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2015; Gallego-Sala et al. 2016; Stewart et al. 2017). Never-
theless, woodland decline and loss have almost always been 
interpreted as anthropogenic in origin because they were 
diachronous over short distances and small in scale until 
the late Iron Age ca. 300 cal BC. Woodland clearance was 
followed closely in time by the expansion of farmed land, 
through direct clearance of trees and seedling suppression 
by livestock grazing or vegetation burning. Until the late 
Iron Age, woodland decline was generally short-lived, fol-
lowed by woodland regeneration (Turner 1965, 1975; Birks 
1988; Buckland and Edwards 1984; Tipping 1994, 1997; 
Edwards and Whittington 2003; Edwards 2004; Edwards et 
al. 2019). Exposure to storminess has been used to explain 
woodland loss on islands around the northern mainland 
(Birks and Madsen 1979; Keatinge and Dickson 1979) 
but anthropogenic woodland loss is also argued for (Far-
rell 2015). Climatic changes related to abrupt hydrological 
shifts are more frequently asserted to have driven the abrupt 
expansion in range, and the equally abrupt contraction in 
range, of Pinus sylvestris woodland in the mountains and 
moors of central and northern Scotland between ca. 3400 
and ca. 2200 cal BC (Bridge et al. 1990; Gear and Huntley 
1991; Lowe 1993; Huntley et al. 1997).

Introduction

Although spatially patchy, palynology is well advanced in 
Scotland (Edwards et al. 2019) and has been central to mod-
els of Holocene vegetation change (Pennington 1974; Birks 
1977, 1988, 1989; Edwards 1988; Lowe 1993; Bennett 1989, 
1994; Tipping 1994, 1996). In the mid-Holocene, deciduous 
Quercus-Ulmus-Corylus woods covered the lowlands and 
coastal hinterland, Pinus and Pinus-Betula woods grew on 
higher ground and on acid soils north of the Midland Valley, 
and more open Betula-Corylus woods in the far north. The 
upland and montane expanses have been defined as agricul-
turally marginal because of persistent climatic and pedolog-
ical constraints (Parry 1978), and Scotland was sensitive to 
periods of climate change (Bond et al.1997; Gilbertson et al. 
1999; Charman et al. 2006; Tipping et al. 2013; Baker et al. 
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pattern reflected also in Coryloid (Corylus avellana-type) 
pollen. Careful work at the DL site showed, however, that 
as Myrica became established on the fen, Corylus contrib-
uted < 10% TLP after ca. 4000 cal BC. Poaceae values rose 
after ca. 1250  cal BC when Plantago lanceolata (ribwort 
plantain) was more frequently recorded, but the highest val-
ues of Poaceae are small. The interpretation was that “Iron 
Age man did not have a large long-lasting effect on the veg-
etation around the Dubh Lochan” (Stewart et al. 1984, p 
544). Lowland woodland is, to an extent, extant (Tittensor 
and Steele 1971).

Directly above Dubh Lochan, the steep slopes of Ben 
Lomond are treeless save for exclosures and recent conifer 
forest. To contextualise the unusual pollen record at Dubh 
Lochan, we sought to understand woodland decline on these 
slopes, providing better data than Stewart’s (1979) skeletal 
and undated pollen record at 500 m a.s.l. on Ben Lomond 
at Ptarmigan (NS 365 015; Fig. 1c). This paper reports new 
radiocarbon dated pollen, microscopic charcoal, fungal and 
humification data for an upland bog directly above Dubh 
Lochan and is designed to understand later Holocene veg-
etation dynamics and test the suggestion that prehistoric 
human impact was minimal on these slopes.

Coille Mhor Hill

Coille Mhor Hill is uphill and 2.5 km north of Dubh Lochan 
(Fig. 1c). It is a 30 ha rounded bedrock knoll on the western 
flank of Ben Lomond at 255 m a.s.l. East of Coille Mhor 
Hill rise the uniformly smooth and steep (18°) slopes of 

The Grampian Mountains are in central Scotland. They 
are sharply differentiated topographically, geologically and 
ecologically from the lowland trough of the Midland Valley 
to the south by the ‘Highland line’ (Whittow 1977; Fig. 1a, 
b). This division has resulted in significant long term agri-
cultural and economic impoverishment of the Highlands 
(Forden 1380 in Smout 1969, p 39). In the west the fjord of 
Loch Lomond, close to sea level, pierces for 36 km into the 
Grampian Mountains, ringed to the west, north and east by 
hills rising above 600 m above sea level (a.s.l.) and formed 
of metamorphosed psammites and pelites. On its eastern 
side is Ben Lomond (974  m a.s.l.). Ramsay and Dickson 
(1997) summarised the vegetation history of central Scot-
land and described small-scale human impacts in lowland 
areas from ca. 2000 cal BC, becoming much more extensive, 
and often permanent, in the final centuries cal BC.

However, Stewart et al. (1984) described at Dubh Lochan 
on the shore of Loch Lomond, at the foot of Ben Lomond 
around 15 m a.s.l. (Fig. 1c) two pollen records, one from fen 
(DL) and one from lake sediment (DLM). They are strongly 
atypical of central–southern Scotland (Tipping 1994) in 
showing the persistence of deciduous woodland throughout 
the Holocene. The DLM core reflects changes in plant com-
munities within several hundred metres of the lake (Stew-
art et al. 1984, p 538). From ca. 4000 cal BC until the BC/
AD boundary, Alnus and Betula values are unchanging at 
around 20 and 15% (total land pollen (TLP)), respectively. 
Abruptly higher Quercus percentages, reaching 25% TLP 
at ca. 3300 cal BC are followed by a consistent and gradual 
decline to around 10% TLP at the cal BC/AD boundary, a 

Fig. 1  (a) The location of 
Scotland in north-west Europe, 
(b) the topography of Scotland 
(Robinson et al. 2014) mark-
ing the major divisions of the 
Grampian Mountains and the 
Midland Valley and the location 
of Fig. 1c; (c) the topogra-
phy, drainage of central Loch 
Lomond (contour interval 10 m) 
and the pollen sites Coille Mhor 
Hill (this study), Dubh Lochan 
(Stewart et al. 1984) and Ptar-
migan (Stewart 1979). Contains 
OS data © Crown copyright and 
database right (2021)

 



3Vegetation History and Archaeobotany (2023) 32:1–15

1 3

of 1 m length and 6 cm internal diameter, placed in clean 
plastic guttering, wrapped, described in the laboratory and 
stored at 4 °C. The 32 samples taken for pollen and fungal 
analysis were each 5 mm thick. Subsamples were prepared 
by standard chemical methods (Moore et al. 1991). Mineral 
matter is absent above the basal sediment and hydrofluoric 
acid was not needed. Lycopodium spores (Stockmarr 1971) 
were added to calculate pollen concentrations and influx. 
Residues were embedded in silicone oil. Pollen identifi-
cations were made using an Olympus BX40 microscope. 
Counts were made at a magnification of ×400 with criti-
cal examinations and size measurements being made at a 
magnification of ×1,000 under oil immersion, sometimes 
using phase contrast. Pollen grains were identified with ref-
erence to Moore et al. (1991), the University of Stirling pol-
len reference collection, specialist keys and on-line images. 
Poaceae pollen grains with a-axes > 35 μm were not encoun-
tered. Counts were to a minimum of 300 TLP excluding 
Cyperaceae. The pollen sum is % TLP-Cyperaceae, exclud-
ing aquatics and spores. Pollen nomenclature follows Ben-
nett (1994) and plant nomenclature follows Stace (2010). 
Pollen preservation was recorded in five categories (Cush-
ing 1967). Microscopic charcoal was quantified in five size 
classes of a-axis lengths 10–25, 25–50, 50–75, 75–100 and 
> 100 μm. Six types of fungal spores were recorded from 
samples prepared for pollen analyses (cf. van Asperen et 
al. 2016) using photomicrographs in van Geel and Aptroot 
(2006) and van Geel et al. (2011). Values are given as % 
TLP + fungi. Most represent coprophilous (dung) fungi. 
Coniochaeta-type is found in both dung and wood, particu-
larly Alnus and Fraxinus, Cercophora-type in both dung and 
wood, particularly Betula, and Gelasinospora-type is found 
in association with dung, charred wood and Vaccinium (Farr 
and Rossman 2009).

The pollen diagram is divided into six local pollen assem-
blage zones (LPAZ 1–6) with the aid of stratigraphically 
constrained cluster analysis (Grimm 1987). Humification by 
colorimetry was measured on contiguous 10 mm-thick sedi-
ment slices on a Jenway 6061 colorimeter at 540 nm (Black-
ford and Chambers 1993). Horizontally bedded, young, 
single entity roundwood samples from four depths were 14C 
dated by AMS. The 14C dates were calibrated using OxCal 
v4.3.2 r5 (Bronk Ramsey 2017) and the IntCal13 atmo-
spheric curve (Reimer et al. 2013). An age-depth model 
of calibrated age estimates were generated using BACON 
v2.2 software (Blaauw and Christen 2011) with a step size 
of 5 cm.

Beinn Urd (597  m a.s.l.). Two streams drain a col where 
peat has accumulated. The slopes around are formed in Ben 
Ledi Grit, an acid, nutrient poor metamorphosed sandstone. 
Soils are either skeletal, brown earths (brown forest soils 
in Scotland) or podsols (Tittensor and Steele 1971). They 
support, using Rodwell’s (1992) classification, species-poor 
Nardus stricta-Galium saxatile (U5) and Pteridium aquili-
num-Galium saxatile (U20) grassland with Trichophorum- 
Eriophorum germanicum sedge bog (M17) and Juncus-rich 
Carex echinata-Sphagnum poor fen (M6d) around flushes 
and mosaics of Vaccinium myrtillus-rich Trichophorum ger-
manicum-Erica tetralix grass-heath (M15), Carex echinata-
Sphagnum poor fen (M6), Juncus and moss-rich (M17c) on 
shallow peat. Mean maximum and minimum temperatures 
1961–1990 are around 10.7 and 3.3  °C, respectively, and 
mean precipitation around 1,540 mm (Harrison 1997).

Reconnaissance on the broad interfluve between the two 
streams located a bog, < 0.1 ha in area, around 60 m long 
north-west to south-west and little more than 20  m wide, 
with > 2  m deep peat at around 230  m a.s.l. (NS 37,432 
99,068), draining south-east. The bog supports Erica tetra-
lix-rich, Molinia caerulea-Potentilla erecta mire (M25). 
The pollen source area is hard to estimate. The basin is small 
and close to dryland soils, suggesting an extra-local pollen 
source area sensu Jacobson and Bradshaw (1981) but is at 
high altitude and barely sheltered from prevailing south-
westerly winds such that the potential source of some pollen 
is best regarded as regional sensu Jacobson and Bradshaw 
(1981), and is increasingly so with woodland loss (cf. Bun-
ting and Tipping 2004). It is assumed that woodland grew 
near and on the site when tree pollen (including Corylus 
avellana-type) reaches around 70% TLP (cf. Fossitt 1994) 
and that local plant communities contributed most pollen at 
these times.

The hillside has benefitted from detailed archaeological 
survey. Prehistoric structures are very rare, which contrasts 
with the frequent occurrence of Medieval and later farms 
and field systems, transhumant shielings and charcoal-burn-
ing iron-smelting sites (Boyle and MacInnes 2000). The bog 
is close to the generally accepted upper limit of sedentary 
prehistoric settlement in Scotland (Cowley 1998). Coille 
Mhor means ‘big wood’ in Gaelic, an early historic usage.

Sampling, materials and methods

After reconnaissance, survey and peat-stratigraphic descrip-
tion of the bog using a 1 m-long Eijelkamp peat gouge, the 
base of the bog was levelled by theodolite to an arbitrary 
datum to establish that the bog was free draining and sensi-
tive to past water table fluctuations. A core was taken at the 
deepest point of the bog (259 cm) with a Russian-type corer 
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LPAZ 1: 251 to 233 cm depth (3525 − 3104 to 
3272 − 2786 cal bc)

A young twig lying horizontally at the base of the peat is 14C 
dated to 3625 − 3372  cal BC, modelled to 3525 − 3104  cal 
BC, i.e. the early–mid Neolithic of the British Isles (ca. 
4000 − 3300  cal BC; Bradley 2007). Peat accumulation 
above this was around 20  year cm− 1. Peat was signifi-
cantly less humified than the mean until 3259 − 2771  cal 
BC (232 cm depth; Fig. 3). Corroded and degraded pollen 
grains are common (Fig.  4c), suggesting that the peat in 
LPAZ 1 was an aerated organic soil. The high influx values 
of Alnus glutinosa, Betula, Corylus avellana-type and Quer-
cus in the basal pollen spectrum (Fig. 3) may include pollen 
from non-contemporary sources. Above this, Alnus pollen 
is recorded at percentages large enough to imply local pres-
ence before 3396 − 2924 cal BC (241 cm depth) (Tinsley and 
Smith 1974; Gearey and Gilbertson 1997) but influx values 
larger than 1,000 grains cm2 yr− 1 indicate local presence 
throughout LPAZ 1 (Abraham et al. 2021). It is likely that 
Alnus colonised the basin when soil was paludified. Betula 
and Salix accompanied Alnus, influx values for Betula indi-
cating local presence by 232 cm depth (Tinsley 2001; Abra-
ham et al. 2021). Percentages of Salix pollen underrepresent 
the plant. The community was probably close to the Juncus 
effusus subcommunity of W4 Betula pubescens-Molinia 
caerulea woodland (Rodwell 1991) where Alnus can out-
number Betula trees and Salix bushes in an open canopy. 
Corylus avellana-type pollen in this setting may more likely 
represent C. avellana but Myrica gale cannot be dismissed 
(Skene et al. 2000). If from Corylus, the low percentage 
representation and influx values < 2,000 grains cm2 yr− 1 in 
mid-zone are taken to mean the tree was not common on 
the hillside (Tinsley and Smith 1974; Lisitsyna et al. 2011; 
Abraham et al. 2021). Quercus, from its low influx, may not 

Results

Table 1 describes the sediment stratigraphy at the sampled 
site. Table 2 lists the samples and depths from which AMS 
14C assays were obtained. Figure  2 depicts the age-depth 
model generated by BACON. Linear regression through 
all depths has an r2 value of 0.99, suggesting a more-or-
less constant peat accumulation rate of 12 ± 5  year cm− 1. 
In detail, however, peat accumulation falls from around 
20 year cm− 1 to 8 year cm− 1 from the base to 125 cm depth 
and is constant at around 12 year cm− 1 above 125 cm depth. 
All age estimates in the text are calibrated and, unless stated, 
are age ranges modelled in BACON. Figure 3 is the com-
plete percentage-based pollen, microscopic charcoal, fungal 
and humification record, plotted against depth. There is no 
evidence from the humification data for a long-term trend 
in decay, so the data are not detrended. The mean percent-
age humification is 16.8 ± 4.6%: higher percentages indicate 
less humified peat. The 1σ standard deviation around the 
mean (not plotted in Fig. 3 to retain clarity) is used to define 
significant changes in bog surface wetness. Figure 4a plots 
influx values (pollen accumulation rates) for major pollen 
taxa, used to infer local presence. Figure  4b presents the 
pollen data for major arboreal taxa on a % AP sum to allow 
direct comparison with the Dubh Lochan pollen record 
(Stewart et al. 1984). Figure 4c shows the percentages of 
well preserved (normal in Fig. 4c) and deteriorated pollen of 
four taxa common throughout the pollen record, calculated 
as % TLP. Pollen preservation is generally good. Interpreta-
tion focuses on fluctuations in proportions of corroded pol-
len because corrosion is closely linked to fluctuations in the 
peat water table (Havinga 1984).

Table 1  Stratigraphic description of the sediments sampled at Coille 
Mhor Hill
Depth (cm) Description
0–26 Dark brown herbaceous peat with common–many 

(40–80%) vertical coarse fleshy stems; gradual lower 
boundary to

26–68 Dark brown herbaceous peat with common (40–60%) 
vertical coarse fleshy stems; gradual lower boundary to

68–96 Dark brown herbaceous peat with few (< 10%) vertical 
coarse fleshy stems and few large wood fragments 
(75–78 cm), and few < 2 mm-thick twigs (79–82 cm); 
gradual lower boundary to

96–251 Reddish-brown herbaceous peat with common–abun-
dant (40–>80%) large wood fragments and small 
roundwood; sharp lower boundary to

251–259 Dark grey very poorly sorted mud with abundant mica-
ceous angular-subangular fine gravel; bottomed on stone

Table 2  Details of 14C dates, pollen profile Coille Mhor Hill
Depth 
(cm)

Material Lab.code 
(SUERC-)

14C age 
(BP ± 1σ)

δ13C 
(‰)

cal 
age 
BC

73 Unidenti-
fied twig 
(20 × 5 mm); 
<10 yrs old

84,060 2,949 ± 24 -28.8 1226–
1055

118.5 Betula twig 
(20 × 4 mm); 
<10 yrs old

84,064 3,432 ± 22 -29.4 1871–
1665

203.5 Betula twig 
(30 × 20 mm); 
<20 yrs old

84,065 3,959 ± 22 -27.9 2569–
2350

250.5 Betula twig 
(40 × 10 mm); 
<10 yrs old

76,331 4,690 ± 24 -28.9 3625–
3372
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grains cm2 yr− 1
, suggesting the tree was locally abundant 

(cf. Tinsley and Smith 1974; Tinsley 2001). A hiatus in 
deposition is not suggested by the highly resolved humifica-
tion data. Although humification data suggest the peat sur-
face became drier between 3259 − 2771 (232 cm depth) and 
2924 − 2511 cal BC (212 cm depth) and was very dry (> 1σ) 
by 2951 − 2528 cal BC (214 cm depth), proportions of cor-
roded pollen in major taxa fall, interpreted as meaning that 
reworked pollen grains from the organic soil were few. The 
shift in woodland trees is more likely to have been driven 
by the drying of the peat surface observed in the humifica-
tion data (cf. McVean 1956a). In western Scotland today, the 
altitudinal limit of Quercus is around 150 m a.s.l. (McVean 
1964) but Jones (1959, p 176) described Q. petraea woods 
up to 240 m a.s.l. in north Wales and, with Betula, in west-
ern Ireland up to 340 m a.s.l.

Corylus avellana-type pollen percentages remain com-
paratively low and unchanging. On very base-poor siliceous 
soils there can be few other canopy species with Betula 
and Quercus (McVean 1956b; McVean and Ratcliffe 1962; 
Steele 1974). The absence of Vaccinium-type pollen might 
indicate that Coille Mhor Hill was within the grass-rich Bet-
ula-herb nodum of Scottish Betula-Quercus woods (McVean 
and Ratcliffe 1962, p 16), or the species-poor W16 Quercus-
Betula-Deschampsia flexuosa woodland of Rodwell (1991). 
Total tree + shrub pollen percentages are unchanging, and 
the woodland may have been closed. There are no other 
prominent palynological changes. Calluna (ling) is charac-
teristic of upland and base-poor Betula-Quercus woodland 
but was rare at this time at Coille Mhor Hill. Coniochaeta-
type spores are recorded in all counts. Microscopic charcoal 
is very rare.

LPAZ 3: 207 − 176 cm depth (2860 − 2452 to 
2473 − 2092 cal bc)

Humification data (Fig. 3) suggest the bog surface was sig-
nificantly wetter than the mean in this LPAZ. Despite this, 
Alnus values (% and influx) do not increase. Corroded Bet-
ula pollen grains are fewer because of this hydrological shift 
but pollen of other taxa do not show this. A second abrupt 
increase of Betula to 65% TLP and > 40,000 grains cm2 yr− 1 
occurred at 2860 − 2452 cal BC (207 cm depth), an influx that 
probably implies dense woodland at the pollen site (Tins-
ley 2001). Betula may have become the only tree taxon at 
and around the pollen site. The peak in Betula percentages 
at 204  cm depth (2822 − 2404  cal BC) was followed by a 
gradual, consistent decline but influx values indicate a more 
temporally confined expansion and fall centred on 190 cm 
depth (2638 − 2227 cal BC). Quercus representation fell to 
around 10% TLP and 2,500 grains cm2 yr− 1, not necessarily 
indicative of local presence (Tinsley 2001; Abraham et al. 

have been local (Tinsley 2001). Ulmus was rare if present. 
P. sylvestris was not present.

The wood may have been open, although total tree + shrub 
pollen percentages are very high, exceeding 80% TLP, or 
there were open areas. Less stable soils, perhaps gullied, 
supported plants producing Ulex-type pollen (probably Ulex 
europaeus). Proportions of Poaceae fluctuate, though aver-
age influx values around 5,000 grains cm2 yr− 1 imply local 
presence (Abraham et al. 2021). Grassland herb taxa were 
common, though their proportions are low, with Potentilla-
type constant, two grains of Rhinanthus-type (perhaps 
Euphrasia), and Ranunculus, Rumex acetosa, Apiaceae and 
Melampyrum. Dwarf shrubs (Ericaceae, Empetraceae) were 
rare. Single spores of the coprophilous fungi Podospora- 
and Sordaria-type are recorded. Microscopic charcoal is 
very rare.

LPAZ 2: 233 − 207 cm depth (3272 − 2786 to 
2860 − 2452 cal bc)

Alnus influx values > 5,000 grains cm2 yr− 1 continue to indi-
cate its local abundance (Abraham et al. 2021) despite an 
abrupt fall in percentages at 233 cm depth (3272 − 2786 cal 
BC). Alnus may have been confined to the peat. Alnus was 
joined by Betula, probably rapidly in a few decades between 
3388 − 2900 and 3312 − 2811  cal BC and later (225  cm 
depth; 3153 − 2657  cal BC) by an equally short-lived 
increase in Quercus values to around 50% TLP, and 25,000 

Fig. 2  Age-depth model for the peat on Coille Mhor Hill generated by 
BACON, showing (a) the positions of the calibrated 14C assays, the 2σ 
age range constrained within black dotted lines, all probable age-depth 
models in grey, darker areas with increasing probability and the best 
model based on the weighted mean average by the red dotted line, (b) 
the number of MCMC iterations in the model; (c) prior (curve) and 
posterior (histogram) distributions for accumulation rate estimates and 
(d) the ‘memory’ in accumulation rate estimations
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earth soils that become with time more acid and increasingly 
podzolic. Quercus prefers deeper soils with accumulating 
nutrients at the base of slopes. Betula improves the base sta-
tus of very poor soils (Miles 1981) but there are no changes 
in representation of C. avellana-type pollen to suggest that 
base status increased in soils on Coille Mhor Hill. Probably 
because of a dense cover of Betula, pollen of Ulmus, Cal-
luna, Ranunculus-type, Rosaceae, Rumex acetosa, Apiaceae 
and Melampyrum (also Polypodiaceae, i.e. undifferentiated 

2021). Quercus may have persisted locally or elsewhere on 
the hillside or in the region; much of its pollen in this and 
later zones may have been regional in origin (cf. Lisitsyna et 
al. 2011) so that the woodland on Coille Mhor Hill may have 
remained floristically similar to that in LPAZ 2. Betula and 
Quercus are ordinarily intimately associated (McVean and 
Ratcliffe 1962, p 16) but Jermy et al. (1978, p 10.22) noted 
that Betula displaces Quercus through edaphic controls on 
steep slopes on thin, increasingly base poor, degraded brown 

Fig. 3  Peat humification and 
percentage-based (% TLP) dia-
gram at Coille Mhor Hill as fol-
lows: (a) pollen and spores (% 
TLP + spores), (b) coprophilous 
fungal spores (% TLP + fungi) 
and (c) microscopic charcoal (% 
TLP + charcoal), plotted against 
depth
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LPAZ 4: 176-118 cm depth (2473 − 2092 to 
1829 − 1625 cal bc)

From being wetter than the mean at 2473 − 2092  cal BC 
(176 cm depth), the humification data suggest that the bog 
surface, became very dry by 1853 − 1652  cal BC (120  cm 
depth) for around 50 years, and then continued to be drier 
than the mean. After 2527 − 2143  cal BC (180  cm depth), 
Betula and Alnus pollen grains are more corroded, par-
ticularly so between 2315 − 1943 (160  cm depth) and 

fern spores) are only infrequently recorded, as is Sphagnum 
even though it probably grew on the peat. Coniochaeta-type 
spores are recorded in all counts. Dung fungi are present, 
including Sordaria-type and Podospora-type. Microscopic 
charcoal is very rare.

Fig. 4  (a) Influx values at Coille 
Mhor Hill of major taxa and 
charcoal fragments; (b) major 
taxa as % AP and (c) preserva-
tion characteristics of major 
taxa as % TLP. All data are 
plotted against depth
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moors on shallow, often skeletal, acid (pH 3.9–4.7), contin-
ually moist free-draining soils Dalrymple 2007; Rich et al. 
1998, p 34) comment that M. sylvaticum plants are “usually 
found in the same precise spots each year” despite being an 
annual plant and, for this reason, Melampyrum species are 
sometimes regarded as ancient woodland indicators (Rack-
ham 2003, p 54; Miles 1988: see also ‘Discussion’ below). It 
became a persistent feature on Coille Mhor Hill into LPAZ 
5, until at least 90 cm depth (1533 − 1222 cal BC).

LPAZ 5: 118-6 6 cm depth (2473 − 2092 to 
1234 − 948 cal bc)

According to the peat humification data, the bog surface 
remained from dry or very dry, although Salix, Cyperaceae 
and Equisetum, and falling proportions of corroded Alnus 
and Betula pollen, suggest wetter conditions. Proportions 
of tree genera suggest no significant changes to the partly 
open Betula woodland. This zone sees the establishment 
above 111 cm depth (1752 − 1488 cal BC) of Calluna. Other 
dwarf shrubs like Empetrum (crowberry), Erica (heaths) 
and Ericales (undifferentiated Ericaceae or Empetraceae) 
are not recorded until 91  cm depth (1541 − 1235  cal BC). 
Microscopic charcoal was recorded more frequently, prob-
ably because heather species were more common. P. lanceo-
lata is the only anthropogenic indicator, occurring mostly 
as single grains. All fungal spore taxa are absent above the 
basal spectrum save single occurrences of Sordaria-type.

LPAZ 6: 66 − 0 cm depth (1234 − 948 to  
739 − 38 cal bc)

Modelled age ranges are increasingly imprecise above the 
youngest 14C assay at 73 cm depth. Extrapolation of the peat 
accumulation rate (~ 15 year cm− 1) above 73 cm depth sug-
gests that the peat surface has an age of ca. 2400  cal BC. 
The peat has been truncated above this, probably by peat 
cutting. Quercus percentages abruptly fall to a mean 2.5% 
TLP at 66 cm depth (1234 − 948 cal BC); influx values are 
unchanging. Alnus, probably not common on the peat at 
Coille Mhor Hill above LPAZ 2 (above), declined to val-
ues < 5% TLP by 11  cm depth (821 − 187  cal BC). Betula 
proportions were maintained. Influx values increased to 
> 5,000 grains cm2 yr− 1, indicating the persistence of Bet-
ula near the pollen site. Salix is unrecorded between 91 and 
51 cm depth (1541 − 1235 cal BC to 1127 − 730 cal BC) and 
above 51  cm depth was not common, if present. Calluna 
would have gained an advantage in grassland communities 
and under the open Betula wood. Vaccinium-type pollen is 
recorded consistently for the first time, and considerable 
diversity in heath taxa is indicated by consistent records of 
Ericales and Erica, and above 31 cm depth (974 − 445 cal 

1972 − 1718 cal BC (130 cm depth), supporting the interpre-
tation of the humification data. Wood fragments in the peat 
are few above 140 cm depth (2097 − 1784 cal BC). Betula 
percentages continue a sustained fall to around 20% TLP by 
140 cm depth (2097 − 1784 cal BC) and influx data show a 
decline after 140 cm depth. Both represent declining wood-
land extent, thinning of the canopy or pollen productivity, 
after which proportions and influx values are unchanged. 
Nevertheless, Betula persisted locally (cf. Tinsley 2001; 
Abraham et al. 2021). Percentages of Betula remain much 
higher than in surface pollen studies in Scotland where Bet-
ula is of long-distant origin (Gearey and Gilbertson 1997; 
Bunting 2002; Fossitt 1994).

Quercus pollen is slightly better represented, at 
around 15% TLP, except for a few decades in mid-zone 
(145 − 141  cm depth: 2156 − 1821 to 2106 − 1794  cal BC) 
where it is > 20% TLP, Influx values around 2,500 grains 
cm2 yr− 1 probably imply local presence (cf. Tinsley and 
Smith 1974; Tinsley 2001). An increasingly open canopy 
may have permitted the more consistent representation of 
trees of regional origin such as Pinus and perhaps Fraxi-
nus. Salix pollen grains are slightly better represented. 
Cyperaceae are better represented at the upper zone bound-
ary. Filipendula was probably more common after 145 cm 
depth (ca. 2000 cal BC), in moist grassland, and so probably 
was Rumex acetosa. P. lanceolata is recorded for the first 
time at 131 cm depth (1982 − 1728 cal BC), at the end of the 
phase of sustained woodland decline but at values no more 
than 1% TLP. P. lanceolata pollen is over-representative 
of the plant (Tinsley and Smith 1974; Hjelle 1998; Shaw 
and Whyte 2020) and its rarity in the pollen record at Coille 
Mhor Hill suggests its rarity also in plant communities. It is 
absent in acidic soils in uplands (Sagar and Harper 1964) 
and rare at pH < 4.5 (Grime et al. 1988, p 438). There are 
very few other grazing indicator herbs. Although percent-
ages of Poaceae increase, influx values do not. Dung fungi 
(Sordaria-type, Podospora-type) continue to be represented, 
as is Cercophora-type above 150 cm depth (1859–2203 cal 
BC). Coniochaeta-type is less well represented. Microscopic 
charcoal is slightly more common.

Melampyrum pollen is markedly more common above 
145 cm depth (2156 − 1821 cal BC). The high proportion at 
121  cm depth (1862 − 1661  cal BC) may be due to incor-
poration in the pollen sample of an anther, but it neverthe-
less attests to local presence, as do the comparatively high 
pollen percentages (Moore et al. 1986). The pollen cannot 
be identified to species but either M. pratense or M. sylvati-
cum, or both, are possible from current distributions (Tip-
pett 1974; Lee 1933; Rich et al. 1998). Both inhabit upland 
open Betula woodland (> 30% shade) and woodland edges 
of herb-rich W11/W17 Quercus petraea-Betula pubescens 
woodland (Rodwell 1991), as well as heaths and upland 
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in the Scottish Highlands. Expansion has long been seen in 
Scotland as climatically driven (Bridge et al. 1990; Gear 
and Huntley 1991) as Pinus colonised peat surfaces made 
drier through lowered water tables. Pinus did not invade the 
Quercus woodland at Dubh Lochan (Stewart et al. 1984) or 
the Betula woodland on Coille Mhor Hill, or on Ptarmigan 
(Stewart 1979), at least sufficiently to be palynologically 
detected. Deciduous trees continued to out-compete Pinus.

Quercus replaced, for a time, a single generation of Bet-
ula (upland Betula may live for around 200 years (Kirby 
1984)), though most die when less than a century old (Rack-
ham 2003). If local to the peat at Coille Mhor Hill, which 
is likely, the establishment of Quercus occurred at a higher 
altitude than can be observed in western Scotland at the 
present day (150 m a.s.l.: McVean and Ratcliffe 1962, p 16; 
Stewart 1979), probably explained by warmer temperatures 
5,000 years ago (Davis et al. 2003). The loss of Quercus on 
Coille Mhor Hill after 2860 − 2452  cal BC, perhaps again 
of a single generation of trees, may have a locale-specific 
explanation such as soil acidification, operating at altitudes 
and on slopes where Quercus had anyway a tenuous foot-
hold (Miles 1985; Jermy et al. 1978). This change is not 
seen in the pollen ‘rain’ of the region (Dickson et al. 1978; 
Ramsay and Dickson 1997; Fyfe et al. 2013).

Because Quercus did not later regain a foothold around 
Coille Mhor Hill, edaphic factors (Leuschner et al. 2002; 
Wardle et al. 2004) are unlikely to have induced its decline. 
There is no evidence in the Coille Mhor Hill record from 
(a) anthropogenic indicator pollen taxa developed for north-
west Europe (Behre 1981; cf. Deza-Araujo et al. 2020), (b) 
microscopic charcoal or (c) coprophilous fungi for anthro-
pogenic activities to have changed woodland composi-
tion or caused the demise of locally growing Quercus (cf. 
Hellman et al. 2009) on Coille Mhor Hill. Indicator taxa 
are almost absent, and not all, like P. lanceolata, are poorly 
represented on acid soils. The only moderate increases in 
grassland communities at Coille Mhor Hill may have been 
within open Betula woodland. Melampyrum is often seen 
to be indicative of anthropogenic disturbance (Tinsley 
1975; Moore et al. 1986; Mitchell 1988; Innes et al. 2013) 
but Tittensor and Steele (1971) found M. pratense most 
commonly in the undisturbed island oakwoods of Loch 
Lomond, and Dalrymple (2007) regarded M. sylvaticum as 
sensitive to grazing pressure. Fire, sometimes associated 
with Melampyrum (Innes and Simmons 2000, though see 
Moore et al. 1986, p 215 and Blackford et al. 2006, p 198), 
is not indicated at Coille Mhor Hill because proportions of 
microscopic charcoal are very low. Other forms of distur-
bance such as hydroseral change on bog surfaces can favour 
the plant (Pilcher 1973; Birks 1975). Melampyrum became 
established on Coille Mhor Hill from ca. 2000 cal BC when 
humification data show the bog surface became very wet. It 

BC) by Empetrum. Humification data indicate the bog sur-
face became wetter, after 1049 − 566 cal BC (40 cm depth), 
and after 974 − 474 cal BC (31 cm depth), so do increases in 
Sphagnum and Cyperaceae percentages. However, propor-
tions of corroded pollen do not reflect this. Local growth of 
Melampyrum may have ceased because of this hydrological 
shift. Charcoal fragments < 50 μm are abundant but it is not 
clear from these whether fires were local. Dung fungi (Sor-
daria- and Sporormiella-type for the first time) are found 
sporadically.

Discussion

Peat inception at Coille Mhor Hill at 3625 − 3372  cal BC 
coincided with evidence in southern Scotland for increased 
effective precipitation (Langdon et al. 2003, 2012). It may 
have been that peat initiation was climatically induced. 
Alnus colonised lowland soils along Loch Lomond around 
4800 cal BC (Dickson et al. 1978; Stewart et al. 1984). It 
grew locally at Coille Mhor Hill from peat inception. On 
the slopes of Ptarmigan, Stewart (1979) recorded Alnus 
pollen in proportions high enough to suggest that the tree 
grew at much higher altitudes than is commonly recognised 
(McVean 1953).

Climatic factors may have resulted in partial losses of 
Alnus at Coille Mhor Hill at 3272 − 2786 cal BC when the 
bog surface became increasingly dry, approaching very 
dry at 3128 − 2647  cal BC. This shift may reflect the end 
of a wetter and stormier climate centred on ca. 3200 cal BC 
(Magny and Haas 2004; Caseldine et al. 2005; Magny et al. 
2006; Leuschner et al. 2007; Moir et al. 2010; Roland et al. 
2015; Stewart et al. 2017). As the bog surface and surround-
ing soils became drier, Alnus lost competitive advantage, 
although the numbers of Coniochaeta-type fungal spores, 
often associated with Alnus, suggest its presence at Coille 
Hhor Hill until LPAZ 5 at 2473 − 2092  cal BC. Alnus did 
not, however, respond when bog surface wetness increased 
between 2951 − 2528 and 2848 − 2435  cal BC, perhaps 
because seed sources were by then distant. Among tree taxa, 
Betula seems to have responded first to the loss of Alnus. 
Open Betula woodland already grew at Ptarmigan (Stewart 
1979). The low proportions of C. avellana-type pollen at 
Coille Mhor Hill are explained by nutrient impoverishment 
of soils (Godwin 1975, p 272; Theuerkauf et al. 2014).

Pinus sylvestris woodland spread south from the Gram-
pian Mountains (Fig.  1b) after ca. 3650 − 3350  cal BC 
(Bridge et al. 1990), into the deciduous woodland north 
and north-west of Loch Lomond after ca. 2900 − 2750 cal 
BC (Dickson et al. 1978; Stewart 1979; Wylie and Dickson 
1998), less than 15 km north of Ben Lomond. This was part 
of a short-lived expansion of range in Pinus from core areas 
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little consistent peat-stratigraphic evidence in the Irish Sea 
region for major hydrological change, Barber et al. (1994) 
in north-west England regarded this deterioration as the 
most significant in the Holocene. Bog and soil surface wet-
ness may have become inimical for a time to the growth 
of Betula (Crawford et al. 2003), as it did for Pinus popu-
lations further north in Scotland (Bridge et al. 1990; Gear 
and Huntley 1991; Lowe 1993; Huntley et al. 1997), but 
such an effect could be expected to have been recognised by 
earlier workers. Attrition by exposure to high winds on this 
west facing slope is perhaps more likely (Lamb 1964; Allen 
1992; Quine and White 1994; Paus 1995). Ecological data 
on how winds affect Betula are few, but Atkinson (1992) 
drew on the northern limits of B. pubescens in Greenland 
and Iceland in indicating its vulnerability to cold and dry 
winds. Our study area lies on one of the principal Atlan-
tic cyclone tracks (Lozano et al. 2004). Increased aeolian 
activity is commonly recorded in 14C-dated dune construc-
tion along the north-eastern Atlantic façade between 2500 
and 2000 cal BC Gilbertson et al. 1999; Wilson et al. 2001, 
2004; Sommerville et al. 2007; de Jong et al. 2009; Orme et 
al. 2015; Ballin-Smith 2018, p 19; Goslin et al. 2019), and 
Olsen et al. (2012) identified from a palaeo-limnological 
record in Greenland a strong, positive North Atlantic Oscil-
lation before ca. 2350 cal BC.

After ca. 1950  cal BC the stresses imposed on Betula 
regeneration at Coille Mhor Hill appear to have eased. Betula 
pollen proportions do not decline further. Cercophora-type 
spores, if associated here with Betula, are not recorded after 
1745 − 1464 cal BC, suggesting that the Betula record con-
tains much long-distant pollen. The bog surface became very 
dry by 1853 − 1652 cal BC, then dry until 1606 − 1307 cal 
BC, before becoming wetter at 1533 − 1222 cal BC, tracking 
closely comparable changes in raised mosses in the region 
(Charman et al. 2006), and storminess subsided Wilson et 
al. 2001, 2004; de Jong et al. 2009; Orme et al. 2015).

Increases in Poaceae pollen in the region from ca. 
1850 cal BC (Dickson et al. 1978; Fyfe et al. 2013) arise from 
the atmospheric mixing of pollen from many small and tem-
porary anthropogenic activities that led to localised wood-
land clearance and settlement, and grazing-driven woodland 
losses (Turner 1965; Tipping 1994; Ramsay and Dickson 
1997). Around Dubh Lochan at the foot of Ben Lomond, 
woodland decline on dry soils appears limited to Quercus, 
gradually from ca. 3300 cal BC and ceasing by the cal BC/
AD boundary (Stewart et al. 1984). Further vegetation dis-
turbance is seen at Coille Mhor Hill after 1054 − 580 cal BC, 
resulting in P. lanceolata being a component, though not 
common, of grassland. Betula pollen declines to values that 
suggest trees were not growing locally. Some dung fungi 
reappear sporadically after ca. 960 cal BC. If from domestic 
livestock, this is the first clear evidence in the pollen record 

then persisted for around 650 years, to at least ca. 1350 cal 
BC. Its persistence is taken to indicate a lack of disturbance 
of grassland communities near or on the peat surface. It is 
possible that the later, more prolonged phase of dry bog sur-
face after 1606 − 1307 cal BC adversely affected its growth. 
Numbers of Cercophora-type fungal spores, associated with 
Betula wood, track the representation of Melampyrum for 
reasons that are unclear, but which might also imply a lack 
of vegetation disturbance. They are absent after LPAZ 4, 
after the decline of Betula.

Dung fungi were comparatively abundant when the 
woodland was locally present, but they decline to absence 
from ca. 1600 cal BC with Betula woodland decline, when 
this vegetation change would have favoured fungal spore 
dispersal. This pattern is unexpected had grazing animals 
been the cause of, or gained from, woodland decline (Black-
ford and Innes 2006; Cugny et al. 2010). It is not explained 
by changes in sample preparation methods, pollen preserva-
tion or change in sediment type, and although an absence 
of evidence, for which there are many explanations (cf. 
van Asperen et al. 2020), the simplest interpretation is that 
grazing animals did not have a role in woodland change or 
decline.

Anthropogenic disturbance is also hard to identify when 
Betula pollen percentages declined in LPAZ 3 between 
2822 − 2404 and 2097 − 1784 cal BC. Interpretation is com-
plicated because, as local woodland declined, arboreal pol-
len became increasingly regional in origin (above), but in 
the region Betula pollen percentages increased at this time 
(Dickson et al. 1978; Fyfe et al. 2013). It is likely, then, 
that the pollen record at Coille Mhor Hill describes a local 
decline. The linear decline in Betula pollen percentages 
between ca. 2600 and ca. 1950 cal BC (r2 = 0.98: n = 8) might, 
in its consistency, reflect natural change rather than anthro-
pogenic interference. The period when Betula woodland 
declined at Coille Mhor Hill was one of major hemispheric 
scale climate change (Bond et al. 1997; Karlen and Larsson 
2007; Walker et al. 2012). The tolerance of both Betula pen-
dula and B. pubescens to very large temperature variations 
(Atkinson 1992) suggests that thermal change (McDermott 
et al. 2001; Taylor et al. 2018; McKeown et al. 2019) would 
not have affected upland Betula woodland at 230 m a.s.l. 
in western Scotland. The Betula woodland decline at Coille 
Mhor Hill occurred in a period of predominantly high local 
bog surface wetness 2909 − 2429 to 1955 − 1713  cal BC. 
The bog surface wetness record at Coille Mhor Hill need 
not relate to climate change because the peat receives, as 
well as sheds, water, but there is good agreement with data 
from raised mosses in central Scotland that bog surfaces 
became wetter from around 2000 cal BC and were very wet 
ca. 1850 cal BC (Charman et al. 2006). Although Swindles 
et al. (2013) and Roland et al. (2014) argued that there is 
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Atlantic winds during climatic deterioration reduced the 
exposed west facing Betula wood at Coille Mhor Hill. How 
common this was in the uplands of Scotland needs to be 
explored. This interpretation does not replace the general 
model for central and southern Scotland of anthropogenic 
woodland decline (Tipping 1994; Edwards and Whitting-
ton 2003; Edwards et al. 2019); climatic impacts may have 
been restricted in extent. One implication, however, is that 
there may have been other areas of the Grampian Moun-
tains that were almost empty of people in later prehistory. 
Another might be that the aphorism that “The crucial feature 
of upland vegetation within the natural forest zone in Britain 
is that it is largely man-made” (Miles 1988, p 57) needs to 
be re-visited.
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