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Abstract
Understanding efficient modifications to improve network functionality is a funda-
mental problem of scientific and industrial interest. We study the response of network
dynamics against link modifications on a weakly connected directed graph consisting
of two strongly connected components: an undirected star and an undirected cycle.
We assume that there are directed edges starting from the cycle and ending at the star
(master–slave formalism). We modify the graph by adding directed edges of arbitrar-
ily large weights starting from the star and ending at the cycle (opposite direction of
the cutset). We provide criteria (based on the sizes of the star and cycle, the coupling
structure, and the weights of cutset and modification edges) that determine how the
modification affects the spectral gap of the Laplacian matrix. We apply our approach
to understand the modifications that either enhance or hinder synchronization in net-
works of chaotic Lorenz systems aswell asRössler. Our results show that the hindrance
of collective dynamics due to link additions is not atypical as previously anticipated
by modification analysis and thus allows for better control of collective properties.
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1 Introduction

Many systems in nature are modeled as networks of interacting units with examples
ranging from neuroscience (Ermentrout and Terman 2010) to engineering (Newman
2018). Recent work has revealed that the network interaction structure plays a crucial
role in the network emergent dynamics (Eroglu et al. 2017; Prasad et al. 2010; Louodop
et al. 2019; Aguiar et al. 2019; Field 2015). Predicting the impact of the network struc-
ture on the dynamics is an intricate nonlinear problem that leads to many unexpected
results. Indeed, in some situations improving the network structure may lead to func-
tional failures such as Braess’s paradox (Eldan et al. 2017) and synchronization loss
(Pade and Pereira 2015; Nishikawa and Motter 2010). In large networks depending
on the interaction function and isolated dynamics of the nodes, a topological hub may
fail to be a functional hub (Pereira et al. 2020; Eguiluz et al. 2005).

The effects of network topology on dynamical phenomena, such as synchronization,
diffusion and random walks, can be related to spectral properties of the graph, see,
for instance, (Chung 1997; Eroglu et al. 2017). Indeed, to predict the consequences of
network modification on the dynamics, one needs to investigate the highly nonlinear
changes in the spectrum of the graph Laplacian (Poignard et al. 2019; Pade and Pereira
2015; Biyikoglu et al. 2007).

Although certain correlations between network structure and dynamics have been
observed in experimental (Hart et al. 2015) and theoretical (Pade and Pereira 2015;
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Milanese et al. 2010) investigations, most of these results are concerned with small
modifications to the network. There is a lack of rigorous results to determine the rela-
tionship between the network structure and its dynamic properties for arbitrary size
modifications. Most of the results in this direction rely on the modification theory
of eigenvalues to determine which structural changes are detrimental to the network
dynamics.However, previous results relying on perturbation theory suggest that desyn-
chronizing the network by adding new links is unusual (Poignard et al. 2019). To
understand this problem, we need to unveil the full nonlinear picture and deal with
large changes in the topology.

Networks are a combination of motifs that dictate dynamical behavior and provide
resilience to the overall system (Ma’ayan et al. 2008; Kashtan and Alon 2005). We
focus on two motifs of complex networks—a cycle and a star—since they are the
main constituents of important networks. Indeed, cycles are typical components in the
nervous system (Alexander et al. 1986) and orientation tuning in visual cortex (Ben-
Yishai et al. 1997). Also, in the context of neuroscience highly connected nodes, called
hubs, play a fundamental role in the network (Bonifazi et al. 2009). These networks
with hubs are modeled as a collection of star motifs, and each star motif is capable of
generating intricate dynamics (Vlasov et al. 2015), as well as their overall interaction
(Tönjes et al. 2021).

Although both cycle and star motifs were investigated for noteworthy network
dynamics such as collective behavior (Mersing et al. 2021; Muni and Provata 2020;
Kantner and Yanchuk 2013; Manik et al. 2017; Corder et al. 2023) and both motifs
have a fully developed spectral theory (Brouwer andHaemers 2011 ) their eigenvectors
and eigenvalues can be fully described (as in the case of rings where the matrices
are circulant), when these motifs are coupled, the eigenvalues problem becomes an
intricate nonlinear problem that remains open.

In this paper, we consider models of networks consisting of cycles and stars coupled
in amaster–slave topology. Although our problem is dynamics-motivated, we state our
main results in a graph theoretic form and consider the synchronization as an applica-
tion. This is because, in a broader sense, the spectral properties of the graph Laplacian
are important in the study of graph connectedness and, hence, any phenomena related
to this concept (Mohar 1997).

1.1 Informal Statements of Our Results

We consider three models illustrated in Figs. 1, 2, and 3. All these three models have a
master–slave structure, a cycleCn , a star Sm , and cutset edge(s) starting from the cycle
and ending at the hub of the star.Wemodify these networks and break themaster–slave
structure by adding directed links from the star to the cycle (red-color edges in the
figures).

1.1.1 Adjacency Matrices and Graph Laplacians

Let G be a weighted directed graph (digraph) whose nodes are labeled by 1, . . . , n.
We define the adjacency matrix of G by AG = (Ai j ), where Ai j ≥ 0 is the weight
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Fig. 1 Model I: breaking the master–slave through hub coupling. We add a directed link from the hub of
the star to the cutset node (the red-color edge) where the cutset node refers to the node which the cutset
edge starts from and the weakly connected graph becomes strongly connected. The weight of each of the
black-color edges is one, while the weight of the red-color edge (modification edge) is arbitrary (Color
figure online)

Fig. 2 Model II: breaking the master–slave through multiple couplings. We add links from some nodes of
the star to the cutset node of the cycle. The weight of each of the black-color edges is one, while the weights
of the red-color edges (modification edges) are arbitrary (Color figure online)

Fig. 3 Model III: breaking the generalized master–slave through multiple couplings. We add links from
nodes of the star to the one cutset node of the cycle. The weight of each of the black-color edges is one,
while the weights of the red-color edges (modification edges) are arbitrary (Color figure online)

of the directed edge starting from node j and ending at node i . The in-degree of a
node is the sum of the weights of the edges that the node receives from other nodes,
i.e., the in-degree of the node i is

∑
j Ai j . We define the Laplacian matrix of G by

LG := DG − AG , where DG is a diagonal matrix whose (i, i)-entry is the in-degrees
of the node i of G. Let LG and LGp represent the Laplacians of the unmodified
and modified graphs, respectively. Let λ2(LG) and λ2(LGp ) be the associated second
minimumeigenvalues, so-called spectral gap.Our results explain how themodification
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affects the spectral gap of the Laplacian matrices of these models. We provide more
details in Sect. 4.

1.1.2 Results (Informal Version)

Assume δ0 ≥ 0 is the weight of the modification edge starting from the hub and
δ ≥ 0 is the sum of the weights of all the modification edges. In model I, we have
δ0 = δ, and in the other two models, δ0 ≤ δ. Let m and n be the sizes of the star
and cycle, respectively. The term o(1) in the informal statements of Theorems A and
B (resp. Theorem C) stands for a function of m (resp. (m, w)) that converges to 0
as m → ∞ (resp. m

w
→ ∞). When the weight of the modification is small, we will

call this modification local. This is because the results follow from local analysis of
the eigenvalues. If the weight of the modification is large, we called it global, as the
analysis requires global techniques to gain insights on the eigenvalues. These models
are discussed precisely in Sect. 3.Here,we give an informal version of ourmain results.

Theorem A (Informal statement) Consider model I illustrated in Fig.1. Let the modi-
fication δ > 0 be arbitrary. (It does not need to be sufficiently small.) We have

1. Although LGp is not necessarily symmetric, all of its eigenvalues are real.
2. There exists a critical cycle size nc = π

√
m + 1[1+ o(1)] such that λ2

(
LGp

)
<

λ2 (LG) if and only if n ≥ nc.

We illustrate Theorem A in Fig. 4.
To give the informal statement of Theorem B, let ρ := δ0

δ
. This ratio can be seen as

a measure of the modification that the cycle receives from the hub of the star relative to
the modification it receives from the leaves of the star. We have ρ ≤ 1, and by setting
ρ = 1, the model II reduces to model I.

Theorem B (Informal statement) Consider model II illustrated in Fig.2. We have

1. Under a local modification, the statement of Theorem A is valid for model II.
When δ > 0 is sufficiently small, all the eigenvalues of LGp are real and the
modification decreases the spectral gap if and only if the size of the cycle is larger
than the critical value nc(m).

2. Under a global modification (δ be arbitrary), the statement of Theorem A is valid
for model II when ρ > K, where 0 < K < 1 is a constant given in Sect.3.

3. Under a global modification (δ be arbitrary), we have Re
(
λ2

(
LGp

))
< λ2 (LG)

if the size of the cycle is larger than a critical value n∗
c (m) = 2π

√
m + 1[1+o(1)].

Theorem C (Informal statement) Consider model III illustrated in Fig.3. Let w be the
sum of the weights of all cutset edges. There exist two critical nc(m, w) and n∗

c(m, w)

such that n∗
c ≈ 2nc = 2π

√
m
w

+ 1[1 + o(1)], and
1. Under a local modification, we have

(a) if n > n∗
c(m, w), then λ2(LGp ) ≤ λ2(LG).
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Fig. 4 A comparison of the cases in TheoremA and computations of λ2(Gp)−λ2(G). We create a graphG
as described in model 1a with cycle Cn and star Sm subgraphs whose sizes are n and m, respectively. Then,
we modify the network as shown in model 1b where δ0 = 1 and calculate the difference λ2(Gp) − λ2(G)

to characterize the behavior of the second minimum eigenvalue after modification. The red color of grids
corresponds to a decrease in the second minimum eigenvalue after modification, and the blue color of grids
corresponds to an increase in the second minimum eigenvalue after modification, where the intensity of
the color at each grid shows the size of the difference λ2(Gp) − λ2(G). Simultaneously, the blue curve
given by nc = π

√
m + 1 is shown. Thus, regions separated by the blue curve manifest the signature

of λ2(Gp) − λ2(G) and it corresponds to the critical transition between the cases stated in Theorem A,
i.e., decreasing or increasing behavior of the second minimum eigenvalue after modification (Color figure
online)

(b) if nc(m, w) < n < n∗
c(m, w), then both increasing and decreasing in the

spectral gap can happen. See Theorem C for the distinction between cases.
(c) if n < nc(m, w), then λ2(LGp ) > λ2(LG).

2. Under a global modification, if n > n∗
c(m, w), then Re(λ2(LGp )) ≤ λ2(LG).

In all three mentioned models, we consider the scenario in which the cutset edges
start from the cycle and end at the hub of the star, briefly called the hub connection.
Another scenario that can be considered is where the cutset edges end at the leaves of
the star instead of its hub, briefly called leaf connection. Our numerical investigation
shows that there exists a critical n′

c analogous to nc in Theorem A and a critical n′∗
c (m)

analogous to n∗
c(m) in Theorem B for the leaf connection. However, n′

c is bounded
below by nc; likewise n′∗

c (m) is bounded below by n∗
c(m). In other words, if we

compare the incidence number of λ2
(
LGp

)
< λ2 (LG) for hub and leaf connection,

hub connection maximizes the incidence number of λ2
(
LGp

)
< λ2 (LG) for the same

parameter set.
The Laplacian matrix LG of the unmodified graph in all the models I, II, and III is

a block lower-triangular matrix, see the form (10). However, adding a modification in
the opposite direction of the cutset breaks the triangular structure of LG , which turns
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the analysis of its spectral gap into a non-trivial problem. Our approach to analyzing
the changes in the spectral gap consequent to the graph modification is to investigate
a secular equation of the Laplacian matrix and its roots. Our analysis is not restricted
to the local modification;1 we indeed analyze the change in the spectral gap under
modification of arbitrary size. This requires further work on not only analyzing the
modification of spectral gap but also understanding the modifications and distribution
of the whole spectrum of the Laplacian matrix.

2 Applications to Synchronization

We consider synchronization in networks of diffusively coupled oscillators as an
application. Consider a triplet G = (G, f , H), where G is a weighted digraph, and
f , H ∈ C1(Rl) for l ≥ 1. The triplet G defines a system of the form

ẋi = f (xi ) + �

N∑

j=1

Ai j H(x j − xi ), i = 1, 2, . . . , N , (1)

where � ≥ 0 is called the coupling strength. Each variable xi represents the state of
the i th node of G, the function f describes the isolated dynamics at each node, and
the function H is called the coupling function. We call the triplet G or its associated
system (1) a network of diffusively coupled (identical) systems.

We define the synchronization manifold as

M := {(x1, . . . , xN ) : x1 = · · · = xN ∈ U } . (2)

We say that a network G synchronizes if there exists an open neighborhood V of M
such that the forward orbit of any point in V converges to M . It is shown (Pereira et al.
2014) that for a network G with a coupling strength �, if

1. the graph G has a spanning diverging tree, and
2. there exists an inflowing open ball U ⊂ R

l which is invariant with respect to
the flow of the isolated system ẋ = f (x), and we have ‖Df (x)‖ ≤ K for some
K > 0 and all x ∈ U , and

3. we have H(0) = 0; moreover, all the eigenvalues of DH(0) are real and positive,

then there exists �c ≥ 0 such that when � ≥ �c, G synchronizes. We call

�c = ρ

Re(λ2)
, (3)

the critical coupling strength where ρ = ρ( f , DH(0)) is a constant. Note that if the
third assumption is not fulfilled, the synchronization condition (3) may no longer be

1 note that even for investigating local changes in the spectral gap, the standard approach, see, e.g., Theorem
6.3.12 inHorn and Johnson (2012), cannot be applied since the spectral gaps in ourmodels are not necessarily
simple.
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valid. However, in this case, new synchronization conditions may be obtained under
the framework of master stability function formalism (Eroglu et al. 2017). Relation
(3) with assumptions stated above gives us a criterion to compare synchronizability
in networks. More precisely,

Definition 1 Consider two networks G1 = (G1, f1, H1) and G2 = (G2, f2, H2) that
satisfy the assumptions above.Let�c(G1) and�c(G2)be the critical coupling strengths
of G1 and G2, respectively. We say that G1 is more synchronizable than G2 if�c(G1) <

�c(G2).

Having �c(G1) < �c(G2) means that G1 synchronizes for a larger range of � than
G2. Let us now consider the case that two networks G1 and G2 only differ in their
topology, i.e., having the same isolated dynamics and coupling functions, while the
graph structures can be different. In this case, following (3), the spectral gaps of the
underlying graphs of the networks determine which one is more synchronizable.

Let consider two networks G1 = (G1, f , H) and G2 = (G2, f , H) that satisfy
the assumptions above. Moreover, let λ2(G1) and λ2(G2) be the spectral gaps of G1
and G2, respectively. The network G1 is more synchronizable than G2 if and only if
λ2(G1) > λ2(G2).

2.1 Synchronization of Coupled Lorenz Oscillators

We consider the following settings for model II given in Fig. 2: Two networks G =
(G, f , H) and Gp = (Gp, f , H) are generated, where G and Gp are the unmodified
and the modified graphs, respectively. The chosen isolated dynamics f is the Lorenz
oscillator

ẋ = σ(y − x),
ẏ = x(γ − z) − y,
ż = xy − βz,

(4)

where σ = 10, γ = 28, β = 8/3. Here, H is the identity function on R
3. For the

described setting, Eq. (3) can be written as �c = κ
Re(λ2)

, where κ is defined as in
Section 5 of Eroglu et al. (2017). We numerically find that κ ≈ 0.9. So, the expected
values of�c(G) and�c(Gp) are calculated accordingly. We examine two experiments
to reveal how link addition can lead to synchronization in the network Gp or break the
synchronization in the initial network G (see Figs. 5 and 6). The network of coupled
Lorenz oscillators in model II is simulated to show the synchronization error

〈E〉 =
∑

i �= j

‖xi − x j‖
(n + m)(n + m − 1)

. (5)

It is worth mentioning that the same simulations that we have done for the Lorenz
system can be done for other systems as well. Indeed, similar results hold as long
as the initial conditions lead to an attractor in the synchronization manifold that is
contained in a compact set.

123



Journal of Nonlinear Science            (2024) 34:60 Page 9 of 34    60 

Fig. 5 Hindrance of synchronization due to link addition: Networks of coupled Lorenz oscillators in model
II are simulated to show the synchronization error. The sizes of the cycle and star subgraphs are set to
n = 15 and m = 15, and subgraphs are connected via a directed link from the cycle subgraph to the
star subgraph where w0 = 1. We consider H = I as the coupling function. We choose initial conditions
randomly selected from the uniform distribution over [3.5, 5) and integrate the network until time t = 2500
s. The system goes into synchronization after some transient. At t = 2500 s, we add the red links to the
system, i.e., δi = 1, where i = 0, 1, . . . ,m − 1, and perturb the system by adding noise randomly selected
from the uniform distribution over [0.01, 0.02) to each state, then the synchronization loss occurs and the
system does not return into synchronization after transient time. Note that α1 = 0.04, β−

15,1 = 0.06 in
Theorem B

Fig. 6 Enhancement of synchronization due to link addition: networks of coupled Lorenz oscillators in
model II are simulated to show the synchronization error. The sizes of the cycle and star subgraphs are
set to n = 9 and m = 15, and subgraphs are connected via a directed link from the cycle subgraph to the
star subgraph where w0 = 1. We consider H = I as the coupling function. We choose initial conditions
randomly selected from the uniform distribution over [3.5, 5) and integrate the network until time t = 2500
s. After the red links are added to the system at t = 2500 s, i.e., δi = 1, where i = 0, 1, . . . ,m − 1,
the synchronization occurs where the mean error 〈E〉 goes to zero. Note that α1 = 0.12, β−

15,1 = 0.06 in
Theorem B
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2.2 Hindering Synchronization

To examine the hindrance of synchronization due to link addition, the overall coupling
constant � is selected such that �c(G) < � < �c(Gp) (see Fig. 5). Note that such �

values only exist whenλ2(G) > λ2(Gp) due to the order relations of synchronizability
stated above. When the selected� is above the�c(G), the trajectories synchronize for
the network G. Then, the system is modified by adding links at a given time t . Since
the selected � is below the �c(Gp), the system loses its synchronization thereafter.

In model II, the sizes of the cycle and star subgraphs are set to n = 15 andm = 15.
The weights of the cutset and modification edges are w0 = 1 and δi = 1, where i =
0, 1, . . . ,m − 1. All initial states are randomly selected from the uniform distribution
over [3.5, 5).

2.3 Enhancing Synchronization

To examine the enhancement of synchronization due to link addition, the overall
coupling constant � is selected such that �c(Gp) < � < �c(G) (see Fig. 6). Note
that such � values only exist when λ2(Gp) > λ2(G). When the selected � is below
the �c(G), the trajectories cannot synchronize for the network G. Then, the system is
modified by adding links at a given time t . Since the selected � is above the �c(Gp),
the system synchronizes.

In model II, the sizes of the cycle and star subgraphs are set to n = 9 and m = 15.
The weights of the cutset and modification edges are w0 = 1 and δi = 1, where i =
0, 1, . . . ,m − 1. All initial states are randomly selected from the uniform distribution
over [3.5, 5). Therefore, hindrance and enhancement of synchronization due to link
addition manifest themselves in simulations, and it perfectly agrees with the findings
of our theorems.

3 Problem Setting and Results

Let G be a weighted directed graph (digraph) whose nodes are labeled by 1, . . . , n.
We assume that G is unilaterally connected. (A digraph is unilaterally connected if
for any two arbitrary nodes i and j , there exists a directed path from i to j or j to
i .) This implies that the zero eigenvalue of LG is simple (Veerman and Lyons 2020).
It is also an easy consequence of Gershgorin theorem that the real parts of all the
non-zero eigenvalues of LG are positive. Let λ1, . . . , λn be the eigenvalues of LG ,
ordered according to their real parts, i.e.,

0 = λ1 < Re (λ2) ≤ Re (λ3) ≤ · · · ≤ Re (λn) .

The second minimum (with respect to the real-part ordering) eigenvalue, i.e., λ2, is
called the spectral gap of G. In this paper, we are interested in how modifying G can
affect its spectral gap for models I, II, and III.

Let us start with model I (see Fig. 1a). We define
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Definition 2 Consider arbitrary integers n ≥ 3 and m ≥ 4, and an arbitrary real
number w ≥ 0. Then,

1. for any integer 0 ≤ l ≤ n, we define

αl := 2

(

1 − cos
lπ

n

)

. (6)

2. wedefineβ−
m,w andβ+

m,w as the roots of the quadratic polynomialλ2−(m + w) λ+
w, i.e.,

β±
m,w = 1

2

[

m + w ±
√

(m + w)2 − 4w

]

. (7)

Remark 1 By virtue of Taylor’s theorem, we can approximate αl for sufficiently small
l
n by αl ≈ l2π2

n2
. Regarding β±

m , when (m + w)2 � 4w, we can approximate β+
m by

m + w, and β−
m by

β−
m,w = β−

m,wβ+
m,w

β+
m,w

≈ w

m + w
. (8)

Before we proceed to our first result, let us give some intuition about this definition.
The parameter w in β±

m,w stands for the sum of the weights of all the cutset edges
starting from the cycle and ending at the star. In the case of model I and II, we
assume w = 1, but for model III, we deal with arbitrary w. As it is shown later (see
Proposition 1), the spectrum of the unmodified Laplacian LG is {αl : where 0 ≤
l ≤ n and l is even} ∪ {β−

m,w, 1, β+
m,w}. Thus, the spectral gap of LG is given by

min{α2, β
−
m,w}. Although the αls for odd l do not appear as the eigenvalues of LG ,

they play an important role in our theory. In particular, α1 appears in the formulation
of all the three main results of this paper.

Here is our main result on model I:

Theorem A (Model I) Assume β−
m,1 /∈ {αl : 0 ≤ l ≤ n}. Consider an arbitrary

modification δ0 > 0 and the corresponding Laplacian LGp = LG (δ0). Then, all the
eigenvalues of LGp are real. Moreover, we have

(i) if α1 < β−
m,1, then λ2

(
LGp

)
< λ2 (LG).

(ii) if β−
m,1 < α1, then λ2

(
LGp

)
> λ2 (LG).

Remark 2 The assumption β−
m,1 /∈ {αl : 0 ≤ l < n} in this theorem (and also in the

next theorem) typically holds for arbitrary m and n.

Let us now discuss model II (see Fig. 2a). Let δi ≥ 0 be the weight of the edge
starting from node i (see Fig. 2b). Thus, model II is reduced to model I by setting
δi = 0 for i = 1, . . . ,m − 1. In this strand, we define

Definition 3 Let δi ≥ 0, i = 0, . . . ,m − 1, be the weight of the modification edge
starting from node i of the star and ending at node 0 of the cycle. We define δ :=
(δ0, . . . , δm−1), and δ := δ0 + δ1 + · · · + δm−1.
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Obviously, δ = 0 if and only if δ = 0. Note also that δ = 0 corresponds to the
unmodified graph G. We now state our next main result:

Theorem B (Model II) Assume β−
m,1 /∈ {αl : 0 ≤ l < n}. Consider a modification

δ �= 0 and let LGp = LG
(
δ
)
be the corresponding Laplacian. Then, the following

hold.

(i) (Local modification) Let δ �= 0 be a sufficiently small modification. Then, all the
eigenvalues of LGp are real, and

(a) If α1 < β−
m,1, then λ2

(
LGp

)
< λ2 (LG).

(b) If β−
m,1 < α1, then λ2

(
LGp

)
> λ2 (LG).

(ii) (Global modification) Let δ �= 0 be an arbitrary modification. We have

(a) If α2 < β−
m,1, then Re

(
λ2

(
LGp

))
< λ2 (LG).

(b) Assume the condition δ < δ0β
+
m,1 is satisfied. Then, all the eigenvalues of LGp

are real, and the statements (iia) and (iib) of this theorem also hold for the
modification δ.

This theorem is proved in Sect. 5.3. Let us mention a few remarks.

Remark 3 Note that, by setting δ = δ0, Theorem A directly follows from Theorem B.

Remark 4 In spite of TheoremA for which themain statements hold for amodification
of arbitrary size, in Theorem B, we require a condition on the modification, i.e.,
δ < δ0β

+
m,1, to make the statements for modifications of arbitrary size. Roughly

speaking, this is due to the possibility of the emergence of non-real eigenvalues.
Indeed, as it is shown in the proof of Theorem B, for small modification δ �= 0, the
modified Laplacian LGp has two real eigenvalues in the interval (αn−1,∞). However,
as δ varies and gets larger in size, these two real eigenvalues may collide and become a
pair of complex conjugates. In this case, we can think of the scenario in which the real
part of these eigenvalues decreases such that for some sufficiently large modification
δ, these eigenvalues become the spectral gap of LGp . By assuming δ < δ0β

+
m,1, we

indeed avoid this scenario.

We now discuss model III (see Fig. 3a). Let wi ≥ 0, where i = 0, . . . , n − 1, be
the weight of the edge starting from node i of the cycle. Without loss of generality,
assume w0 > 0. We also define

Definition 4 Let wi be as mentioned above. We define w = (w0, . . . , wn−1) and
w = w0 + w1 + · · · + wn−1.

We show later that λ2 (LG) = min{α2, β
−
m,w}. Regarding the modification in the

case of model III, we consider the same family of modifications as we considered in
model II: For every 0 ≤ i ≤ m−1, there exists a modification edge with weight δi ≥ 0
starting from node i of the star and ending at node 0 of the cycle (see Fig. 3b). Let δ

and δ be as in Definition 3. For given m, n, w, δ0 and δ, in the case that α2 �= β−
m,w,

we also define

S = S (m, n, w, δ0, δ) := δ − δ − δ0α2

α2
2 − (m + w)α2 + w

n−1∑

i=0

wi cos
2iπ

n
. (9)
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As it is shown later, the sign of S determines if the characteristic polynomial of LGp ,
i.e., det

(
LGp − λI

)
, decreases or increases at the point λ = α2. Our last main result

is as follows.

Theorem C (Model III) Assume β−
m,w /∈ {αl : 0 ≤ l ≤ n}. Consider a modification

δ �= 0 and let LGp = LG
(
δ
)
be the corresponding Laplacian. Then, the following

hold.

(i) (Local modification) Let δ �= 0 be sufficiently small. Then, all the eigenvalues of
LGp are real, and we have

(a) If α2 < β−
m,w and S < 0, then λ2

(
LGp

)
< λ2 (LG).

(b) If α2 < β−
m,w and S > 0, then λ2

(
LGp

) = λ2 (LG).
(c) If 0 < β−

m,w < α1, then λ2
(
LGp

)
> λ2 (LG).

(d) If α1 < β−
m,w < α2 and

∑n−1
i=0 wi cos

( n
2 − i

)
θ > 0, where θ = π −

cos−1
(

β−
m,w−2
2

)
, then λ2

(
LGp

)
> λ2 (LG).

(e) If α1 < β−
m,w < α2 and

∑n−1
i=0 wi cos

( n
2 − i

)
θ < 0, where θ = π −

cos−1
(

β−
m,w−2
2

)
, then λ2

(
LGp

)
< λ2 (LG).

(ii) (Global modification) Let δ �= 0 be an arbitrary modification and assume α2 <

β−
m,w.

(a) If S < 0, then Re
(
λ2

(
LGp

))
< λ2 (LG).

(b) If S > 0, then Re
(
λ2

(
LGp

)) ≤ λ2 (LG).

4 The LaplacianMatrices

4.1 The Laplacian LG of the Unmodified Graph and Its Spectrum

In this section, we investigate the spectrum of the unmodified Laplacian matrix LG .
Denote the Laplacian matrices of the cycle Cn and the star Sm by LCn and LSm ,
respectively. Then,

LG :=
(
LCn 0
−C LSm + DC

)

, (10)

where

LCn =

⎛

⎜
⎜
⎜
⎜
⎝

2 −1 −1

−1 2
. . .

. . .
. . . −1

−1 −1 2

⎞

⎟
⎟
⎟
⎟
⎠

and LSm =
(

m − 1 −1�
m−1−1m−1 Im−1

)

.
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Moreover, for models I and II, we have

C =
(

1 01×(n−1)
0(m−1)×1 0(m−1)×(n−1)

)

and DC =
(

1 01×(m−1)
0(m−1)×1 0(m−1)×(m−1)

)

,

(11)
and for model III, we have

C =
(

w0 w1 · · · wn−1
0(m−1)×n

)

and DC =
(

w 01×(m−1)
0(m−1)×1 0(m−1)×(m−1)

)

. (12)

The block triangular form of LG implies σ(LG) = σ(LCn )∪σ(LSm + DC ). Thus,
to study σ(LG), we need to investigate each of σ(LCn ) and σ(LSm +DC ) individually.
In this strand, we have the following lemmas.

Lemma 1 Recall Definition 2. We have σ(LCn ) = {αl : where 0 ≤ l ≤
n and l is even}. Moreover, the multiplicity of all the eigenvalues except for 0 and
4 (the eigenvalue 4 appears only when n is even) is 2.

Proof See Brouwer and Haemers (2011).

Lemma 2 Let C and DC be as in (12). Then, σ(LSm + DC ) = {β−
m,w, 1, β+

m,w}, where
β±
m,w are as in (7). Moreover, the eigenvalues β−

m,w and β+
m,w are simple, and the

eigenvalue 1 is of multiplicity m − 2.

Proof This lemma is a special case of Lemma B.2, which is proved in Appendix B.

The previous two lemmas give the spectrum of the unmodified Laplacian LG :

Proposition 1 We have σ(LG) = {αl : where 0 ≤ l ≤ n and l is even} ∪
{β−

m,w, 1, β+
m,w}.

Remark 5 We assume thatm ≥ 4, i.e., the star Sm has at least four nodes. It is straight-
forward to show that for any m ≥ 4 and w > 0, we have β−

m,w < 1 and 4 < β+
m,w. On

the other hand, 0 ≤ αl = 2
(
1 − cos lπ

n

) ≤ 4, for all 0 ≤ l ≤ n. This means that β+
m,w

is a simple eigenvalue of LG .

4.2 The Laplacian LGp of theModified Graph

Consider model III and observe that the modified Laplacian matrix LGp is given by

LGp :=
(
LCn + D −

−C LSm + DC

)

, (13)

where C and DC are as in (12),

 =
(

δ0 δ1 · · · δm−1
0(n−1)×m

)

and D =
(

δ 01×(n−1)
0(n−1)×1 0(n−1)×(n−1)

)

.

(14)
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Notation 1 For the sake of convenience, we set L1 := LCn +D and L2 := LSm +DC.

Using this notation, Laplacian (13) is written as

LGp =
(

L1 −

−C L2

)

. (15)

The Laplacian LGp of the modified graph of model II is of the form (15), where C
and DC are as in (11), and  and D are given by (14).

The Laplacian LGp of the unmodified graph of model I is also of the form (15),
where C and DC are as in (11), and  and D are given by

 =
(

δ0 01×(m−1)
0(n−1)×1 0(n−1)×(m−1)

)

and D =
(

δ 01×(n−1)
0(n−1)×1 0(n−1)×(n−1)

)

.

(16)
Here (model I), we have δ0 = δ.

Notice that, in all these three models, despite the unmodified Laplacian LG , the
modified Laplacian LGp does not have a triangular form. Due to this reason, analysis
of the spectrum of LGp requires further work. We deal with this analysis in the next
section.

5 Proofs of theMain Results

In this section, we prove our main results: Theorems B and C (Theorem A follow
from Theorem B). Note that model II can be considered as a special case of model
III. Thus, it is reasonable to introduce the main concepts and notations of the proofs
in this section mainly based on model III. This section is organized as follows. We
first discuss some preliminaries, definitions, and notations in Sect. 5.1. In Sect. 5.2,
we discuss the techniques that are used in the proofs of the theorems. We then prove
Theorem B in Sect. 5.3. Finally, we prove Theorem C in Sect. 5.4.

5.1 Preliminaries, Definitions, and Notations

In this section, we discuss some preliminaries and introduce some concepts and nota-
tions which are used throughout the proofs.

Notation 2 Throughout, 1k stands for the k-dimensional vector whose entries are all
1. We may drop k when it is clear from the context.

Definition 5 Letw, δ0 and δ be real, andm and k be positive integers. Consider λ ∈ R.

(i) We define μ : λ �→ μ(λ) by

μ = μ(λ) = 1 − λ

λ2 − (m + w) λ + w
, (17)
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and y : λ �→ y(λ) by

y = y(λ) = δ − δ0λ

λ2 − (m + w) λ + w
. (18)

(ii) For any k ≥ 3, we define

Qk = Qk (λ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ − 2 1
1 λ − 2 1 0

1
. . .

. . .

0
. . .

. . . 1
1 λ − 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

k×k

. (19)

The next two lemmas investigate the matrix Qk(λ) for different values of λ > 0.
See Hu and O’Connell (1996) for the proofs.2

Lemma 3 Assume 0 < λ < 4 and let θ = π − cos−1( λ−2
2 ). We have

(i) det(Qk) = (−1)k sin(k+1)θ
sin θ

.

(ii) the matrix R = Q−1
k exists for θ �= lπ

k+1 (l = 1, . . . , k) and is given by

Ri j = cos (k + 1 − |i − j |) θ − cos (k + 1 − i − j) θ

2 sin θ sin (k + 1) θ
, for 1 ≤ i, j ≤ k.

(20)

Lemma 4 Assume λ ≥ 4 and let θ = cosh−1( λ−2
2 ). Then,

(i) for λ > 4, we have det(Qk) = sinh(k+1)θ
sinh θ

.
(ii) for λ = 4, we have det(Qk) = k + 1.
(iii) The inverse matrix R = Q−1

k exists for all λ ≥ 4 and is given by

Ri j = (−1)i+ j · cosh (k + 1 − |i − j |) θ − cosh (k + 1 − i − j) θ

2 sinh θ sinh (k + 1) θ
, for 1 ≤ i, j ≤ k.

(21)

Recall αl defined by (6). By Lemmas 3 and 4, and a straightforward calculation,
we have

Lemma 5 The matrix Qn−1(λ) is invertible if and only if λ �= αl for l = 1, . . . , n− 1.

5.2 Our Approach for Investigating the Spectrum of theModified Laplacian LGp

In this section, we discuss the method we use to investigate the spectrum of the
modified Laplacian LGp . We directly apply this method to study model III and then
use the results to investigate models I and II.

2 Regarding Lemma 3, the formulas in Hu and O’Connell (1996) are not totally correct. In this current
paper, we have used the corrected ones. Note also that θ in this current paper is not the same as in Hu and
O’Connell (1996).
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Recall that the modified Laplacian of model III is given by

LGp =
(

L1 −

−C L2

)

, (22)

where L1 and L2 are as in Notation 1, and the matrices C and  are given by (12)
and (14), respectively. Our study of the eigenvalues of LGp is based on the following
lemma.

Lemma 6 Consider the modified Laplacian LGp given by (22). For λ ∈ R, we have

(i) if λ /∈ σ(L1), then det
(
LGp − λI

) = det (L1 − λI ) · P1 (λ), where P1(λ) =
det(M1), for M1 = M1(λ) = L2 − λI − C (L1 − λI )−1 .

(ii) if λ /∈ σ(L2), then det
(
LGp − λI

) = det (L2 − λI ) · P2 (λ), where P2(λ) =
det(M2), for M2 = M2(λ) = L1 − λI − (L2 − λI )−1 C.

(iii) for i = 1, 2, we have that λ0 /∈ σ(Li ) is an eigenvalue of LGp with algebraic

multiplicity k, if and only if Pi (λ0) = P ′
i (λ0) = · · · = dk−1Pi

dλk−1 (λ0) = 0, and
dk Pi
dλk

(λ0) �= 0.

Remark 6 Lemma 6 allows us to count the multiplicity of λ0 ∈ σ(LGp ) when λ0 /∈
σ(L1) ∩ σ(L2). However, this lemma may give information about the multiplicity
of λ0 when λ0 ∈ σ(L1) ∩ σ(L2) as well. This is important for us since we have
such eigenvalues in our models. Let λ0 be such an eigenvalue. Since λ0 ∈ σ(L1),
the matrix (L1 − λ0 I )−1 does not exist. However, depending on the matrices C and
, the expression limλ→λ0 Y (λ), where Y (λ) := C(L1 − λ0 I )−1, may exist. This
allows us to define M1 and P1 at λ = λ0 by taking the limit λ → λ0. Now, if Y (λ)

at λ = λ0 is smooth enough, then the multiplicity of λ0 as an eigenvalue of LGp is
l + k, where l is the multiplicity of λ0 as an eigenvalue of L1 and k is the integer that

satisfies P1(λ0) = P ′
1(λ0) = · · · = dk−1P1

dλk−1 (λ0) = 0, and dk P1
dλk

(λ0) �= 0. Analogous

holds when λ0 ∈ σ(L2) but (L2 − λI )−1 C is well defined and smooth enough at
λ = λ0.

According to Lemma 6, an eigenvalue λ of LGp that is not in σ(L1) ∩ σ(L2) must
satisfy P1(λ) = 0 or P2(λ) = 0. The proofs of our results are based on the analysis
of these two equations. Sections5.2.1 and 5.2.2 are dedicated to this analysis.

Before we proceed further, let us show that λ = 1 is an eigenvalue of LGp for any
arbitrary δ.

Lemma 7 For arbitrary δ, we have 1 ∈ σ(LGp ). Moreover, the (algebraic and geo-
metric) multiplicity of 1 is at least m − 2.

Proof Recall that LGp =
(

L1 −
−C L2

)
. It follows from the proof of Lemma B.2 (see

relation (B5)) that there exist m − 2 linearly independent left eigenvectors v such that
v�L2 = v�. Moreover, any such a vector v is of the form v = (0, v1, · · · , vm−1) ∈
R
m . (The first entry is zero.) Consider the vector u := (0, v) ∈ R

n+m . Taking into
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account that, except for the first row, all the entries of C are zero (see (12)), we obtain

u�LGp =
(
01×n, v

�)
(

L1 −

−C L2

)

=
(
01×n, v

�L2

)
= u�.

This means that for such vs, the corresponding vectors u are left eigenvectors of LGp

associated with the eigenvalue 1. This proves the lemma.

5.2.1 Analysis of P2

In this section, we investigate thematrixM2(λ) and the function P2(λ) := det(M2(λ))

introduced in Lemma 6 for model III. We first need to analyze the matrix L2 −λI and
its inverse:

Lemma 8 Recall μ from (17). We have

(i) the function μ is well defined at λ /∈ {β−
m,w, β+

m,w}.
(ii) for λ ∈ R\σ(L2) = {β−

m,w, 1, β+
m,w}, we have

(L2 − λI )−1 =
(
m − 1 + w − λ −1�

−1 (1 − λ) I

)−1

=
(

μ
μ

1−λ
1�

μ
1−λ

1 1
1−λ

I + μ

(1−λ)2
11�

)

.

(23)

Proof Item (i) is straightforward. Item (ii) follows from Lemma B.17.

We now start to calculate M2 = M2(λ) = L1 − λI − (L2 − λI )−1 C . The
expression (L2 − λI )−1 is well defined at λ /∈ σ(L2) = {β−

m,w, 1, β+
m,w}. By

a straightforward calculation and using relation (23), for λ /∈ σ(L2), we have
(L2 − λI )−1 C = yC , where y = y(λ) is given by (18). Note that y, and therefore
yC , is well defined and smooth at λ = 1. In other words, although (L2 − λI )−1 is
not defined at λ = 1 (because 1 ∈ σ(L2)), the expression (L2 − λI )−1 C can be
defined at λ = 1, and so do the matrix M2 and the function P2. This was discussed
earlier in Remark 6. We give the following lemma to emphasize this property.

Lemma 9 The function P2(λ) = det(M2) is well defined and smooth at λ /∈
{β−

m,w, β+
m,w}.

Having (L2 − λI )−1 C = yC , we obtain

M2 = M2 (λ) =

⎛

⎜
⎜
⎝

2 − λ + δ − w0y −1 − w1y −w2y · · · wn−2y −1 − wn−1y
−1

0(n−3)×1
−1

−Qn−1

⎞

⎟
⎟
⎠ ,

(24)
where Qn−1 = Qn−1(λ) is the symmetric tridiagonal matrix given by (19). Applying
Lemma B.17 on this matrix, for λ /∈ {β−

m,w, β+
m,w} such that Qn−1(λ) is invertible
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(recall that, by Lemma 5, the matrix Qn−1(λ) is invertible if and only if λ �= αl for
l = 1, . . . , n − 1), we obtain

P2 (λ) = det (M2) = (−1)n−1 det (Qn−1) [ξ (δ, λ) − yψ (w, λ)] , (25)

where
ξ (δ, λ) = 2 − λ + δ + R11 + R1 n−1 + Rn−1 1 + Rn−1 n−1, (26)

for which R = (
Ri j

)
1≤i, j≤n−1 is the inverse of Qn−1, and

ψ = ψ (w, λ) = w0 −
n−1∑

i=1

wi
[
Ri1 + Ri n−1

]
. (27)

Lemmas 3 and 4 give some formulas for R = Q−1
n−1. Substituting these formulas in

(26) and (27) gives

Lemma 10 For the functions ξ (δ, λ) and ψ(w, λ), we have

ξ = ξ (δ, λ) =
⎧
⎨

⎩

δ − 2 sin θ tan nθ
2 , 0 < λ < 4 and θ = π − cos−1( λ−2

2 ),

δ + 2
n · [(−1)n − 1

]
, λ = 4,

δ + 2 sinh θ
sinh nθ

· [(−1)n − cosh nθ
]
, λ > 4 and θ = cosh−1( λ−2

2 ),

and

ψ = ψ (w, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
cos nθ

2

∑n−1
i=0 wi cos

( n
2 − i

)
θ, 0 < λ < 4 and θ = π − cos−1( λ−2

2 ),
∑n−1

i=0 (−1)i wi , n is even, λ = 4,
∑n−1

i=0 (−1)i wi
[
1 − 2i

n

]
, n is odd, λ = 4,

1
cosh nθ

2

∑n−1
i=0 (−1)i wi cosh

( n
2 − i

)
θ, n is even, λ > 4 and θ = cosh−1( λ−2

2 ),

1
sinh nθ

2

∑n−1
i=0 (−1)i wi sinh

( n
2 − i

)
θ, n is odd, λ > 4 and θ = cosh−1( λ−2

2 ).

Proof For λ �= 4, the proof is a straightforward calculation by substituting (20) and
(21) into (26) and (27). For the case of λ = 4, the proof follows from taking the limit
of the formulas for the cases λ �= 4 as λ → 4 and using L’Hôpital’s rule.

This lemma together with relation (25), gives some formulas for P2(λ) when P2
is well defined (λ /∈ {β−

m,w, β+
m,w}) and Qn−1(λ) is invertible, i.e., λ �= αl for l =

1, . . . , n − 1. However, we can use (25) to calculate P2 at λ = αl by taking lim P2(λ)

as λ → αl . By this trick, we have that (25) is well defined and smooth at every real
λ /∈ {β−

m,w, β+
m,w}.

To make the analysis of P2 simpler, we consider two different cases of 0 ≤ λ < 4
and λ ≥ 4. For the first case, let θ = π −cos−1( λ−2

2 ), and define p(θ) := P2(λ(θ)) =
P2(2[1 − cos θ ]). For 0 < θ < π such that 2[1 − cos θ ] /∈ {β−

m,w, β+
m,w}, this gives

p (θ) = 2 [cos nθ − 1] + δ · sin nθ

sin θ
− 2y · sin

nθ
2

sin θ

n−1∑

i=0

wi cos
(n

2
− i

)
θ. (28)
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Observe that p (0) = limθ→0+ p(θ) = 0. With a straightforward calculation, we can
also obtain:

Lemma 11 Recall αl given by (6) and assume αl = 2
(
1 − cos lπ

n

)
/∈ {β−

m,w, β+
m,w},

where l ∈ Z is as specified below. Then,

(i) for even 0 ≤ l ≤ n − 1, we have p( lπn ) = 0.

(ii) for odd 1 ≤ l ≤ n − 1, we have p( lπn ) = −4 − 2y
sin lπ

n

∑n−1
i=0 wi sin ilπ

n .

(iii) for even 1 ≤ l ≤ n − 1, we have

p′
(
lπ

n

)

= n

sin lπ
n

[

δ − y
n−1∑

i=0

wi cos
ilπ

n

]

. (29)

5.2.2 Analysis of P1

In this section, we investigate the matrix M1 and the function P1(λ) = det(M1(λ))

introduced in Lemma 6 for model III. We start with analyzing the matrix L1 −λI and
its inverse. Note that

L1 − λI =

⎛

⎜
⎜
⎝

2 + δ − λ −1 01×(n−3) −1
−1

0(n−3)×1
−1

−Qn−1

⎞

⎟
⎟
⎠ . (30)

Lemma 12 Let λ > 0 be real. Then, the matrix L1 − λI is invertible if and only if
λ �= αl and ξ(δ, λ) �= 0, where 1 < l ≤ n − 1 is even and ξ(δ, λ) is given by (26).

Proof Assume Qn−1 is invertible. Applying Lemma B.17 on matrix (30) gives

det (L1 − λI ) = (−1)n−1 det (Qn−1) ξ (δ, λ) .

This proves the lemma for the case that Qn−1 is invertible.
Now, we consider the case that Qn−1 is singular. It follows from Lemma 5 that

Qn−1(λ) is invertible if and only if λ �= αl for l = 1, . . . , n−1. Equivalently Qn−1 is
singular if and only if 0 < λ = 2 [1 − cos θ0] < 4 and sin nθ0 = 0 (see also Lemmas
3 and 4). By virtue of Lemma 10, for λ = 2 [1 − cos θ0], we obtain

det (L1 − λI ) = lim
θ→θ0

det (L1 − λI ) = lim
θ→θ0

sin nθ

sin θ
·
(

δ − 2 sin θ tan
nθ

2

)

= 2 (cos nθ0 − 1) .

Thus, when Qn−1 is singular, L1 − λI is invertible if and only if cos nθ0 �= 1, i.e.,
λ �= αl where 2 ≤ l ≤ n − 1 is even. This ends the proof.
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For real λ > 0, assume ξ (δ, λ) �= 0 and consider the case that R = Q−1
n−1 exists.

Then, L1 − λI is invertible, and by Lemma B.17, we have

(L1 − λI )−1 =
(

ξ−1 −ξ−1r�
−ξ−1r −R + ξ−1rr�

)

,

where r = (R1 1 + R1 n−1, R2 1 + R2 n−1, . . . , Rn−1 1 + Rn−1 n−1)
�. This gives

M1 = M1 (λ) =
(
m − 1 + w − λ − δ0ψ

ξ
−1 − δ1ψ

ξ
−1 − δ2ψ

ξ
· · · −1 − δm−1ψ

ξ

−1m−1 (1 − λ) I

)

,

where ψ = ψ (w, λ) is given by (27). Then, by virtue of Lemma B.2, we have

Lemma 13 For real λ > 0, assume R = Q−1
n−1 exists, and ξ (δ, λ) �= 0. Then, λ �= 1

is an eigenvalue of LGp if and only if

λ2 −
[

m + w − δ0ψ

ξ

]

λ + w − δψ

ξ
= 0, (31)

or equivalently, one of the following holds:

λ = 1

2

(

m + w −
√

(m + w)2 − 4w + 4 (δ − δ0λ)ψ

ξ

)

(32)

or

λ = 1

2

(

m + w +
√

(m + w)2 − 4w + 4 (δ − δ0λ)ψ

ξ

)

.

Remark 7 If λ /∈ {β−
m,w, β+

m,w}, then relation (31) can be derived from the equation
ξ − yψ = 0 (see (25)), and vice versa. In other words, if λ �= β±

m,w, then relation (31)
does not give any further information about the eigenvalue λ other than what P2 = 0
gives, where P2 is given by (25). However, since P2 is not defined at β±

m,w (because
μ is not defined at these points), we still require (31) to analyze λ = β±

m,w.

5.3 Proof of Theorem B

In this section, we prove Theorem B. Throughout this section, we assume that w0 = 1
and wi = 0, where 1 ≤ i ≤ n − 1. Moreover, we have that δ ≥ δ0 ≥ 0. Note that, to
adapt this proof for the case of Theorem A, it is sufficient to assume δ = δ0. We start
with the following definition.

Definition 6 Recall Definition 2. Assume β−
m,1 /∈ {αl : 0 ≤ l ≤ n} and let κ ≥ 2 be

the even integer such that β−
m,1 ∈ (ακ−2, ακ).

(i) Define Jβ− := (ακ−2, ακ).
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(ii) Let 2 ≤ l ≤ n − 2 be even. We define

Jl =
{

(αl−1, αl) , if 2 ≤ l < κ,

(αl , αl+1) , if κ ≤ l ≤ n − 2.

(iii) Define Jβ+ := (αn−1,∞).
(iv) For the sake of convenience, we define the set of indices I := {β−, β+} ∪ {l :

0 < l < n and l is even}.

Remark 8 Note that when κ = 2, there does not exist Jl for 2 ≤ l < κ .

Remark 9 Notice that β+
m,1 > m ≥ 4, and so β+

m,1 ∈ Jβ+ .

Considering eigenvalues with their multiplicities, the modified Laplacian LGp has
n + m eigenvalues. The next lemma describes where these n + m eigenvalues are
located.

Lemma 14 Let δ �= 0 be an arbitrary modification that satisfies δ < δ0β
+
m,1. Then, all

the n + m eigenvalues of the modified Laplacian LGp of model II are real and given
by the union of the following four disjoint groups (see also Remark 11).

(i) LGp has � n−1
2 � + 1 real eigenvalues given by {αl : where 0 ≤ l ≤ n −

1 and l is even}.
(ii) LGp has m − 2 of repeated eigenvalue λ = 1.
(iii) Recall the set I. Each interval Jγ for γ ∈ I and γ �= β+ contains exactly one

real eigenvalue of LGp (except possibly for the m − 2 eigenvalues 1 counted in
item (ii). We have � n

2 � of these intervals, and so LGp has � n
2 � real eigenvalues

given by these intervals.
(iv) The interval Jβ+ contains two real eigenvalues of the modified Laplacian LGp .

Thus, LGp has 2 eigenvalues given by Jβ+ .

Remark 10 Observe that
(� n−1

2 � + 1
) + (m − 2) + � n

2 � + 2 = n + m.

Remark 11 The sets of the eigenvalues given by items (i) and (ii) might not be disjoint,
i.e., αl = 1 for some even l. The same may happen for (ii) and (iii), i.e., the eigenvalue
in Jγ given by item (iii) equals to 1. The eigenvalue 1 in such scenarios are counted
separately from the m − 2 eigenvalues 1 given in item (ii). In such scenarios, the
multiplicity of eigenvalue 1 is m − 1.

The proof of Lemma 14 is postponed to Sect. 5.3.1. We now prove Theorem B.
Part (i) of Theorem B follows from Theorem C which is proved later in Sect. 5.4.

Here, we show that part (i) of Theorem B satisfies the corresponding assumptions of
Theorem C. Recall S given by (9). Setting w0 = 1 and wi = 0, where 1 ≤ i ≤ n − 1,
gives

S = α2 [δ (α2 − m) + δ0 − δ]
(
α2 − β−

m,1

) (
α2 − β+

m,1

) (33)
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and

n−1∑

i=0

wi cos
(n

2
− i

)
θ = cos

nθ

2
, where θ = π − cos−1

(
β−
m,1 − 2

2

)

. (34)

Take into account that δ0 ≤ δ and α2 < 4. When α2 < β−
m,1, we have S < 0. On the

other hand, when α1 < β−
m,1 < α2, we have π

n < θ < 2π
n and so cos nθ

2 < 0, where
θ is as above. Therefore, part (iia) of Theorem B follows from parts (iia) and (iie) of
Theorem C, and part (iib) of Theorem B follows directly from part (iic) of Theorem
C.

Part (iia) of Theorem B is a consequence of part (iia) of Theorem C, since, as
mentioned above, when α2 < β−

m,1, we have S < 0.

Let us now prove part (iib) of Theorem B. First, assume α2 < β−
m,1. This implies

κ > 2. Thus, by Lemma 14, LGp has a unique eigenvalue in the interval J2 = (α1, α2)

which is indeed the spectral gap of LGp . Denote it by λ2
(
LGp

)
. Since the spectral

gap of the unmodified Laplacian LG is α2, we have λ2
(
LGp

)
< λ2 (LG). This shows

that, in the case α2 < β−
m,1, the statement of part (iia) of Theorem B holds for arbitrary

modification δ that satisfies δ < δ0β
+
m,1.

Now, assume β−
m,1 < α2. This implies κ = 2, i.e., Jβ− = (0, α2). According

to Lemma 14, LGp has a unique eigenvalue in the interval Jβ− = (0, α2) which is
indeed the spectral gap of LGp . Denote it by λ2

(
δ
)
. Note that the spectral gap of the

unmodified graph LG is λ2 (0) = β−
m,1. Following Lemma 13, we have

λ2
(
δ
) = 1

2

⎛

⎝m + 1 −
√

(m + 1)2 − 4 + 4
[
δ − δ0λ2

(
δ
)]

ξ

⎞

⎠ , (35)

where ξ = ξ
(
δ, λ2

(
δ
)) = δ − 2 sin θ tan nθ

2 and θ = π − cos−1(
λ2

(
δ
)−2
2 ). Observe

that when δ = 0 (and consequently, δ = δ0 = 0), λ2 (0) = β−
m,1 satisfies this relation.

According to (35), the proof follows from this observation that for a given δ, we have
λ2

(
δ
)

> λ2 (0), λ2
(
δ
) = λ2 (0) and λ2

(
δ
)

< λ2 (0) if and only if the expression

δ − δ0λ2
(
δ
)

ξ
(36)

be negative, zero, and positive, respectively.
First, consider the case α1 < λ2 (0) = β−

m,1 < α2. It is easily seen that β−
m,1 ≤

β−
4,1 ≈ 0.21 for all m ≥ 4. Thus, having α1 = 2

(
1 − cos π

n

)
< β−

m,1 < 0.21 yields

n ≥ 7 which implies α2 = 2
(
1 − cos 2π

n

)
< 1. Note also that as δ changes, λ2

(
δ
)

remains in (0, α2). (This is a consequence of part (iii) of Lemma 14.) Therefore,

δ − δ0λ2
(
δ
)

> δ − δ0 + δ0 [1 − α2] ≥ max{δ − δ0, δ0 [1 − α2]}. (37)
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Thus, the numerator of (36) is positive for any δ �= 0. Regarding the denominator of
(36), note that ξ(0, β−

m,1) > 0 when α1 < β−
m,1 < α2. We claim that ξ

(
δ, λ2

(
δ
))

> 0

for all δ. Taking into account that ξ is a smooth function of (δ, λ) for λ �= α1, the
claim will be proved once we show that λ2(δ) > α1 holds for any δ and also ξ does
not vanish as δ varies.

We first show that λ2(δ) > α1 for all δ. Assume the contrary; there exists δ
†
and

correspondingly δ† and δ
†
0 for which λ2(δ

†
) = α1. However, limδ→δ† ξ = ∞. On the

other hand, the numerator of (36) converges to δ† − δ
†
0α1 > 0. Therefore, as δ → δ†,

expression (36) converges to zero which, by (35), implies that λ2(δ
†
) = β−

m,1 and so

β−
m,1 = α1. This contradicts the assumption β−

m,1 /∈ {αl : 0 ≤ l < n} of Theorem B.

Thus, λ2(δ) < α1 for all δ.
Since α1 < λ2(δ) < α2 for all δ, we have that sin θ tan nθ

2 < 0, where θ =
π − cos−1(

λ2
(
δ
)−2
2 ). This yields ξ > δ for all δ which means that it cannot vanish as δ

varies. Therefore, the numerator and denominator of (36) are positive. It then follows
from (37) that when α1 < β−

m,1 < α2, we have λ2(LGp ) < λ2(LG), as desired.

Now, we consider the case 0 < λ2 (0) = β−
m,1 < α1. We first show that λ2(δ) < α1

for all δ. Assume the contrary; there exists δ
†
and correspondingly δ† and δ

†
0 for which

λ2(δ
†
) = α1. However, limδ→δ† ξ = −∞. On the other hand, the numerator of (36)

converges to δ† − δ
†
0α1 ≥ 0 (note that α1 ≤ 1 for all n ≥ 3). Therefore, as δ → δ†,

expression (36) converges to zero which, by (35), implies that λ2(δ
†
) = β−

m,1 and so

β−
m,1 = α1. This contradicts the assumption β−

m,1 /∈ {αl : 0 ≤ l < n} of Theorem B.

Thus, λ2(δ) < α1 for all δ.
It is easily seen that ξ(0, β−

m,1) < 0 when 0 < β−
m,1 < α1. We claim that

ξ(0, β−
m,1) < 0 for all δ. Note that ξ is a smooth function for λ �= α1. On the other

hand, we have shown that λ2(δ) < α1 for all δ. Thus, to prove the claim, we need

to show that ξ does not vanish as δ varies. Assume the contrary; there exists δ
†
and

correspondingly δ† and δ
†
0 such that as δ → δ

†
, we have ξ(δ, λ2(δ

†
)) → 0. By (35),

this requires the numerator of (36) to vanish at δ
†
, i.e., δ† − δ

†
0λ2(δ

†
) = 0. However,

by λ2(δ) < α1 and taking into account that α1 ≤ 1 for all n ≥ 3, we obtain

δ† − δ
†
0λ2

(
δ
†
)

≥ max
{
δ† − δ

†
0, δ

†
0

[
1 − λ2

(
δ
†
)]}

> 0. (38)

This contradicts the assumption of vanishing ξ at δ
†
. Therefore, we have ξ(0, β−

m,1) <

0 for all δ. It then follows from (37) that when 0 < β−
m,1 < α1, we have λ2(LGp ) >

λ2(LG), as desired. This finishes the proof of part (iib) and the proof of Theorem B.

5.3.1 Proof of Lemma 14

So far, we have used Lemma 14 to prove Theorem B. We are now in the position of
proving this lemma.
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The proof of Lemma 14 is based on Lemma 11. In the setting of Theorems A and
B, we assume w0 = 1 and wi = 0 for i = 1, . . . , n − 1. In this case, (28) is written as

p (θ) = 2 [cos nθ − 1] + [δ − y] · sin nθ

sin θ
. (39)

Then, Lemma 11 gives

Lemma 15 For 0 ≤ λ < 4, let θ = π − cos−1( λ−2
2 ). Consider p given by (39). Then,

(i) for even 0 ≤ l ≤ n − 1, we have p( lπn ) = 0.
(ii) for odd 1 ≤ l ≤ n − 1, we have p( lπn ) = −4.
(iii) for even 1 ≤ l ≤ n − 1, we have

p′
(
lπ

n

)

= n

sin lπ
n

[δ − y] = −nλ

sin lπ
n

· (m − λ) δ + δ − δ0

λ2 − (m + 1) λ + 1
. (40)

Proof of part (i) of Lemma 14 The proof directly follows from part (i) of Lemma 15.

Proof of part (ii) of Lemma 14 The proof directly follows from Lemma 7 and its proof.

Proof of part (iii) of Lemma 14 We first investigate p′ ( lπ
n

)
given by (40). The expres-

sion λ2 − (m + 1) λ + 1 is positive if and only if λ < β−
m,1 or λ > β+

m,1 > 4. For

λ = 2[1 − cos lπ
n ], when l is even, this gives

{
λ2 − (m + 1) λ + 1 > 0, if l is even and 2 ≤ l < κ,

λ2 − (m + 1) λ + 1 < 0, if l is even and κ ≤ l < n − 1.

When λ ∈ Jγ , for γ �= β+, we have that λ < 4 ≤ m. On the other hand, δ0 ≤ δ.
This implies that when δ > 0, we have (m − λ) δ + δ − δ0 > 0. Taking into account
that sin lπ

n > 0 for all 0 ≤ l ≤ n − 1, we obtain

{
p′ ( lπ

n

)
< 0, if l is even and 2 ≤ l < κ,

p′ ( lπ
n

)
> 0, if l is even and κ ≤ l < n − 1.

We have that p′ ( lπ
n

) = 0 if and only if δ = 0. This, together with item (i) of Lemma
15, gives

Proposition 2 Any point of {αl : where 0 ≤ l ≤ n − 1 and l is even} is a multiple
eigenvalue of LG with multiplicity 2, and a simple eigenvalue of LGp .

For even l, when 2 ≤ l < κ , we have p′ ( lπ
n

)
< 0. This means that p (θ) is positive

for θ close to lπ
n and θ < lπ

n . On the other hand, p
(

(l−1)π
n

)
= −4 < 0. Thus, by

the intermediate value theorem, the function p has a root in the interval
(

(l−1)π
n , lπ

n

)
.

This implies that LGp has a real eigenvalue in Jl . Analogously, for even l and when
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κ ≤ l < n − 1, the function p has a root in the interval
(
lπ
n ,

(l+1)π
n

)
which means

that LGp has a real eigenvalue in Jl .
At δ = 0 (when there is no modification), the interval Jβ− has the eigenvalue β−

m,1.

As δ changes, the eigenvalue β−
m,1 starts to move. However, since ακ−2 and ακ are

simple roots, this eigenvalue cannot leave the interval Jβ− = (ακ−2, ακ). This means
that LGp has a real root in Jβ− .

We have shown that each interval Jγ for γ ∈ I and γ �= β+ contains at least
one real eigenvalue of LGp . To finish the proof, we need to show that each of these
intervals has exactly one eigenvalue (apart from m − 2 eigenvalues 1 counted in item
(ii) that might be located in one of these intervals). Note that we have already counted
n +m − 2 = � n−1

2 � + 1+m − 2+ � n
2 � real eigenvalues of LGp . The matrix LGp has

n + m eigenvalues. Thus, the proof of part (iii) of this lemma is done after we prove
part (iv) of this lemma below. ��

Proof of part (iv) of Lemma 14 So far, we have shown that the matrix LGp has at least
n + m − 2 eigenvalues located outside of the interval Jβ+ , and as δ varies, none of
these eigenvalues enters this interval. Notice that for arbitrary δ > 0, when n is even,
p( (n−1)π

n ) < 0, and when n is odd, p( (n−1)π
n ) = 0 and p′( (n−1)π

n ) �= 0. This means
that if there is any real eigenvalue located in Jβ+ , then it cannot leave this interval as δ

changes. As shown below, for sufficiently small δ �= 0, the interval Jβ+ has exactly two
real eigenvalues. On the other hand, LGp is a realmatrix. Therefore, if it possesses non-
real eigenvalues, then they need to appear as pairs (complex conjugates). This means
that, for a given δ, we either have two real eigenvalues in Jβ+ or none. Therefore, the
proof of part (iv) of Lemma 14 is done if we show that, under the condition δ < δ0β

+
m,1,

the interval Jβ+ has at least one real eigenvalue.
First, we show that when δ �= 0 is sufficiently small, the interval Jβ+ has exactly two

real eigenvalues. For even n, this is obvious since at δ = 0, we have two eigenvalues
λ = 4 and λ = β+

m,1, and so, as δ varies and remains sufficiently small, these two
eigenvalues might move but they remain in Jβ+ and do not collide (so, they remain
real). The case of odd n is similar; since for δ �= 0, we have p′ (αn−1) > 0 and
p(4) < 0, the intermediate value theorem implies that there is a root in the interval
(αn−1, 4). On the other hand, the eigenvalue β+

m,1 ∈ (4,∞) of LG might move as δ

varies but as far as δ is sufficiently small, it does not collide with the eigenvalue that
we just found in the interval (αn−1, 4). Therefore, we have that for small δ �= 0, the
interval Jβ+ contains exactly two real eigenvalues of LGp .

We now prove that Jβ+ has at least one real root when δ < δ0β
+
m,1. Evaluating (25)

at λ > 4 gives

P2 (λ) = (−1)n−1 · sinh nθ

sinh θ

[
2 sinh θ

sinh nθ
· [(−1)n − cosh nθ

] + δ − δ − δ0λ

λ2 − (m + 1) λ + 1

]

,

where θ = cosh−1( λ−2
2 ). Note that λ2 − (m + 1) λ + 1 vanishes at λ = β±

m,1. Thus,

when δ < δ0β
+
m,1, we have
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lim P2 (λ) =
⎧
⎨

⎩

+∞, for even n, as λ →
(
β+
m,1

)−
,

−∞, for odd n, as λ →
(
β+
m,1

)−
.

(41)

When n is even, we have P2 (4) = 4n[(m−3)δ−δ0]
13−4m < 0. Taking (41) and the fact that P2

is smooth on (αn−1, β
+
m,1) into account (see Lemma 9), the intermediate value theorem

implies the existence of a real root of P2 in (4, β+
m,1) ⊂ Jβ+ , as desired.

For the case of odd n, we have p( (n−1)π
n ) = 0 and p′( (n−1)π

n ) > 0. Thus, for
λ > αn−1 and close to αn−1, we have P2(λ) > 0. Taking (41) and the fact that P2 is
smooth on (αn−1, β

+
m,1) into account (see Lemma 9), the intermediate value theorem

implies the existence of a real root of P2 in (αn−1, β
+
m,1) ⊂ Jβ+ , as desired. This ends

the proof.

5.4 Proof of Theorem C

We first prove that for sufficiently small δ, all the eigenvalues of LGp are real. It
is known that the roots of a polynomial (in our case, the characteristic polynomial
of LGp ) depend continuously on the coefficients of that polynomial. Therefore, if
{λi

(
δ
) : i = 1, . . . , n + m} is the spectrum of LGp , then λi

(
δ
)
is a continuous

function of δ. It is a direct consequence of the implicit function theorem that if λi (0)
is a simple eigenvalue of LG , then for sufficiently small δ, we have that λi

(
δ
)
is real.

Thus, to prove our statement, we need to investigate how multiple eigenvalues of the
unmodified Laplacian LG behave as δ varies.

Recall Proposition 1. According to Remark 5 and the assumption β−
m,w /∈ {αl :

0 ≤ l < n} of the theorem, we have that β−
m,w and β+

m,w are simple eigenvalues of
LG . Note that 1 ∈ {αl : 0 ≤ l ≤ n, and l is even} if and only if n

6 is an integer.
First, assume n

6 /∈ Z. In this case, the multiplicity of all the eigenvalues αl except for
0 and 4 (the eigenvalue 4 appears only when n is even) is 2. However, it follows from
Lemma 11 that, for each even l, as δ varies, one of the two eigenvalues αl remains as an
eigenvalue of LGp for small arbitrary δ, and the other eigenvalue moves continuously.
This means that from each of the multiple eigenvalues αl , two real eigenvalues get
born. On the other hand, following Lemma 7 and its proof, the eigenvalue 1 remains
an eigenvalue of LGp with multiplicity m − 2. This implies that when n

6 /∈ Z and δ is
sufficiently small, all the eigenvalues of LGp are real. The case of n

6 ∈ Z is similar.
With the same conclusion, except for l = n

6 , i.e., αl = 1, two real eigenvalues get
born from each eigenvalue αl , where l = 1, . . . , n − 1. Regarding αl = 1 (note that
the multiplicity of 1 as an eigenvalue of LG in this case is m), we have that αl = 1
remains an eigenvalue of LGp with multiplicity m − 1 and a new real eigenvalue gets
born from it. This proves that when δ is sufficiently small, all the eigenvalues of LGp

are real.
The rest of the proof of part (i) of Theorem C is based on the following lemma

Lemma 16 Consider p and S given by (28) and (9), respectively. We have

(i) The expressions S and p′ ( 2π
n

)
have the same sign.
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(ii) ssume α2 < β−
m,w. Then, for any arbitrary δ, we have p

(
π
n

)
< 0.

(iii) or sufficiently small δ, we have p
( 3π

n

)
< 0.

Proof The first part follows from the relation p′ ( 2π
n

) = n
sin 2π

n
S (see relation (29)).

For the other two parts, note that by Lemma 11 and for odd 1 ≤ l ≤ n − 1, we have
p( lπn ) = −4 − 2y

sin lπ
n

∑n−1
i=0 wi sin ilπ

n . Regarding the case l = 1, assumption α2 <

β−
m,w implies that α2 < 1 (see Remark 5) and therefore α1 < 1. Thus, δ − δ0α1 > 0,

and therefore, y = y(α1) = δ−δ0α1
α2
1−(m+w)α1+w

> 0. On the other hand, sin iπ
n ≥ 0 for

i = 0, . . . , n − 1 and so
∑n−1

i=0 wi sin ilπ
n ≥ 0. This implies p

(
π
n

)
< 0 for any δ.

The proof of the last part follows from

∣
∣
∣
∣

2y
sin 3π

n

∑n−1
i=0 wi sin 3iπ

n

∣
∣
∣
∣ � 4 which holds

when δ is small enough.

Proof of parts (iia) and (iib) of Theorem C Since α2 < β−
m,w, the spectral gap of LG is

α2. It follows from Lemma 11 that p
( 2π

n

) = 0 for all δ. On the other hand, p
(

π
n

)

and p
( 3π

n

)
are both negative for sufficiently small δ. Therefore, by intermediate value

theorem, the eigenvalue that gets born from α2 as δ varies is located in the interval
(α2, α3) if p′ ( 2π

n

)
> 0 and is located in (α1, α2) if p′ ( 2π

n

)
< 0. On the other hand,

by part (i) of Lemma 16, we have that p′ ( 2π
n

)
and S have the same sign. This proves

parts (iia) and (iib) of Theorem C.

Proof of parts (iic), (iid), and (iie) of Theorem C Sinceβ−
m,w < α2, the spectral gap of LG

is β−
m,w. So, we need to see how β−

m,w

(
δ
)
changes as δ varies. By (32), for sufficiently

small δ �= 0, we have that β−
m,w

(
δ
)

> β−
m,w if

(
δ−δ0β

−
m,w

)
ψ

ξ
< 0, and β−

m,w

(
δ
)

< β−
m,w

if
(
δ−δ0β

−
m,w

)
ψ

ξ
> 0. Note that δ − δ0β

−
m,w > 0, since δ ≥ δ0 and β−

m,w < 1. Thus, all

we need to do is to investigate the sign of
ψ
(
w,β−

m,w

)

ξ
(
δ,β−

m,w

) .

Note that ξ
(
δ, β−

m,w

)
and ξ

(
0, β−

m,w

)
have the same sign provided that δ is

sufficiently small and ξ
(
0, β−

m,w

) �= 0. Following Lemma 10, ξ
(
0, β−

m,w

) =
−2 sin θ tan nθ

2 , where θ = π − cos−1(
β−
m,w−2
2 ). It is easily seen that ξ

(
0, β−

m,w

)
< 0

if 0 < β−
m,w < α1, and ξ

(
0, β−

m,w

)
> 0 if α1 < β−

m,w < α2. On the other hand, by
Lemma 10,

ψ
(
w, β−

m,w

) = 1

cos nθ
2

n−1∑

i=0

wi cos
(n

2
− i

)
θ,

where θ = π − cos−1(
β−
m,w−2
2 ). Note that cos nθ

2 < 0 if α1 < β−
m,w < α2, and

cos nθ
2 > 0 if 0 < β−

m,w < α1. Moreover, when 0 < β−
m,w < α1, we have that

cos
( n
2 − i

)
θ > 0 for i = 0, . . . , n − 1, and therefore,

∑n−1
i=0 wi cos

( n
2 − i

)
θ > 0.
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We have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ
(
w,β−

m,w

)

ξ
(
0,β−

m,w

) < 0 if 0 < β−
m,w < α1,

ψ
(
w,β−

m,w

)

ξ
(
0,β−

m,w

) > 0 if α1 < β−
m,w < α2, and

∑n−1
i=0 wi cos

( n
2 − i

)
θ < 0,

ψ
(
w,β−

m,w

)

ξ
(
0,β−

m,w

) < 0 if α1 < β−
m,w < α2, and

∑n−1
i=0 wi cos

( n
2 − i

)
θ > 0.

This ends the proof of parts (iic), (iid) and (iie) of Theorem C.

Proof of part (ii) of Theorem C Since α2 < β−
m,w, we have λ2 (LG) = α2 (see Propo-

sition 1). On the other hand, by Lemma 16, S and p′ ( 2π
n

)
have the same sign. If

S < 0, since p
(

π
n

)
< 0 (see Lemma 16), the intermediate value theorem implies

that LGp has an eigenvalue (p has a root) smaller than α2. Denote this eigenvalue by
λ
(
δ
)
. When the modification is small, this eigenvalue is indeed the spectral gap of

LGp , as discussed in the proof of part (iia). However, for large modification, there is
the possibility of the emergence of non-real eigenvalues of LGp . In such a scenario,
there might be complex conjugates eigenvalues of LGp whose real part decreases and
becomes smaller than λ

(
δ
)
. This means that the spectral gap is not necessarily a real

number; however, since λ
(
δ
)

< α2, we always have Re
(
λ2

(
LGp

))
< λ2 (LG). This

proves part (iia) of the theorem.
The proof of part (iia) is similar. For small modifications, as discussed in the proof

of part (iib) of the theorem, we have that λ2
(
LGp

) = α2. In fact, α2 is an eigenvalue
of LGp for arbitrary δ. However, as we discussed above, there is a possibility of the
emergence of non-real eigenvalues for LGp when the modification δ is large. Thus,
this might be the case that the real parts of these non-real eigenvalues reduce, and they
become the spectral gap of LGp . In any case, the property Re

(
λ2

(
LGp

)) ≤ λ2 (LG)

always holds. This proves part (iib) of the theorem.

6 Conclusions

This paper investigates how modifying a network affects the Laplacian spectral gap
and, in turn, the collective dynamics (synchronization). We considered modifications
of three networkswithmaster–slave topology,where themaster is a cycle, and the slave
is a star. The cycle and star were chosen since they are common motifs in real-world
networks. The considered modifications are of arbitrary size and not necessarily (suf-
ficiently) small. Our investigation was based on the spectral analysis of the Laplacian
matrices of these networks. Our results are rigorous and accompanied by simulations
of networks of coupled Lorenz oscillators that admit our mathematical results.

One particular interest of this paper was a paradoxical scenario known as Braess’s
paradox in which improving network connectivity leads to functional failure, such as
synchronization loss.We explored and classified such scenarios in these three network
models. We have shown that this counter-intuitive scenario in our models is not rare
at all. For instance, a critical value exists (proportional to the square root of the size

123



   60 Page 30 of 34 Journal of Nonlinear Science            (2024) 34:60 

of the star) for which Braess’s paradox happens in models I and II if the cycle size
exceeds this value.
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A Synchronization of Coupled Rössler Oscillators

We consider the network given model II, with an isolated dynamics f : R3 → R
3 as

the Rössler oscillator, described as

ẋ = −y − z

ẏ = x + 0.2y

ż = 0.2 + z(x − 5.7).

(A1)

Its dynamics is also chaotic like the Lorenz attractor.

A.1 Hindering Synchronization

At time zero, we consider model II, where the sizes of the cycle and star subgraphs
are n = m = 15. They are initially connected via a directed link from the cycle to the
star subgraph where w0 = 1, as shown in the left upper panel of Fig. 7.

We consider H = I as the coupling function between oscillators. We randomly
choose initial conditions from the uniform distribution over [0.5, 1) and integrate
the network until time t = 1000 s. In this master–slave configuration, the network
converges toward a synchronous motion, where the mean error 〈E〉 goes to zero.
At time t = 1000 s, we break the master–slave configuration by adding the cutset
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edges δi = 1, where i = 0, 1, . . . ,m − 1. This is represented as the red edges on
the right upper panel of Fig. 7. Along with the network modification, we introduce
small perturbations to each state randomly selected from the uniform distribution over
[0.01, 0.02). As observed, this modification leads to an instability of the synchronous
motion.

We can use Theorem B to understand the hindrance of synchronization. We add
the cutset edges δi = 1, where i = 0, 1, . . . ,m − 1, which corresponds to the global
modification case in TheoremB.We focus to the case b sinceα2 = 0.17, β−

15,1 = 0.06.

We observe that δ < δ0β
+
15,1 where δ = 15, δ0 = 1, β+

15,1 = 15.94. Thus, we can
use local modification results from Theorem B. The theorem says λ2(LGp ) < λ2(LG)

sinceα1 < β−
15,1 whereα1 = 0.04. In this case,we know thatG ismore synchronizable

than Gp by Definition 1.

A.2 Enhancing Synchronization

Again, we consider model II with n = 10 and m = 20 along with H = I as the
coupling function as before.

We randomly choose initial conditions from the uniform distribution over [0.5, 1)
and integrate the network until time t = 1000 s. In this master–slave configuration, the
network does not synchronize, as can be observed in the mean synchronization error
〈E〉. At time t = 1000 s, we break the master–slave configuration by adding a cutset
and modification edges are w0 = 1 and δi = 1, where i = 0, 1, . . . ,m − 1. This is
represented as the red edges on the right upper panel of Fig. 8. After this modification,
the synchronous state becomes stable, and the synchronization error converges to zero.

Again, we use Theorem B to deduce the synchronization enhancement. We add
the cutset edges δi = 1, where i = 0, 1, . . . ,m − 1, which corresponds to the global

Fig. 7 Hindrance of synchronization due to link addition in networks of coupled Rössler oscillators. The
figure shows the synchronization error over time with link addition occurring at time t = 1000 s. The sizes
of the cycle and star subgraphs are set to n = 15 and m = 15, and subgraphs are connected via a directed
link from the cycle subgraph to the star subgraph where w0 = 1. At t = 1000 s, we add the red links to
each system with unit weight. After perturbation, the system does not return to synchronization
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Fig. 8 Enhancement of synchronization due to link addition in a network of coupled Rössler oscillators.
The sizes of the cycle and star subgraphs are n = 10 and m = 20, initially, and subgraphs are connected
via a directed link from the cycle to the star where w0 = 1. We integrate the network until time t = 1000
s and find the synchronization is unstable. After the red links are added to the system at t = 1000 s, the
synchronization mean error 〈E〉 goes to zero, indicating that the modification leads to stable synchronous
dynamics

modification case in TheoremB.We focus to the case b sinceα2 = 0.38, β−
20,1 = 0.05.

We observe that δ < δ0β
+
20,1 where δ = 20, δ0 = 1, β+

20,1 = 20.95. Thus, we can use

local modification results. The theorem says λ2(LG) < λ2(LGp ) since β−
20,1 < α1

where α1 = 0.1. In this case, we know that Gp is more synchronizable than G by
Definition 1.

B Technical Lemmas

Lemma B.17 Consider the block matrix
(
A B
C D

)
and assume D is invertible. Define

E := A − BD−1C. Then,

(i) det
(
A B
C D

) = det (D) × det (E).

(ii) Assume E is invertible. Then,
(
A B
C D

)−1 =
(

E−1 −E−1BD−1

−D−1CE−1 D−1+D−1CE−1BD−1

)
.

Proof See, e.g., Meyer (2000).

Lemma B.2 For m ≥ 4, let X0, X1,..., Xm−1 be real-valued functions defined on a
subset of R, and consider the m × m matrix

M = M (λ) =
(
m − λ + X0 (λ) −1 + X1 (λ) −1 + X2 (λ) · · · −1 + Xm−1 (λ)

1m−1 (1 − λ) I

)

.

Let λ0 ∈ R, and assume that all the functions Xi are defined at λ0.

(i) There exists 0 �= v ∈ R
m such that M(λ0)v = 0 if and only if λ0 = 1 or λ = λ0

satisfies

λ2 − [1 + m + X0 (λ)] λ + 1 +
m−1∑

i=0

Xi (λ) = 0. (B2)
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(ii) Assume that there exists 1 ≤ i ≤ m − 1 such that Xi (1) �= 1. Then, the vector
subspace E right ⊂ R

m (resp. E left ⊂ R
m) of all the solutions v of the equation

M(1)v = 0 (resp. v�M(1) = 0) has m − 2 dimensions.
(iii) Let v = (v0, v1, . . . , vm−1) ∈ R

m. Then, any v ∈ E right satisfies the property
v0 = 0. Moreover, if there exists 1 ≤ i ≤ m − 1 such that Xi (1) �= 1, then any
v ∈ E left satisfies the property v0 = 0 too.

Proof For v = (v0, v1, . . . , vm−1) ∈ R
m , we have M(λ)v = 0 if and only if

[m − λ + X0 (λ)] v0 + ∑m−1
i=1 [−1 + Xi (λ)] vi = 0, and (B3)

v0 + (1 − λ) vi = 0, for all 1 ≤ i ≤ m − 1. (B4)

This implies that for λ = 1, the equation M(1)v = 0 has a solution v if and only if
v ∈ E right for

E right := {v ∈ R
m | v0 = 0 and 〈(v1, v2, · · · , vm−1) ,

(X1 (1) − 1, . . . , Xm−1 (1) − 1)〉 = 0}, (B5)

where 〈·, ·〉 is the standard Euclidean inner product in Rm−1.
If M(1)v = 0, for λ �= 1, has a solution v, then it follows from (B4) that v0 �= 0

and vi = v0
1−λ

, for all 1 ≤ i ≤ m − 1. Substituting this into (B3) and multiplying the
derived equation by 1 − λ give (B2). This proves part (i).

Part (ii) follows from (B5). To prove part (iii), let v ∈ E left . By v�M(1) = 0,
we have that if there exists 1 ≤ i ≤ m − 1 such that Xi (1) �= 1, then v0 = 0
and v1 + v2 + · · · + vm−1 = 0. The set of all vs satisfying these properties is a
(m − 2)-dimensional subspace of Rm . This finishes the proof of the lemma.
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