniková M (2016) Holocene dynamic of supramontane vegetation zone of the Martinské hole Mts. and the Kubínska hoľa Mts. Dissertation, Comenius University, Bratislava

  • Colombaroli D, Beckmann M, van der Knaap WO, Curdy P, Tinner W (2013) Changes in biodiversity and vegetation composition in the central Swiss Alps during the transition from pristine forest to first farming. Divers Distrib 19:157–170. https://doi.org/10.2307/23480733

    Article  Google Scholar 

  • Court-Picon M, Buttler A, de Beaulieu JL (2005) Modern pollen–vegetation relationships in the Champsaur valley (French Alps) and their potential in the interpretation of fossil pollen records of past cultural landscapes. Rev Palaeobot Palynol 135:13–39. https://doi.org/10.1016/j.revpalbo.2005.02.003

    Article  Google Scholar 

  • Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408. https://doi.org/10.1007/s00334-010-0242-6

    Article  Google Scholar 

  • Czerwiński S, Margielewski W, Gałka M, Kołaczek P (2020) Late Holocene transformations of lower montane forest in the Beskid Wyspowy Mountains (Western Carpathians, Central Europe): a case study from Mount Mogielica. Palynology 44:355–368. https://doi.org/10.1080/01916122.2019.1617207

    Article  Google Scholar 

  • Dabkowski J, Frodlová J, Hájek M et al (2019) A complete Holocene climate and environment record for the Western Carpathians (Slovakia) derived from a tufa deposit. Holocene 29:493–504. https://doi.org/10.1177/0959683618816443

    Article  Google Scholar 

  • Davies AL (2019) Dung fungi as an indicator of large herbivore dynamics in peatlands. Rev Palaeobot Palynol 271:104–108

    Article  Google Scholar 

  • Deza-Araujo M, Morales-Molino C, Tinner W, Henne PD, Heitz C, Pezzatti GB, Conedera M (2020) A critical assessment of human-impact indices based on anthropogenic pollen indicators. Quat Sci Rev 236:106291. https://doi.org/10.1016/j.quascirev.2020.106291

    Article  Google Scholar 

  • Dietre B, Reitmaier T, Walser C et al (2020) Steady transformation of primaeval forest into subalpine pasture during the Late Neolithic to Early Bronze Age (2300–1700 BC) in the Silvretta Alps, Switzerland. Holocene 30:355–368. https://doi.org/10.1177/0959683619887419

    Article  Google Scholar 

  • Dovčiak M, Hrivnák R, Ujházy K, Gömöry D (2008) Seed rain and environmental controls on invasion of Picea abies into grassland. Plant Ecol 194:135–148. https://doi.org/10.1007/s11258-007-9280-2

    Article  Google Scholar 

  • Dreslerová D (2015) Prehistoric transhumance and summer farming in the Czech Republic: possibilities and doubts. Archeologické rozhledy 67:109–130

    Google Scholar 

  • Dreslerová D, Kozáková R, Chuman T, Strouhalová B, Abraham V, Poništiak Å, Šefrna L (2019) Settlement activity in later prehistory: invisible in the archaeological record but documented by pollen and sedimentary evidence. Archaeol Anthropol Sci 11:1,683–1,700. https://doi.org/10.1007/s12520-018-0614-x

    Article  Google Scholar 

  • Dreslerová D, Romportl D, Čišecký Č et al (2020) At the end of the world? Settlement in the Šumava mountains and foothills in later prehistory. Praehist Z 95:535–557. https://doi.org/10.1515/pz-2020-0025

    Article  Google Scholar 

  • Dudová L, Hájková P, Buchtová H, Opravilová V (2013) Formation, succession and landscape history of Central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mountains. Holocene 23:230–242. https://doi.org/10.1177/0959683612455540

    Article  Google Scholar 

  • Dudová L, Hájek M, Petr L, Jankovská V (2018) Holocene vegetation history of the Jeseníky Mts: deepening elevational contrast in pollen assemblages since late prehistory. J Veg Sci 29:371–381. https://doi.org/10.1111/jvs.12612

    Article  Google Scholar 

  • Ellis MB, Ellis JP (1985) Microfungi on land plants. An identification handbook. Macmillian Publishing Co., New York

    Google Scholar 

  • Enache MD, Cumming BF (2006) Tracking recorded fires using charcoal morphology from the sedimentary sequence of Prosser Lake, British Columbia (Canada). Quat Res 65:282–292. https://doi.org/10.1016/j.yqres.2005.09.003

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) In: Faegri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Feurdean A, Parr CL, Tanţău I, Fărcaş S, Marinova E, Perşoiu I (2013) Biodiversity variability across elevations in the Carpathians: parallel change with landscape openness and land use. Holocene 23:869–881. https://doi.org/10.1177/0959683612474482

    Article  Google Scholar 

  • Feurdean A, Perşoiu A, Tanţău I et al (2014) Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quat Sci Rev 106:206–224. https://doi.org/10.1016/j.quascirev.2014.06.003

    Article  Google Scholar 

  • Feurdean A, Vannière B, Finsinger W et al (2020) Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 17:1,213–1,230

    Article  Google Scholar 

  • Fiałkiewicz-Kozieł B, Kołaczek P, Michczyński A, Piotrowska N (2015) The construction of a reliable absolute chronology for the last two millennia in an anthropogenically disturbed peat bog: limitations and advantages of using a radio-isotopic proxy and age-depth modelling. Quat Geochronol 25:83–95

    Article  Google Scholar 

  • Florenzano A, Marignani M, Rosati L, Fascetti S, Mercuri AM (2015) Are Cichorieae an indicator of open habitats and pastoralism in current and past vegetation studies? Plant Biosyst 149:154–165. https://doi.org/10.1080/11263504.2014.998311

    Article  Google Scholar 

  • Furmánek V (1991) Praveká prospekcia a baníctvo v Gemeri? Obzor Gemera-Malohontu 22:62–64

    Google Scholar 

  • Furmánek V (1993) Gemer a Malohont v dobe bronzovej a železnej. Obzor Gemera-Malohontu 24:11–23

    Google Scholar 

  • Furmánek V, Veliačik L (1980) Doba bronzová. Slovenská archeológia 28:159–179

    Google Scholar 

  • Furmánek V, Veliačik L, Vladár J (1991) Slovensko v dobe bronzovej. Veda, Bratislava

    Google Scholar 

  • Futák J (ed) (1966) Flóra Slovenska. II. Pteridophyta, Coniferophytina. Vydavatel’stvo Slovenskej akadémie vied, Bratislava

    Google Scholar 

  • Gałka M, Feurdean A, Hutchinson S, Milecka K, Tanţău I, Apolinarska K (2018) Response of spring-fed ecosystem in Central Eastern Europe (NW Romania) to climate changes during last 4000 years: a high resolution multi-proxy reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 504:170–185. https://doi.org/10.1016/j.palaeo.2018.05.027

    Article  Google Scholar 

  • Galop D, Rius D, Cugny C, Mazier F (2013) A history of long-term human–environment interactions in the French Pyrenees inferred from the pollen data. In: Lozny LR (ed) Continuity and change in cultural adaptation to mountain environments. Springer, New York, pp 19–30. https://doi.org/10.1007/978-1-4614-5702-2_3

    Chapter  Google Scholar 

  • Geantă A, Gałka M, Tanţău I, Hutchinson SM, Mîndrescu M, Feurdean A (2014) High mountain region of the Northern Romanian Carpathians responded sensitively to Holocene climate and land use changes: a multi-proxy analysis. Holocene 24:944–956. https://doi.org/10.1177/0959683614534747

    Article  Google Scholar 

  • Gelorini V, Verbeken A, van Geel B, Cocquyt C, Verschuren D (2011) Modern non-pollen palynomorphs from East African lake sediments. Rev Palaeobot Palynol 164:143–173. https://doi.org/10.1016/j.revpalbo.2010.12.002

    Article  Google Scholar 

  • Gilck F, Poschlod P (2019) The origin of alpine farming: a review of archaeological, linguistic and archaeobotanical studies in the Alps. Holocene 29:1,503–1,511. https://doi.org/10.1177/0959683619854511

    Article  Google Scholar 

  • Gillson L (2015) Biodiversity conservation and environmental change: using palaeoecology to manage dynamic landscapes in the Anthropocene. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54

    Google Scholar 

  • Grecula P, Abonyi A, Abonyiová M et al (1995) Mineral deposits of the Slovak ore mountains. Geocomplex, Bratislava

    Google Scholar 

  • Grimm EC (2011) Tilia 1.7.16. Illinois State Museum. Research and Collection Center, Springfield

    Google Scholar 

  • Hájková P, Roleček J, Hájek M, Horsák M, Fajmon K, Polák M, Jamrichová E (2011) Prehistoric origin of the extremely species-rich semi-dry grasslands in the Bílé Karpaty Mts (Czech Republic and Slovakia). Preslia 83:185–204

    Google Scholar 

  • Hajnalová E (1995) Železiarstvo z pohľadu archeobotanika. Å tudijné zvesti 31:123–134

    Google Scholar 

  • Harrell FE Jr, with contributions from Charles Dupont and many others (2020) Hmisc: Harrell Miscellaneous. R package version 4.4-0. https://CRAN.R-project.org/package=Hmisc. Accessed 25 Apr 2020

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. https://doi.org/10.1023/A:1008119611481

    Article  Google Scholar 

  • Henkner J, Ahlrichs J, Fischer E et al (2018) Land use dynamics derived from colluvial deposits and bogs in the Black Forest, Germany. J Soil Sci Plant Nutr 181:240–260. https://doi.org/10.1002/jpln.201700249

    Article  Google Scholar 

  • Holliday VT (2004) Soils in archaeological research. Oxford University Press, Oxford. https://doi.org/10.1002/9781118786352.wbieg0737

    Book  Google Scholar 

  • Horváthová M (2002) Nemci na Slovensku: Etnokultúrne tradície z aspektu osídlenia, remesiel a odievania. Dunajská Streda (Lilium Aurum), Dunajská Streda

    Google Scholar 

  • Hrabovský M, Mičieta K (2014) The occurrence of an invasive species Ambrosia artemisiifolia in Slovakia in the years 2008–2014. Acta Bot Univ Comen 49:9–12

    Google Scholar 

  • Innes J, Blackford J, Chambers F (2006) Kretzschmaria deusta and the northwest European mid-Holocene Ulmus decline at Moel y Gerddi, north Wales, United Kingdom. Palynology 30:121–132. https://doi.org/10.1080/01916122.2006.9989622

    Article  Google Scholar 

  • Jankovská V (2004) Krkonoše v době poledové-vegetace a Krajina (Giant Mountains in Postglacial-vegetation and landscape). Opera Corcon 41:111–123

    Google Scholar 

  • Jankovská V (2006) Late Glacial and Holocene history of Plešné Lake and its surrounding landscape based on pollen and palaeoalgological analyses. Biologia 61:371–385. https://doi.org/10.2478/s11756-007-0064-x

    Article  Google Scholar 

  • Jankovská V, Kuneš P, van der Knaap WO (2007) Fláje–Kiefern (Krušné Hory Mountains): late Glacial and Holocene vegetation development. Grana 46:214–216. https://doi.org/10.1080/00173130701526341

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3,016–3,034. https://doi.org/10.1016/j.quascirev.2009.09.028

    Article  Google Scholar 

  • Kaplan Z, Koutecký P, Danihelka J et al (2018) Distributions of vascular plants in the Czech Republic, Part 6. Preslia 90:235–346. https://doi.org/10.23855/preslia.2018.235

    Article  Google Scholar 

  • Katz NJ, Katz SV, Skobeyeva EI (1977) Atlas Rastitel’nyh Oostatkov v Torfje (Atlas of Plant Remains in Peats). Nedra, Moscow

    Google Scholar 

  • Kienlin TL, Valde-Nowak P (2004) Neolithic transhumance in the Black Forest mountains, SW Germany. J Field Archaeol 29:29–44. https://doi.org/10.2307/3181484

    Article  Google Scholar 

  • Klimo E, Hager H, Kulhavý J (2000) Spruce monocultures in central Europe: problems and prospects. European Forest Institute Proceedings 33. European Forest Institute, Joensuu

  • Kołaczek P, Karpińska-Kołaczek M, Marcisz K, Gałka M, Lamentowicz M (2018) Palaeohydrology and the human impact on one of the largest raised bogs complex in the Western Carpathians (Central Europe) during the last two millennia. Holocene 28:595–608. https://doi.org/10.1177/0959683617735587

    Article  Google Scholar 

  • Kołaczek P, Margielewski W, Gałka M et al (2020) Towards the understanding the impact of fire on the lower montane forest in the Polish Western Carpathians during the Holocene. Quat Sci Rev 229:106137

    Article  Google Scholar 

  • Korpeľ S (1995) Die Urwälder der Westkarpaten. Fischer, Stuttgart

    Google Scholar 

  • Kozáková R, Šamonil P, Kuneš P, Novák J, Kočár P, Kočárová R (2011) Contrasting local and regional Holocene histories of Abies alba in the Czech Republic in relation to human impact: evidence from forestry, pollen and anthracological data. Holocene 21:431–444. https://doi.org/10.1177/0959683610385721

    Article  Google Scholar 

  • Kozáková R, Pokorný P, Peša V, Danielisová A, Čuláková K, Svobodová HS (2015) Prehistoric human impact in the mountains of Bohemia. Do pollen and archaeological data support the traditional scenario of a prehistoric “wilderness”? Rev Palaeobot Palynol 220:29–43. https://doi.org/10.1016/j.revpalbo.2015.04.008

    Article  Google Scholar 

  • Kozáková R, Bobek P, Dreslerová D, Abraham V, Svobodová-Svitavská H (2021) The prehistory and early history of the Šumava Mountains (Czech Republic) as seen through anthropogenic pollen indicators and charcoal data. Holocene 31:145–159. https://doi.org/10.1177/0959683620961484

    Article  Google Scholar 

  • Kučera P (2012) Vegetačný stupeň smrečín v Západných Karpatoch: rozšírenie a spoločenstvá. Botanická záhrada UK v Bratislave, pracovisko Blatnica, Blatnica

    Google Scholar 

  • Lamentowicz M, Kołaczek P, Mauquoy D et al (2019) Always on the tipping point–a search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quat Sci Rev 225:105954

    Article  Google Scholar 

  • Makra L, Juhász M, Béczi R, Borsos E (2005) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:57–64

    Article  Google Scholar 

  • Michalko J, Bert J, Magic D (1986) Geobotanická mapa ČSSR. Slovenská socialistická republika, textová časť. Veda, Bratislava

    Google Scholar 

  • Miľanová Ľ, Józsová V (2003) Od lesov kráľovských k lesom štátnym. Lesnícke a drevárske múzeum, Zvolen

    Google Scholar 

  • Miklós L (2002) Atlas krajiny Slovenskej republiky. 1. vydanie. Ministerstvo životného prostredia (MZP) SR, Bratislava

    Google Scholar 

  • Novák J (2011) Trendy v pasienkovom hospodárstve (trends in pasture farming). Životné prostredie/The Environment 45:158–161

    Google Scholar 

  • Novák J, Petr L, Treml V (2010) Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. Holocene 20:895–905. https://doi.org/10.1177/0959683610365938

    Article  Google Scholar 

  • Novák J, Podolák J, Zuskinová I, Margetín M (2013) Po stopách valachov v Karpatoch. Tribun EU, Brno

    Google Scholar 

  • Obidowicz A (1996) A Late Glacial-Holocene history of the formation of vegetation belts in the Tatra Mts. Acta Palaeobot 36:159–206

    Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. https://doi.org/10.1126/science.1219033

    Article  Google Scholar 

  • Pidek IA, Svitavská-Svobodová H, van der Knaap WO, Magyari E (2013) Pollen percentage thresholds of Abies alba based on 13-year annual records of pollen deposition in modified Tauber traps: perspectives of application to fossil situations. Rev Palaeobot Palynol 195:26–36. https://doi.org/10.1016/j.revpalbo.2013.03.006

    Article  Google Scholar 

  • Poschlod P, Braun-Reichert R (2017) Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe—history, value, status, and conservation. Biol Conserv 211:60–68. https://doi.org/10.1016/j.biocon.2016.12.016

    Article  Google Scholar 

  • Poska A, Pidek IA (2010) Pollen dispersal and deposition characteristics of Abies alba, Fagus sylvatica and Pinus sylvestris, Roztocze region (SE Poland). Veget Hist Archaeobot 19:91–101. https://doi.org/10.1007/s00334-009-0230-x

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. R version 3.6.1. Accessed 4 Dec 2019

    Google Scholar 

  • Räsänen S, Froyd C, Goslar T (2007) The impact of tourism and reindeer herding on forest vegetation at Saariselkä, Finnish Lapland: a pollen analytical study of a high-resolution peat profile. Holocene 17:447–456. https://doi.org/10.1177/0959683607077016

    Article  Google Scholar 

  • Ratkoš P (1980) Problematika kolonizácie na valašskom práve na území Slovenska. Historické štúdie 24:181–224

    Google Scholar 

  • Reille M (1998) Pollen et spores d´Europe et d´Afrique du nord, Supplement 2. Laboratorie du Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reimer PJ, Austin WE, Bard E et al (2020) The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62:725–757

    Article  Google Scholar 

  • Reitmaier T, Kruse K (2019) Vieh-Weide-Wirtschaft. Ein Modell zur Tragfähigkeit bronzezeitlicher Siedlungen im Alpenraum. Praehist Z 93:265–306. https://doi.org/10.1515/pz-2018-0008

    Article  Google Scholar 

  • Revelles J, van Geel B (2016) Human impact and ecological changes in lakeshore environments. The contribution of non-pollen palynomorphs in Lake Banyoles (NE Iberia). Rev Palaeobot Palynol 232:81–97. https://doi.org/10.1016/j.revpalbo.2016.05.004

    Article  Google Scholar 

  • Rey F, Gobet E, Schwörer C, Wey O, Hafner A, Tinner W (2019) Causes and mechanisms of synchronous succession trajectories in primeval Central European mixed Fagus sylvatica forests. J Ecol 107(1):1,392–1,408. https://doi.org/10.1111/1365-2745.13121

    Article  Google Scholar 

  • Richer S, Gearey B (2018) From Rackham to REVEALS: reflections on palaeoecological approaches to woodland and trees. Environ Archaeol 23:286–297. https://doi.org/10.1080/14614103.2017.1283765

    Article  Google Scholar 

  • Rius D, Vannière B, Galop D, Richard H (2011) Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France). Quat Sci Rev 30:1,696–1,709. https://doi.org/10.1016/j.quascirev.2011.03.014

    Article  Google Scholar 

  • Robin V, Bork H-R, Nadeau M-J, Nelle O (2014) Fire and forest history of central European low mountain forest sites based on soil charcoal analysis: the case of the eastern Harz. Holocene 24:35–47. https://doi.org/10.1177/0959683613515727

    Article  Google Scholar 

  • Rösch M (2000) Long-term human impact as registered in an upland pollen profile from the southern Black Forest, south-western Germany. Veget Hist Archaeobot 9:205–218. https://doi.org/10.1007/BF01294635

    Article  Google Scholar 

  • Rösch M, Stojakowits P, Friedmann A (2021) Does site elevation determine the start and intensity of human impact? Pollen evidence from southern Germany. Veget Hist Archaeobot 30:255–268. https://doi.org/10.1007/s00334-020-00780-4

    Article  Google Scholar 

  • Rybníček K, Rybníčková E (2004) Pollen analyses of sediments from the summit of the Praděd range in the Hrubý Jesenik Mts (Eastern Sudetes). Preslia 76:331–347

    Google Scholar 

  • Rybníčková E, Rybníček K (2006) Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia. Veget Hist Archaeobot 15:345–356. https://doi.org/10.1007/s00334-006-0050-1

    Article  Google Scholar 

  • Schäfer M (1996) Pollenanalysen an Mooren des Hohen Vogelsberges (Hessen). Beiträge zur Vegetationsgeschichte und anthropogenen Nutzung eines Mittelgebirges. Dissertationes Botanicae 265. Cramer, Stuttgart

  • Schumacher M, Schier W, Schütt B (2016) Mid-Holocene vegetation development and herding-related interferences in the Carpathian region. Quat Int 415:253–267. https://doi.org/10.1016/j.quaint.2015.09.074

    Article  Google Scholar 

  • Schweingruber FH (1990) Anatomy of European woods: an atlas for the identification of European Trees, Shrubs and Dwarf Shrubs. Haupt, Bern

    Google Scholar 

  • Shumilovskikh LS, van Geel B (2020) Non-pollen palynomorphs. In: Henry AG (ed) Handbook for the analysis of micro-particles in archaeological samples. Springer, Cham, pp 65–94

    Chapter  Google Scholar 

  • Speranza A, Hanke J, van Geel B, Fanta J (2000) Late-Holocene human impact and peat development in the Černá Hora bog, Krkonoše Mountains, Czech Republic. Holocene 10:575–585. https://doi.org/10.1191/095968300668946885

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290. https://doi.org/10.1016/S0034-6667(03)00138-6

    Article  Google Scholar 

  • Tanţău I, Feurdean A, de Beaulieu JL, Reille M, Fărcaş S (2014) Vegetation sensitivity to climate changes and human impact in the Harghita Mountains (Eastern Romanian Carpathians) over the past 15 000 years. J Quat Sci 29:141–152

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca

    Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109. https://doi.org/10.1023/A:1010632015572

    Article  Google Scholar 

  • Tinner W, Colombaroli D, Heiri O et al (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439. https://doi.org/10.1890/12-2231.1

    Article  Google Scholar 

  • Tolksdorf JF, Schröder F, Petr L et al (2020) Evidence for Bronze Age and Medieval tin placer mining in the Erzgebirge mountains, Saxony (Germany). Geoarchaeology 35:198–216. https://doi.org/10.1002/gea.21763

    Article  Google Scholar 

  • Valde-Nowak P (2014) Long houses on hilltop—camps in the mountains: Some aspects of the Neolithic in the Dunajec project. In: Kienlin TL, Valde-Nowak P, Korczyńska M, Cappenberg K and Ociepka J (eds) Settlement, communication and exchange around the Western Carpathians, Archaeopress Archaeology, pp 27–51

  • Van Geel B, Andersen ST (1988) Fossil ascospores of the parasitic fungus Ustulina deusta in Eemian deposits in Denmark. Rev Palaeobot Palynol 56:89–93. https://doi.org/10.1016/0034-6667(88)90076-0

    Article  Google Scholar 

  • Van Geel B, Engels S, Martin-Puertas C, Brauer A (2013) Ascospores of the parasitic fungus Kretzschmaria deusta as rainstorm indicators during a late Holocene beech-forest phase around lake Meerfelder Maar, Germany. J Paleolimnol 50:33–40. https://doi.org/10.1007/s10933-013-9701-2

    Article  Google Scholar 

  • Volařík D, Hédl R (2013) Expansion to abandoned agricultural land forms an integral part of silver fir dynamics. For Ecol Manage 292:39–48. https://doi.org/10.1016/j.foreco.2012.12.016

    Article  Google Scholar 

  • Von Scheffer C, Lange A, de Vleeschouwer F, Schrautzer J, Unkel I (2019) 6200 years of human activities and environmental change in the northern central Alps. E&G Quat Sci J 68:13–28. https://doi.org/10.5194/egqsj-68-13-2019

    Article  Google Scholar 

  • Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quat Sci Rev 30:3,109–3,123. https://doi.org/10.1016/quatscirev.2011.07.010

    Article  Google Scholar 

  • Wick L, Möhl A (2006) The mid-Holocene extinction of silver fir (Abies alba) in the Southern Alps: a consequence of forest fires? Palaeobotanical records and forest simulations. Veget Hist Archaeobot 15:435–444. https://doi.org/10.1007/s00334-006-0051-0

    Article  Google Scholar 

  • Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleolimnol 30:261–272. https://doi.org/10.1023/A:1026088914129

    Article  Google Scholar 

  • Wiezik M, Hájková P, Jamrichová E, Hrivnák R, Hájek M (2019) Pre-industrial composition of woodlands and modern deforestation events in the southern part of the Western Carpathians. Rev Palaeobot Palynol 260:1–15

    Article  Google Scholar 

  • Wiezik M, Petr L, Jankovská V et al (2020) Western-Carpathian mountain spruce woodlands at their southern margin: natural or anthropogenic origin? Preslia 92:115–135

    Article  Google Scholar 

  • Wilczyński J, Krajcarz MT, Moskal-del Hoyo M et al (2020) Late Glacial and Holocene paleoecology and paleoenvironmental changes in the northern Carpathians foreland: the Żarska Cave (southern Poland) case study. Holocene 30:905–922. https://doi.org/10.1177/0959683620902220

    Article  Google Scholar 

  • Willis KJ, Bailey RM, Bhagwat SA, Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 25:583–591

    Article  Google Scholar 

  • Zezulková M (2018) Origin of mountain summit grasslands in the forest zone of Central Europe: pollen evidence from the Kubínska hoľa Mts. Graduation thesis, Masaryk University, Brno

Download references

Acknowledgements

MW and FM were supported by the Slovak Research and Development Agency under Project APVV-19-0319. PH was partially supported by the long-term developmental project of the Czech Academy of Sciences (RVO 67985939). MH was supported by the Centre for European Vegetation Syntheses (CEVS; project of Czech Science Foundation No. 19-28491X). We are grateful to Bas van Geel for the help with non-pollen palynomorph identification and the language revision and Mai Havrdová Fathi for the language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Hájková.

Additional information

Communicated by W. Tinner.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiezik, M., Jamrichová, E., Máliš, F. et al. Transformation of West-Carpathian primeval woodlands into high-altitude grasslands from as early as the Bronze Age. Veget Hist Archaeobot 32, 205–220 (2023). https://doi.org/10.1007/s00334-022-00896-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-022-00896-9

Keywords

Navigation