
Journal of Nonlinear Science           (2024) 34:53 
https://doi.org/10.1007/s00332-024-10033-7

Strong Symmetry Breaking in Coupled, Identical
Lengyel–Epstein Oscillators via Folded Singularities

Naziru M. Awal1 · Irving R. Epstein1 · Tasso J. Kaper2 · Theodore Vo3

Received: 9 May 2023 / Accepted: 14 March 2024
© The Author(s) 2024

Abstract
We study pairs of symmetrically coupled, identical Lengyel-Epstein oscillators, where
the coupling can be through both the fast and slow variables. We find a plethora of
strong symmetry breaking rhythms, in which the two oscillators exhibit qualitatively
different oscillations, and their amplitudes differ by as much as an order of mag-
nitude. Analysis of the folded singularities in the coupled system shows that a key
folded node, located off the symmetry axis, is the primary mechanism responsible
for the strong symmetry breaking. Passage through the neighborhood of this folded
node can result in splitting between the amplitudes of the oscillators, in which one
is constrained to remain of small amplitude, while the other makes a large-amplitude
oscillation or a mixed-mode oscillation. The analysis also reveals an organizing center
in parameter space, where the system undergoes an asymmetric canard explosion, in
which one oscillator exhibits a sequence of limit cycle canards, over an interval of
parameter values centered at the explosion point, while the other oscillator executes
small amplitude oscillations. Other folded singularities can also impact properties of
the strong symmetry breaking rhythms. We contrast these strong symmetry breaking
rhythms with asymmetric rhythms that are close to symmetric states, such as in-phase
or anti-phase oscillations. In addition to the symmetry breaking rhythms, we also find
an explosion of anti-phase limit cycle canards, which mediates the transition from
small-amplitude, anti-phase oscillations to large-amplitude, anti-phase oscillations.
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1 Introduction

Symmetry breaking arises in physics, chemistry, biology,mathematics, and other areas
of science and engineering whenever a model or system possesses a symmetry, but a
solution of themodel or a state of the system does not reflect that symmetry. Symmetry
breaking can take a myriad of forms (Anderson 1972; Beekman et al. 2019; Collins
and Stewart 1993; Golubitsky and Stewart 2004; Gross 1996; Li and Bowerman 2010;
Mainzer 1997; Stewart 1999). For systems of coupled oscillators, symmetry break-
ing famously can involve clusters of oscillators exhibiting coherent (or synchronized)
behavior,with other clusters exhibiting incoherent (or desynchronized) behavior, form-
ing chimeras, see, for example, (Kuramoto and Battogtokh 2002; Abrams and Strogatz
2004; Motter 2010; Kemeth et al. 2018). Chimeras occur both in large systems of cou-
pled oscillators and in small systems. One goal of current research is to understand
minimal chimeras, i.e., conditions under which a minimal number of oscillators can
exhibit chimeras or chimera-like modes of activity (Kemeth et al. 2018; Panaggio et al.
2016; Hart et al. 2016; Maistrenko et al. 2017; Wojewoda et al. 2016; Burylko et al.
2022; Awal et al. 2019).

In pairs of symmetrically coupled identical oscillators, rhythms may be called
strong symmetry breaking rhythms when the amplitudes of the two oscillators are
substantially different or when the two oscillators exhibit qualitatively different types
of dynamics. Such rhythms have recently been discovered in pairs of symmetrically
coupled, identical oscillators of fast–slow type (Awal et al. 2019; Awal and Epstein
2021, 2020; Awal et al. 2023), including van der Pol oscillators and Lengyel-Epstein
oscillators. Asymmetric rhythms in which the amplitudes of the oscillators differ
substantially have also been observed in Wiehl et al. (2021).

Examples of strong symmetry breaking rhythms include those in which one
oscillator exhibits small-amplitude oscillations (SAOs) while the other undergoes
large-amplitude oscillations (LAOs). These twomodes of oscillationhave substantially
different amplitudes and are qualitatively different, since the SAOs are oscillations
that are close to a steady state of an individual oscillator, while the LAOs are classi-
cal relaxation oscillations consisting of long segments near widely separated states in
alternationwith rapid jumps between them.Other examples of strong symmetry break-
ing include rhythms in which one oscillator exhibits SAOs while the other displays
mixed-mode oscillations (MMOs). EachMMO consists of one or more LAOs and one
or more SAOs, so that the amplitude of the oscillator exhibitingMMOs is substantially
larger than that of the other oscillator, and they are also of qualitatively different types.
There also exist strong symmetry breaking rhythms in which one oscillator exhibits
SAOs, while the other undergoes limit cycle canards (LCCs). These strong symme-
try breaking rhythms are labeled SAO-LAO, SAO-MMO, and SAO-LCC rhythms,
respectively (Awal et al. 2023).

Strong symmetry breaking contrasts with asymmetric rhythms in which pairs of
identical oscillators are close to a symmetric state of the symmetrically coupled sys-
tem. Such asymmetric rhythms arise, for example, when two identical oscillators are
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close to being either in-phase or anti-phase. Examples include the asymmetric spiking
and asymmetric bursting rhythms in the Butera model of the pre-Bötzinger complex
presented in Chapter 5 of Roberts (2018) and in Roberts et al. (2015), as well as
asymmetric rhythms that are near in-phase states in coupled van der Pol oscillators in
a study of the role maximal canards play in synchronization of relaxation oscillators
in Ersöz et al. (2017). Also, asymmetric states that are close to symmetric states are
known to exist in other, more general systems of coupled oscillators.

Symmetry breaking has also been reported recently in pairs of identical FitzHugh–
Nagumo equations (Pedersen et al. 2022). A pitchfork bifurcation of limit cycles is
studied, and it is shown how coupling two spiking cells can lead to bursting. The burst
events are MMOs, even though neither planar oscillator can exhibit MMOs by itself.
The system features a cusp point, and a particular folded node gives rise to theMMOs.
The variables u‖ = 1

2 (u1 + u2) and u⊥ = 1
2 (u1 − u2) are used, and one can measure

the symmetry breaking using u⊥.
In this article, we analyze strong symmetry breaking rhythms in a pair of coupled,

identicalLengyel-Epstein (LE) oscillators, andweuse the theoryof folded singularities
(Takens 1976; Szmolyan andWechselberger 2001;Wechselberger 2005) to understand
the mechanisms responsible for the strong symmetry breaking.

1.1 Symmetrically Coupled, Identical Lengyel–Epstein Oscillators

The LE model is a paradigm relaxation oscillator in chemistry, where it describes
temporal oscillations and Turing pattern formation in the chlorine dioxide-iodine-
malonic acid (CDIMA) reaction (Lengyel et al. 1990) and in the chlorite-iodide-
malonic acid (CIMA) reaction (Lengyel and Epstein 1991). See also (Haim et al.
2015; Jang et al. 2004; Jensen et al. 1994). It has an activator, u, corresponding to the
concentration of the iodine-containing species, and an inhibitor, v, representing the
concentration of the chlorine-containing species. The equations governing the time
evolution of the species concentrations are

u̇ = a − u − 4uv

1 + u2
=: f (u, v)

v̇ = β

(
u − uv

1 + u2

)
=: βg(u, v).

(1.1)

Here, the overdot denotes the derivative with respect to time t , a > 0 is a parameter
related to the initial reactant concentrations, β ≥ 0 is a small parameter that measures
the separation of time scales, u is the fast activator variable, and v is the slow inhibitor
variable.

We focus on the parameter regime in which (1.1) is the prototype of a classical
relaxation oscillator; so we consider a > 3

√
3 ≈ 5.19615. For these values of a, the

fast nullcline

{ f = 0} =
{
v = 1

4u
(a − u)

(
1 + u2

)}
(1.2)

is a cubic-like curve that consists of three branches (see Fig. 1). There are two attracting
branches, where the derivative
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Fig. 1 Phase plane of a single Lengyel-Epstein oscillator. The LCCs exist in an exponentially small param-
eter interval of a values that are O(β) close to the value of ac (recall (1.5)), where the slow nullcline (red
curve, g = 0) intersects the fast nullcline (blue curve, f = 0) at a fold point (blue marker, ∂ f

∂u = 0).
The headless/jump-back canards (magenta and green) are separated from the canards with head/jump-away
canards (cyan, orange, and purple) by the maximal canard (black). The LCCs facilitate the transition from
a fixed point to a relaxation oscillation (yellow)

∂ f

∂u

∣∣∣∣{ f =0}
= −a − au2 + 2u3

u
(
1 + u2

)

is negative. In between, there is a repellingbranch alongwhich thederivative is positive.
In the (u, v) phase plane, the fast nullcline is a cubic-like critical manifold of (1.1)
with β = 0 (Fig. 1). There are two fold points, L±, with u, v > 0. Here, the subscripts
indicate that the u-coordinate of L− is smaller than the u-coordinate of L+. On each
of the three open branches, the critical manifold is normally hyperbolic, but the fold
points are non-hyperbolic. (For completeness, we note that with 0 < a < 3

√
3, the fast

nullcline consists of only one branch with negative slope, so that all of the equilibria
in the first quadrant are attracting fixed points of the fast subsystem. Hence, classical
relaxation oscillations do not occur with 0 < a < 3

√
3).

Single LE oscillators (1.1) have an equilibrium at

(ue, ve) =
(
a

5
, 1 + a2

25

)
(1.3)

where the fast nullcline intersects the slow nullcline (g(u, v) = 0). This equilibrium
undergoes a Hopf bifurcation at

aH = 5

6

(√
60 + β2 + β

)
, (1.4)
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at which the equilibrium transitions from being stable to unstable. Also, there is a
canard point precisely when the equilibrium lies at the left fold point, i.e., to leading
order at

(uc, vc, ac) =
(√

5

3
,
8

3
, 5

√
5

3

)
, (1.5)

where we note that 5
√

5
3 = 6.454972 . . .. See Fig. 1. The asymptotic expansion of ac

is ac(β) = 5
√

5
3 +5β+O (β2

)
. 1 Hence, in the parameter regime a > 3

√
3, single LE

oscillators can exhibit the full spectrum of different types of oscillations characteristic
of planar fast–slow systems, including SAOs, LCCs, and LAOs. Moreover, the canard
point ac(β) also serves as one of the two main organizing centers for the coupled
system, as we show below.

The main model studied in this article is a pair of symmetrically coupled, identical
LE oscillators:

u̇1 = a − u1 − 4u1v1
1 + u21

+ du(u2 − u1),

v̇1 = β

(
u1 − u1v1

1 + u21
+ dv(v2 − v1)

)
,

u̇2 = a − u2 − 4u2v2
1 + u22

− du(u2 − u1),

v̇2 = β

(
u2 − u2v2

1 + u22
− dv(v2 − v1)

)
.

(1.6)

Here, du represents the coupling strength for the activator species u, and dv represents
the coupling strength of the inhibitor species v. A schematic of the coupling is shown
in Fig. 2. The coupling is symmetric, and (1.6) is invariant under the interchange of
the labels on the oscillators, u1 → u2, v1 → v2, as may be seen directly from the
coupling schematic and from the system (1.6). That is, if (u1(t), v1(t), u2(t), v2(t))
is a solution of (1.6), then (u2(t), v2(t), u1(t), v1(t)) is another solution obtained
by reflection across the axis of symmetry {u1 = u2, v1 = v2}. Further information
about the coupled model (1.6), including the equilibria, the Hopf bifurcations, and
the branches of classical in-phase (IP) and anti-phase (AP) rhythms, is presented in
Sect. 2.

In the (u1, v1, u2, v2) phase space, the coupled system (1.6) has a two-dimensional
critical surface S0, which is the Cartesian product of the fast nullclines of the indi-
vidual oscillators. On this critical surface/manifold, which may be referred to as a

1 The expansion follows from the results in Section II.B in Awal and Epstein (2020). It also follows from
(E.1) below, in the special case with du = 0 and dv = 0. Moreover, we have confirmed it independently by
directly applying the method of geometric desingularization, as well as the iterative method of Zvonkin and
Shubin (1984) and Brøns (2013) applied to a transformed version of (1.1) with w = 4v − βu that removes
the dependence of the second component of the vector field on the slow variable; see system (3) in Awal
and Epstein (2020).
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Fig. 2 Reciprocal coupling
scheme of(1.6)

Cartesian product quilt (Awal et al. 2023), there are a number of key points that are
classified mathematically as folded singularities. In general fast–slow systems, these
key points were first studied in Takens (1976), and over the past two decades they
have been studied extensively in many fast–slow systems, see for example (Szmolyan
andWechselberger 2001; Wechselberger 2005; Dumortier and Roussarie 1996; Brøns
et al. 2006; Krupa and Wechselberger 2010; Mitry et al. 2013; Vo and Wechselberger
2015; de Maesschalck et al. 2021).

1.2 Principal Results

In this article, we build on the brief introduction of some asymmetric rhythms of (1.6)
presented in Sect. 4 of Awal et al. (2023).

We begin by analyzing the different types of folded singularities in (1.6), deter-
mining where they exist in parameter space, and the bifurcations they undergo (see
Sect. 3).We show that there is a key folded node (FN), near the local minima of the fast
nullclines of both oscillators – but off the symmetry axis of (1.6) – which is the main
mechanism responsible for the strong symmetry breaking. Orbits that enter into the
neighborhood of this FN are guided through the neighborhood by its strong-, weak-,
and secondary canards. We show that the location of this key FN and the orientation
of its canards on and near the quilt can guide the orbits in a manner that splits the
oscillators, i.e., strongly breaks the symmetry, with one constrained to remain of small
amplitude and the other guided to make a fast, large-amplitude excursion.

The simplest strong symmetry breaking rhythms created by this FN are 0210 SAO-
LAO rhythms, in which one oscillator exhibits two SAOs per period while the other
undergoes a full relaxation limit cycle (see Sect. 4). These rhythms arise when the
orbits in phase space make a simple pass each period through the neighborhood of the
key FN, near either its strong or weak canard.We show that in both cases the dynamics
induced by these canards of the FN lead to the splitting between the directions the
two oscillators subsequently go in phase space, i.e., to the strong symmetry breaking.
Moreover, we determine the relative order in time in which the SAOs and the up
and down jumps of the LAO occur, as that also depends on the passage through the
neighborhood of the FN.
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The0210 SAO-LAOrhythms are at the base of a family of strong symmetry breaking
0s10 rhythms, with s ≥ 2. We show that these arise for parameter values such that the
key FN off the symmetry axis also has secondary canards, which rotate about the weak
canard of the FN (see Sect. 4). The number of secondary canards of this FN point and
the number of rotational sectors they induce are determined by the eigenvalue ratio
of this point (Wechselberger 2005; Brøns et al. 2006). Then, in turn, the number of
SAOs the orbit exhibits is determined by the rotational sector of the FN that the orbit
enters.

Next, we show analytically that there is a second organizing center for the coupled
system (1.6) at a = aasym,c(β), where an asymmetric canard explosion takes place (see
Appendix E and especially formula (E.1)). That is, for each value of the parameter a
in a small neighborhood centered on aasym,c(β), there exist strong symmetry breaking
SAO-LCC rhythms in which the amplitude of one oscillator remains small, while the
other oscillator exhibits LCCs. The LCCs vary with the parameter, just as in the case of
a single LE oscillator, in a sequence of “headless” ducks, maximal “headless” ducks,
and ducks with heads. This is the sequence in which relaxation oscillations are born,
through a canard explosion, and the novelty here is that one of the oscillators can
undergo this sequence while the other remains of small amplitude, despite the fact
that they are identical and coupled symmetrically through both the fast and the slow
variables. We use the method of geometric desingularization to carry out the analysis
and derive the formula for aasym,c(β), which is shown to agree with the results of
numerical simulations to within the asymptotic order of the calculation.

Following this derivation, we show that in a neighborhood of aasym,c(β) in parame-
ter space, system (1.6) exhibits strong symmetry breaking 0s11s2 SAO-MMO rhythms
(see Sect. 5). In these rhythms, one oscillator makes s1 SAOs each period (just as for
the SAO-LAO rhythms), while the second oscillator exhibits an MMO each period,
which consists of one LAO and s2 SAOs. These exist stably for a broad range of
integers s1 and s2. Moreover, for these, we study how the strong symmetry breaking
is also made possible here by the canards of the same FN point, which lies off the
symmetry axis.

After presenting the results about the strong symmetry breaking rhythms, the key
folded singularity that makes them possible, and the asymmetric canard explosion that
acts as an organizing center, we present a number of new weak symmetry breaking
rhythms for system (1.6) (see Sect. 6). These are close to AP LAO and AP MMO
rhythms. We show how pairs of FNs are responsible for creating these rhythms. Also,
we contrast these dynamics with the strong symmetry breaking rhythms, emphasizing
the differences between the numbers of key folded singularities involved, how the
orbits pass through their neighborhoods, and how their canards are oriented and guide
the orbits. Moreover, these types of weak symmetry breaking rhythms, close to IP
and AP rhythms, will also exist in other symmetrically coupled, identical fast–slow
oscillators that have FNs on their critical surfaces.

In addition to the key FN off the symmetry axis, there are some folded saddle (FS)
points—both on and off the symmetry axis—which play important roles in forming
asymmetric rhythms. Folded saddle points (Mitry et al. 2013) have strong canards that
guide orbits across the fold curves of the critical surface, from a stable branch to an
unstable branch. We find that an FS point off the symmetry axis acts as an important
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Table 1 List of abbreviations used in this article

AP: anti-phase FSN p: folded saddle-node type p LE: Lengyel-Epstein

DFN: degenerate folded node fFN: faux folded node LP: limit point (saddle-node)

FF: folded focus IP: in-phase MMO: mixed-mode oscillation

FN: folded node LAO: large-amplitude oscillation SAO: small-amplitude oscillation

FS: folded saddle LCC: limit cycle canard

lane marker on the Cartesian product quilt for certain strong symmetry breaking SAO-
LAO and SAO-MMO rhythms. Also, there is an FS point on the symmetry axis, and its
strong canard acts as a separatrix relevant to the formation of weak symmetry breaking
rhythms.

The analysis of the coupled LE model (1.6) also brings to light two new phenom-
ena of independent interest. First, we discover a new type of explosion of LCCs, in
which pairs of identical fast–slow oscillators are in AP and simultaneously undergo a
canard explosion. This explosion of AP LCCs occurs over an open interval of param-
eter values, and it is a generic bifurcation. This contrasts with the situation for single
planar fast–slow oscillators (and by default also for coupled identical in-phase oscil-
lators), where the explosion of IP LCCs occurs in an exponentially narrow interval of
parameter values. Moreover, this type of explosion of AP LCCs is found to mediate
the transition from AP SAO-SAO rhythms to AP LAO-LAO rhythms, and it exists in
other coupled, identical fast–slow oscillators, aswell, including in identical van der Pol
oscillators coupled symmetrically through the fast variables (as can be shown using the
same approach as used here). Second, not only does the model (1.6) have bifurcation
curves corresponding to each of the main known types of folded saddle-node (FSN)
bifurcations, including the FSN’s of types I, II, and III (Krupa and Wechselberger
2010; Vo and Wechselberger 2015; Roberts 2018; Roberts et al. 2015), but it also has
a pitchfork bifurcation in which a folded singularity changes stability and two new
folded singularities emerge.

Bifurcation diagrams were computed using the numerical continuation software
AUTO (Doedel et al. 2007). Maximal canards were computed in AUTO by solving
appropriate two-point boundary value problems (Desroches et al. 2010). Numerical
simulationswere performed usingMatlab’s built-in nonstiff ODE solver ode113. Inde-
pendent confirmation was obtained using Mathematica’s built-in ODE solvers with
stiffness switching enabled.

2 Equilibria, Hopf Bifurcations, and Classical IP and AP Rhythms

In this section, we briefly report on the equilibria of the symmetrically coupled LE
model (1.6), on Hopf bifurcations, and on the branches of IP and AP rhythms that
emerge from these Hopf bifurcations. Most of these results are expected. They serve
as reference points in the study of strong symmetry breaking rhythms, and they are
useful for understanding the observedmultistability of rhythms in the system. The new
phenomena are the AP LCCs and the explosion in which they occur (see Fig. 3c–e).
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Exchanging the first and second equations in system (1.6), we write it as

u̇1 = a − u1 − 4u1v1
1 + u21

+ du (u2 − u1) =: f (u1, v1) + du (u2 − u1)

u̇2 = a − u2 − 4u2v2
1 + u22

− du (u2 − u1) =: f (u2, v2) − du (u2 − u1)

v̇1 = β

(
u1 − u1v1

1 + u21
+ dv (v2 − v1)

)
=: β [g(u1, v1) + dv (v2 − v1)]

v̇2 = β

(
u2 − u2v2

1 + u22
− dv (v2 − v1)

)
=: β [g(u2, v2) − dv (v2 − v1)] .

(2.1)

This system possesses either one or three equilibria, depending on parameters. We
distinguish them by whether or not they lie on the axis of symmetry {u1 = u2, v2 =
v1}. The symmetric equilibrium is

Esymm =
{
(u1, u2, v1, v2) =

(
a

5
,
a

5
, 1 + a2

25
, 1 + a2

25

)}
, (2.2)

recall (1.3). It exists for all positive values of the parameters (a, du, dv).
There are also two non-symmetric equilibria. These are given by

Ens =
{
u1 = a

5
∓

√
ap(50dv(5 + 2du) + ap)

5p
, u2 = a

5
±

√
ap(50dv(5 + 2du) + ap)

5p

}
,

(2.3)

where v1 and v2 can be calculated (see (3.2), for example), and the quantity p is

p = p(a, du, dv) = 5(5 + 2du) − 2adv(3 − 2du).

These non-symmetric equilibria exist provided the parameters satisfy ap(50dv(5 +
2du) + ap) ≥ 0. They are created in pitchfork bifurcations from the symmetric state
Esymm at

aPF = 5

4dv

·
[
5 + 2du ±√

(5 + 2du)(5 + 2du + 16d2v (3 − 2du))

3 − 2du

]
. (2.4)

The pitchfork bifurcations occur for all 0 ≤ du < 3
2 and 0 ≤ dv . Also, in the limit

du, dv → 0, the non-symmetric equilibria approach u = 0 and u = 2a
5 , respectively.

The characteristic equation of the Jacobian matrix of (2.1) evaluated at Esymm is

(
λ2 − q1λ + q2

) (
λ2 − (q1 − 2q3) λ + (q2 − 2q4)

)
= 0, (2.5)
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where q1 = fu + βgv and q2 = β( fugv − fvgu) are the trace and determinant,
respectively, of the Jacobian of a single LE oscillator, and q3 = du + βdv and
q4 = β (dv( fu − du) + du(gv − dv)) arise due to the coupling. The derivation of
the characteristic equation is given in Appendix A.

Hence, Esymm undergoes two types of Hopf bifurcations. The first Hopf bifurcation
is at

aH,IP = 5

6

(√
60 + β2 + β

)
= 5

√
5

3
+ 5

6
β + O

(
β2
)

(2.6)

(recall (1.4)), and it is supercritical for all sufficiently small β. At a = aH,IP, the first
factor in the characteristic equation vanishes, independently of the coupling strengths.
This corresponds to where the singular Hopf bifurcation of the single LE oscillator
occurs. Here, IP SAO-SAO rhythms emerge from Esymm. As illustrated by the red
branch in the bifurcation diagram of Fig. 3, the IP SAO-SAO rhythms are stable until
the nearly vertical segment of the branch is reached, where they lose stability. Then, in
a narrow parameter interval centered about a = ac, an explosion of IP LCCs occurs.
The IP oscillators behave as a single LE oscillator, and hence the canard point for
the explosion of IP LCCs is the same as the canard point for a single LE oscillator,
recall (1.5). Finally, for larger a, the oscillators undergo stable, classical IP LAO-LAO
rhythms. (For further illustration of some parameter values for which the equilibrium
Esymm, the IP SAO-SAO rhythms, and the IP LAO-LAO rhythms are stable, see
Appendix B and the data in Table 3.)

The second Hopf bifurcation of Esymm is induced by the coupling terms. It occurs
at

aH,AP = 5β + 5
√

β2 + 4 (3 − 2du − 2βdv) (5 + 2du + 2βdv)

2 (3 − 2du − 2βdv)
,

= 5

√
5 + 2du
3 − 2du

+
5
(
15 − 4du − 4d2u + 16dv

√
15 − 4du − 4d2u

)
2(3 − 2du)

(
15 − 4du − 4d2u

) β + O (β2) ,
(2.7)

provided 0 ≤ du < 3/2 and that β is sufficiently small. At a = aH,AP, the second
factor in the characteristic Eq. (2.5) vanishes, and the value of the bifurcation parameter
depends on the coupling strengths du and dv .

This Hopf bifurcation is subcritical for all O(1) values of dv (see, e.g., Fig. 3). A
branch of AP SAO-SAO rhythms emerges from Esymm (corresponding to the lower
blue branch in Fig. 3a). These AP SAO-SAO rhythms are (jump-back) canard cycles,
a.k.a. ducks without heads (see the black and red solutions in Fig. 3c).

As the AP branch is continued for larger values of a (diamond markers), a new type
of canard explosion is discovered. In particular, the AP rhythms undergo a sequence
of LCCs (see the green, blue, and magenta solutions in Fig. 3c), until they become
stable or unstable AP LAO-LAO rhythms, depending on parameters (e.g., for small
dv they are stable, and for large dv , including dv = 0.5, they are unstable).

A canard explosion of AP LCCs has not been observed before. In the four-
dimensional space of solutions of (1.6), the explosion of AP LCCs occurs over a
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Fig. 3 a Branches of IP rhythms (red) and AP rhythms (blue) of (1.6). These branches emanate from the
symmetric equilibrium Esymm (black) at aH,IP and aH,AP, respectively (black dots in the inset), see (2.6)
and (2.7). Stable rhythms are represented by solid curves, and unstable rhythms by dashed curves. Panels
b–e show sequences of orbits along various segments of the IP and AP branches. b IP LCCs observed
along the segment of the red branch corresponding to the IP canard explosion (star markers in the inset) at

ac = 5
√

5
3 = 6.454972..., recall (1.5) These are the classical LCCs of a single LE oscillator. c AP LCCs

observed along the lower segment of the AP branch (diamond markers in (a)). d A different set of AP
LCCs, observed along the upper segment (mustaches in (a)). e Additional AP LCCs, observed along the
middle segment of the AP branch (soccer balls in (a)). Here, du = 8 × 10−4, dv = 0.5 and β = 0.001.
Also, u represents both u1 and u2, and v represents both v1 and v2. For the AP rhythms, the trajectories in
the phase space are the same, but the two oscillators are half a period out of phase along the trajectories
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wide range of a values, as shown in 3c. This contrasts with the situation for single
(and IP) LE oscillators, where the canard explosion is confined to an exponentially
narrow interval. This is a reflection of the fact that, in systems with two (or more) slow
variables, they are created by the canards of folded singularities, and hence the canard
phenomenon is generic and occurs on larger open parameter sets.

Continuing further along the blue AP branch in Fig. 3a, the solutions develop an
additional small-amplitude canard cycle (Figs. 3d, e, corresponding to the mustache
and soccer ball markers in (a), respectively).

Remark 1 Using the information about the folded singularities found in Sect. 3, one can
further understand these AP LCC and AP LAO rhythms. The geometric deconstruc-
tions are presented in Appendix C, since they are of independent interest, and so that
the focus of the article stays on the strong symmetry breaking and other asymmetric
rhythms of (1.6).

Remark 2 Aswe shall see in Sect. 3.5, aH,AP is also the singular Hopf bifurcation asso-
ciated with the FSN II of the symmetric folded singularity and the symmetric ordinary

singularity. The FSN II of these symmetric singularities occurs at a = 5
√

5+2du
3−2du

.

3 Geometric Singular Perturbation Theory Analysis of the Coupled LE
Model

In this section, we present the geometric singular perturbation analysis of the symmet-
rically coupled LE model (2.1), by studying the fast subsystem, the critical manifold
and its fold curves, and the patches of the Cartesian product quilts (Sect. 3.1), the slow
system (Sect. 3.2), the folded singularities (Sect. 3.3), and their bifurcations (Sects. 3.5
and 3.6). We also present the full geometry of the local dynamics and canards induced
by FNs (Sect. 3.4), since there is an FN that is the primary mechanism responsible
for the strong symmetry breaking observed in the main rhythms studied in this article.
The reader interested in these strong symmetry breaking rhythms could go directly to
Sect. 4 after reading Sects. 3.1–3.4.

3.1 Fast Subsystem

By taking the limit β → 0 in (2.1), we obtain the fast subsystem

u̇1 = f (u1, v1) + du (u2 − u1)

u̇2 = f (u2, v2) − du (u2 − u1) .
(3.1)

Here, v1 and v2 are constant. Throughout this section, for notation, we write f =
( f (u1, v1), f (u2, v2)), and

∂ f
∂ui

and ∂ f
∂vi

will denote the partial derivatives of f (ui , vi )
with respect to ui and vi , for i = 1, 2. Further, Duf and Dvf denote the 2×2 Jacobian
matrices with respect to u = (u1, u2) and v = (v1, v2).
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Fig. 4 Projection of the critical manifold S = Sa ∪ Ss ∪ Sr ∪ L onto a the (u1, u2, v1) phase space and b
the (u1, u2) phase plane. The (blue) attracting patches Sa are separated from the (yellow) saddle patch Ss
by the fold set L (black curves). Similarly for the (yellow) saddle and (red) repelling patches Sr . The gaps
between the blue and red patches, through which the yellow patch is connected, increase with du . Here,
a = 6.55 and du = 0.1

Equilibria of the fast subsystem determine the critical manifold,

S =
{
v1S = 1

4u1

(
1 + u21

)
(a − u1 + du(u2 − u1)) ,

v2S = 1

4u2

(
1 + u22

)
(a − u2 − du(u2 − u1))

}
. (3.2)

The critical manifold S is a two-dimensional surface in the four-dimensional
(u1, u2, v1, v2) space, which may be thought of as a quilt; see Fig. 4. It is subdivided
into multiple patches based on the eigenvalues of the Jacobian of the fast subsystem
evaluated at the points on S,

Duf + duC =
[

∂ f
∂u1

− du du
du

∂ f
∂u2

− du

]
, (3.3)

where C =
[−1 1
1 −1

]
is the coupling matrix.

In analyzing the Jacobian, we first observe that Duf+duC is symmetric at all points
on S. Hence, the eigenvalues of the fast subsystem are real at all points on S, and S
contains only stable and unstable nodes, saddles, and saddle-nodes. We write Sa for
the patch of S on which the equilibria are stable nodes; Ss is the patch consisting of
saddles; and Sr is the patch consisting of unstable nodes. See Fig. 4.

Second, we observe that the boundaries of these patches are given by the subset of
S on which the Jacobian has zero determinant. This is called the fold set

L = {(u, v) ∈ S : det (Duf + duC) = 0}
=
{
(u, v) ∈ S : ∂ f

∂u1

∂ f

∂u2
− du

(
∂ f

∂u1
+ ∂ f

∂u2

)
= 0

}
. (3.4)
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In general, one of the eigenvalues changes sign along a fold curve in L , see the black
curves in Fig. 4. Overall,

S = Sa ∪ Ss ∪ Sr ∪ L. (3.5)

Moreover, depending on the system parameters, the set Sr may be empty (see
Remark 4).

Third, we observe that since the eigenvalues of the Jacobian are real, there is no
mechanism purely in the fast subsystem for delayed Hopf bifurcations. Hence, the
mechanism that generates the small oscillations in the rhythms must be encoded in
the slow subsystem, to which we now turn.

3.2 Slow Subsystem

In this section, we work with the coupled LE system (2.1) in the slow time variable
t̃ = βt . The reduced problem, or slow subsystem, is given by the differential-algebraic
system

0 = f(u, v) + duCu
dv
dt̃

= g(u, v) + dvCv,
(3.6)

where g = (g(u1, v1), g(u2, v2)). Differentiating the algebraic constraints with
respect to t̃ and multiplying by the adjoint matrix gives

det (Duf + duC)
du
dt̃

= − adj (Duf + duC) Dvf (g + dvCv)

dv
dt̃

= g + dvCv,
(3.7)

where all functions are evaluated along the critical manifold S. The reduced flow
(3.7) is singular along the fold set L . We desingularize via the transformation dt̃ =
det (Duf + duC) dτ , which gives the desingularized reduced system valid on S,

du

dτ
= − adj (Duf + duC) Dvf (g + dvCv)

dv
dτ

= det (Duf + duC) (g + dvCv) .

(3.8)

In components, the desingularized reduced system is

du1
dτ

= F1(u1, u2) :=
(
du − ∂ f

∂u2

)
∂ f

∂v1
(g(u1, v1)

+dv(v2 − v1)) + du
∂ f

∂v2
(g(u2, v2) − dv(v2 − v1))
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du2
dτ

= F2(u1, u2) := du
∂ f

∂v1
(g(u1, v1) + dv(v2 − v1))

+
(
du − ∂ f

∂u1

)
∂ f

∂v2
(g(u2, v2) − dv(v2 − v1))

dv1
dτ

= det (Duf + duC) (g(u1, v1) + dv(v2 − v1))

dv2
dτ

= det (Duf + duC) (g(u2, v2) − dv(v2 − v1)) . (3.9)

This system is a self-contained system of equations for the dynamics on S. (Note that
on S, one has F1|S = F1(u1, u2) and F2|S = F2(u1, u2), since v1 = v1S(u1, u2)
and v2 = v2S(u1, u2)). The desingularized reduced system (3.9) is the system that we
study now to find the folded singularities.

3.3 Folded Singularities of the Coupled LEModel

The folded singularities, M , of (2.1) are solutions of the system of three algebraic
equations in two unknowns given by

F1 = 0, F2 = 0, det (Duf + duC) = 0. (3.10)

They are distinct from the equilibria (or ordinary singularities) of (3.9), which are the
equilibria Esymm and Ens of the original model (2.1), recall (2.2) and (2.3). Hence,

one also requires ∂ f
∂u |S �= 0 in order for a solution to be a folded singularity.

We reduce these three conditions to two independent conditions, as follows.
At folded singularities, the matrix Duf + duC has linearly dependent rows, since
det (Duf + duC) = 0. Hence, the adjoint has linearly dependent columns. Let A1 and
A2 denote the columns of adj (Duf + duC). Then, at folded singularities, the algebraic
conditions F1 = 0 and F2 = 0 can be rewritten as a single condition,

[
F1
F2

]
= A1

(
∂ f

∂v1
(g(u1, v1) + dv(v2 − v1)) + κ

∂ f

∂v2
(g(u2, v2) − dv(v2 − v1))

)

=
[
0
0

]
,

where κ = − ∂ f
∂u1

/
∂ f
∂u2

. Hence, the folded singularities may be found among the solu-
tions (u1, u2) of the following system of two equations:

∂ f

∂u1

∂ f

∂v2
(g(u2, v2) − dv(v2 − v1)) − ∂ f

∂u2

∂ f

∂v1
(g(u1, v1) + dv(v2 − v1)) = 0

∂ f

∂u1

∂ f

∂u2
− du

(
∂ f

∂u1
+ ∂ f

∂u2

)
= 0.

(3.11)

Here, the second equation is precisely the third condition in (3.10).
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Finally, those solutions of (3.11) at which ∂ f
∂u1

= 0 or ∂ f
∂u2

= 0 are ordinary singu-
larities (equilibria). Hence, they are not included among the set of folded singularities.
Therefore, the folded singularities of (2.1) are precisely those solutions of (3.11) at
which

(
u21 − 1

)
(a + du (u2 − u1)) − 2u31 �= 0

and
(
u22 − 1

)
(a − du (u2 − u1)) − 2u32 �= 0. (3.12)

Following the classification of the ordinary singularities into either symmetric or
non-symmetric (Sect. 3), we distinguish here between the folded singularities, Ms ,
that exist on the symmetry axis {u1 = u2, v1 = v2} and the folded singularities,
Mns , that exist away from it (i.e., that are non-symmetric). From Eqs. (3.9)(a) and (b)
and condition (3.12), we find that the symmetric folded singularities are solutions of
2du − ∂ f

∂u |S = 0, that is

c(u) = a − au2 + 2u
(
du + u2 + duu

2
)

= 0. (3.13)

Analysis of this condition reveals that there are exactly two symmetric folded singu-
larities Ms in the positive (u1, u2) quadrant provided

a >
1√
2

√
27 + 72du + 44d2u +√

(1 + 2du)(9 + 10du)(9 + 10du),

= 3 + 2du +√
9 + 28du + 20d2u
2

√
3 + 4du +√

9 + 28du + 20d2u
2(1 + du)

= 3
√
3 + 4

√
3du − 2

3
√
3
d2u + O

(
d3u
)

(3.14)

The derivation of this result proceeds as follows. First, we observe that the cubic
c(u) = a − au2 + 2u

(
du + u2 + duu2

)
in (3.13) has up to two turning points, and

that u > 0 at both of these turning points (when they exist) for a ≥ 0 and du ≥ 0. This
implies at least two of the three real roots of c(u) have positive u values. Next, the
constant term in the function c(u) is a negative multiple of the product of its roots. This
implies one root must have opposite sign to the other two. Hence, when the parameters
are such that there are three real roots, two of those roots lie in the domain u > 0.
Finally, the inequality in (3.14) is obtained by finding the condition such that the two
positive roots of c(u) coincide.

The folded singularities, which are given by the solutions of (3.11) that satisfy the
condition (3.12), may be classified based on the eigenvalues of the linearization of the
desingularized reduced system (3.9). The generic types of folded singularities are FN,
FS, and FF (folded foci), corresponding to eigenvalues of the linearization with the
same sign, opposite signs, and nonzero imaginary parts, respectively. Various types
of ordinary and folded singularities are illustrated in Fig. 5. The symmetric folded
singularities lie on the diagonal {u1 = u2} at the boundaries between the saddle sheets
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Fig. 5 Singularities of the coupled LE model (1.6) in a the chemically relevant part of the phase plane, and
b in a neighborhood of the symmetric equilibrium, Esymm. The folded singularities lie at the intersections
of the (black) fold curves with the (blue) F1 = 0 and (red) F2 = 0 nullclines. The black, dashed, diagonal
line is the axis of symmetry. The two symmetric folded singularities are both FS. The non-symmetric folded
singularities are FN, FS, and FF. Here, a = 6.55, du = 0.1, and dv = 0.5

and the repelling sheets. The non-symmetric folded singularities come in pairs and
are symmetrically disposed with respect to the diagonal.

A non-symmetric FN on the boundary of the lower left patch Sa turns out to be the
main mechanism responsible for the strong symmetry breaking in the rhythms studied
here. Hence, in Sect. 3.4 we review the salient aspects of the geometry induced by FNs.
Then, a systematic bifurcation study of the folded singularities and their dependence
on system parameters is presented in Sects. 3.5 and 3.6.

Remark 3 Folded singularities are not equilibria of the coupled system (1.6). Rather,
they are points at which the desingularized system (3.9) may become regular via a
zero over zero, l’Hopital rule type cancellation. Such cancellations are precisely what
permits solutions on one branch of S, say an attracting branch Sa , to continue past the
fold set L onto an adjacent patch, e.g., a saddle or repelling patch, Ss or Sr , and spend
long times near them despite their being unstable. Hence, folded singularities are the
gateway mechanisms responsible for the creation of the canard solutions and rhythms
studied here.

Remark 4 The condition (3.14) on the existence of the symmetric folded singularities
is also the condition such that the repelling sheet Sr is non-empty. Furthermore, since
this is a condition on the geometry of the critical manifold, it is independent of dv .

3.4 Local Dynamics Around an FN Singularity

Canard solutions have been shown to play key roles in shaping the dynamics of a wide
range of physical systems. The canard dynamics of a FN singularity are particularly
important in the creation of SAOs such as in the bursting electrical activity of human
beta-cells (Battaglin and Pedersen 2021), the El Niño-Southern Oscillation (Roberts
et al. 2016), and arrhythmogenesis in cardiac muscle cells (Kimrey et al. 2022). The
canards of FSs have been shown to play the role of a firing threshold manifold in a
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model of an excitable neuron (Mitry et al. 2013), and have also been demonstrated
to be the mechanism for spike-adding in parabolic bursting models (Desroches et al.
2016). Here, we outline the salient features of the canard dynamics of a FN in the
context of the coupled LE system.

In the singular limit (β → 0), a FN singularity possesses a (singular) strong canard
and a (singular) weak canard. The subset of the attracting sheet of the critical manifold
enclosed by the singular strong canard and the fold curve is the funnel of the FN.
Solutions in the funnel are known as singular candidates, and they can connect the
attracting sheet of the critical manifold (such as a patch Sa) to a saddle sheet (such as
a patch Ss) or a repelling sheet (such as Sr ) (Brøns et al. 2006; Kuehn 2015).

For 0 < β  1, these features of the FN persist and perturb to nearby structures of
similar types (Szmolyan and Wechselberger 2001; Wechselberger 2005, 2012). The
singular strong canard perturbs to a nearby solution called the primary strong canard,
γs . Similarly, the singular weak canard perturbs to a nearby solution called the primary
weak canard, γw (Szmolyan andWechselberger 2001). Amajor difference for nonzero
β is that, of the singular candidates, only finitely many will persist as a connection
between an attractingmanifold and a saddlemanifold. These solutions that connect the
attracting and saddle manifolds are the maximal canards, and they include the primary
strong and primary weak canards. The other maximal canard solutions that connect
the attracting and saddle manifolds are known as secondary canards (Wechselberger
2005). For a fixed parameter set, the number of maximal canard solutions can be
predicted using the eigenvalues, λs < λw < 0, of the FN. Let μ = λw/λs denote the
eigenvalue ratio. Then, provided that μ is bounded away from zero and that μ−1 is
not an integer, the number of secondary canards is

⌊
1 − μ

2μ

⌋
, (3.15)

where �·� is the floor function (Brøns et al. 2006).
The primary strong canard and the secondary canards partition the attracting man-

ifold into sectors, R j for j = 0, 1, . . . , smax, where smax =
⌊

μ+1
2μ

⌋
, as illustrated

in Fig. 6a; see also (Brøns et al. 2006; Desroches et al. 2010). (Note:
⌊

μ+1
2μ

⌋
=⌊

1−μ
2μ + 1

⌋
). The first rotational sector, R1, is the subset of the attracting manifold

enclosed by the primary strong canard, γs , and the first secondary canard, γ1. Solutions
with initial conditions in the sector R1 will execute one small oscillation in anO (√β

)
neighborhood of the FN (Fig. 6b). The axis of rotation for the oscillation is the primary
weak canard. More generally, the rotational sector R j is delimited by γ j−1 and γ j for
j = 1, 2, . . . , smax, where γ0 = γs and γsmax = γw. Solutions in sector R j exhibit
j small oscillations around the weak canard in an O (√β

)
neighborhood of the FN

(Fig. 6c–e, where j = 1, 2, 3, respectively). Thus, the strong canard is the local phase
space separatrix that divides between solutions that will exhibit local oscillations near
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Fig. 6 The strong, weak, and secondary canards of the FN, along with the rotational sectors they define.
a The primary strong and primary weak canards, γs and γw , of the FNs. Both FNs have eigenvalue ratio
μ ≈ 0.187. Hence, for each FN, there are also two secondary canards, γ1 and γ2, by (3.15). Together, these
canard solutions are the boundaries on the attracting manifold of the rotational sectors, R j , j = 0, 1, 2, 3.
Solutions in sector R j exhibit j small oscillations about the weak canard in anO (√

β
)
neighborhood of the

FN. bA solution with initial condition (square marker) in sector R0. It transitions through the neighborhood
of the FN without rotation. c A solution with initial condition (triangle marker) in sector R1. It executes
one small oscillation near the FN. d A solution with initial condition (diamond marker) in sector R2. It
executes two small oscillations near the FN. e A solution with initial condition (pentagon marker) in sector
Rmax = R3. It executes three small oscillations near the FN. Here, a = 6.5, du = 0.15, dv = 0.5, and
β = 0.001

the FN and solutions that will pass by without any rotations. The secondary canards
further subdivide the phase space based on the rotational properties of solutions.2

AtO(1)distances from theFN, the secondary canards,γ j for j = 1, 2, . . . , smax−1,
areO (β(1−μ)/2

)
close to the strong canard. Thus, the secondary canards collapse onto

the strong canard in the singular limit β → 0 and conversely, emanate from the strong
canard as β is increased from zero (Brøns et al. 2006). Since the secondary canards are
closely spaced around the strong canard, this implies that the sub-maximal rotational
sectors, R j for j = 1, 2, . . . , smax − 1, have widths of sizeO (β(1−μ)/2

)
, and that the

largest sectors are the zero-rotation sector R0 and the maximal rotation sector Rmax.
Hence, the most common asymmetric rhythms have either zero canard-induced SAOs
or the maximal number of canard-induced SAOs.

Remark 5 For the subset of the attracting manifold between the weak canard and a
small neighborhood of the fold curve, the number of rotations can be either smax or
smax − 1, depending on the value of the eigenvalue ratio μ; for examples, see Figs. 12
and 17 of Vo et al. (2012) and Fig. 9 of Krupa et al. (2008).

2 Themaximal canard solutions shown in Fig. 6awere computed by solving appropriate two-point boundary
value problems and numerical continuation, as in Desroches et al. (2008, 2010).
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3.5 Bifurcations of the Folded Singularities

In this subsection, we present the main bifurcations of the symmetric and non-
symmetric folded singularities. We observe that some of these bifurcations involve
both folded and ordinary singularities.

The symmetric folded singularities can undergo an FSN I in which a pair of folded
singularities (one FS and one faux FN, denoted by fFN) collide and annihilate each
other along the fold set L . For the coupled LEmodel, there is a FSN I of the symmetric
folded singularities when

aFSNI = 1

2

(
3 + 2du +

√
9 + 28du + 20d2u

)√
3 + 4du +√

9 + 28du + 20d2u
2(1 + du)

.

(3.16)

This is precisely the SN bifurcation in which the symmetric folded singularities on
the boundary between Ss and Sr disappear together, along with the patch Sr . See the
red FSN I curve in Fig. 7 and recall the condition (3.14).

Next, there is an FSN II of the symmetric ordinary singularity Es and a symmetric
folded singularity at

aFSNII = 5

√
5 + 2du
3 − 2du

. (3.17)

In this FSN II bifurcation, Es crosses over the fold curve L and exchanges stability
with a symmetric folded singularity. Hence, this bifurcation may also be thought of as
a hybrid transcritical bifurcation of an ordinary singularity and a folded singularity.
(See the black curve between regions III and IV in Fig. 7).

There is an FSN III of the symmetric ordinary singularity Es and the non-symmetric
folded singularities at a = 5

√
5/3. In this FSN III, a pair of non-symmetric folded

singularities emerge from the symmetric equilibrium Es . This FSN III bifurcation at
a = 5

√
5/3 is independent of the coupling strengths, and it is located at ac, the same

value as the canard point of the single LE oscillator. (See the black FSN III line in
Fig. 7). This type of FSN III is of the type first discovered in Roberts (2018), Roberts
et al. (2015). In particular, it corresponds to subcase 4 of the FSN III family from
Section 7.1 of Roberts (2018); see also Roberts et al. (2015), where the same type of
FSN III is discussed in the context of a coupled system of respiratory neurons in the
pre-Bötzinger complex. It may also be thought of as a hybrid pitchfork bifurcation in
which an ordinary singularity changes stability and a pair of folded singularities are
created.

Finally, there is a pitchfork bifurcation of folded singularities, inwhich a pair of non-
symmetric folded singularities bifurcate out of a symmetric folded singularity.We label
this pitchfork bifurcation of folded singularities PFM. To the best of our knowledge,
this type of bifurcation has not yet been studied. A parametric representation of the
curve alongwhich this pitchfork bifurcation of folded singularities occurs in the (a, du)
plane is given by
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aPFM = 5u + 10u3 − 3u5 + u
√
25 + 80u2 + 62u4 − 48u6 + 9u8

2
(
1 + u2

) ,

du =
(
u2 − 1

)√
25 + 80u2 + 62u4 − 48u6 + 9u8 − 9u2 − 5 + 9u4 − 3u6

4
(
1 + u2

)2 ,

(3.18)

where
√

5
3 < u <

√
3 so that du > 0. (See the green PFM curve in Fig. 7). This PFM

curve is independent of dv . Moreover, at a = 3
√
3, it tangentially intersects the FSN I

curve (3.16), in which the symmetric folded singularities Ms on the boundary between

Ss and Sr are created/annihilated. Finally, at a = 5
√

5
3 , it tangentially intersects the

FSN III curve.

Remark 6 FSN II bifurcations can also occurwhen a non-symmetric ordinary singular-
ity, Ens , merges with a folded singularity. However, we omit the analytical conditions
for these, because the resulting FSN II bifurcations occur when one of u1 or u2 is
negative, and hence have no chemical relevance.

3.6 Summary: Folded Singularities and Their Bifurcations

In this subsection, we summarize the main chemically relevant folded singularities
(i.e., those with u ≥ 0 and v ≥ 0) and their bifurcations in the (a, du) parameter plane
for a representative value of dv . See Fig. 7 and Table 2. Similar bifurcation diagrams
and tables are obtained for other small values of dv .

The vertical black line at a = 5
√

5
3 is the locus of FSN III bifurcations in which

a pair of non-symmetric folded singularities coincide with the symmetric equilibrium
Es . The red curve, given by Eq. (3.16), corresponds to the locus of FSN I bifurcations
of the symmetric folded singularities. This curve separates the regions of parameter
space for which Ss is empty (above the red curve) and Ss is non-empty (below the red
curve). The green curve, given by Eq. (3.18), corresponds to the locus of pitchfork
bifurcations of folded singularities in which a pair of non-symmetric folded singu-
larities coincides with the symmetric folded singularity. This green curve intersects

the vertical black FSN III curve tangentially at a = 5
√

5
3 , and it intersects the red

FSN I curve tangentially at a = 3
√
3. The black curve given by aFSNII = 5

√
5+2du
3−2du

corresponds to the locus of FSN II bifurcations in which the symmetric equilibrium Es

intersects one of the symmetric folded singularities. This curve intersects the red FSN

I curve (3.16) tangentially at the point (a, du) =
(√

5
(
8 + √

89
)
, 1
4

(√
89 − 7

))
.

The cyan curve is the locus of points for which the non-symmetric folded singularity is
a DFN. In the interior of the region enclosed by the cyan curve, the folded singularities
are FF. Below the cyan curve, the folded singularities are FNs. The magenta curve is
the locus of points for which the non-symmetric folded singularity is a DFN.
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Fig. 7 Bifurcations of the desingularized reduced system. a (a, du) bifurcation diagram for dv = 0.5,
showing the curves of FSN I-III and PFM, as well as the degenerate FN (DFN) curve (recall Sect. 3.5).
FNs occur in the blue shaded regions. Hence, regions Va, Vb, Vc, and VIIa may support MMOs, and these
are of primary interest for finding strong symmetry breaking rhythms. The configuration shown in Fig. 5
corresponds to a point in region Vb. Representative configurations of the (u1, u2) phase plane are shown

in b and c in the cases where the repelling sheet, Sr , and the symmetric folded singularities, M�/u
s , do not

exist (b), and do exist (c). Panel b/c corresponds to the blue cross/blue shield marker in (a). These markers
lie on opposite sides of the red FSN I curve
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Table 2 For each regions I–VII,
the table shows the types of
symmetric folded singularities

M�,u
s and non-symmetric folded

singularities M�,m,u
ns , as well as

which patch the symmetric
equilibrium Esymm is on.

M�
s Mu

s M�
ns Mm

ns Mu
ns Esymm ∈

I DNE DNE DNE FS FF Sa

II DNE DNE FF FS FF Ss

IIIa fFN FS FF FS FF Ss

IIIb FS fFN FF FS FF Ss

IV FS FS FF FS FF Sr

Va DNE DNE FN FS FF Ss

Vb fFN FS FN FS FF Ss

Vc FS FS FN FS FF Sr

VI fFN FS DNE FS FF Sa

VIIa FS FS FN FS FF Sa

VIIb FS FS FF FS FF Sa

DNE = does not exist. Each of the non-symmetric folded singularities
exists above the diagonal, and there is a mirror singularity with the
same stability, which is obtained by reflection in the line {u1 = u2}

The bifurcation curves divide the (a, du) plane into distinct regions, based on the
geometry of the critical manifold, the number of folded singularities, and their classi-
fications:

Region I Left of the vertical (black) FSN III line at ac = 5
√

5
3 and above the (red)

FSN I curve (3.16).

Region II Bounded by the vertical black FSN III line at ac = 5
√

5
3 , a segment of

the blue DFN curve, and the red FSN I curve (3.16).
Region III Enclosed by the red FSN I curve (3.16), the vertical black FSN III line

at a = 5
√

5
3 , and the black FSN II curve aFSNII = 5

√
5+2du
3−2du

. This region is further
partitioned into two subregions, IIIa and IIIb, one on either side of the organizing

center at (a, du) =
(√

5
(
8 + √

89
)
, 1
4

(√
89 − 7

))
, where the red FSN I curve

is tangent to the black FSN II curve.

Region IV Bounded above by the black FSN II curve aFSNII = 5
√

5+2du
3−2du

and by
the blue DFN curve.

Region V Enclosed by the vertical black FSN III line at ac = 5
√

5
3 and the blue

DFN curve. This region has three subregions (Va, Vb, and Vc), separated by the
red FSN I and black FSN II curves.

Region VI Enclosed by the red FSN I curve (3.16), the green FSN III curve (3.18),

and the vertical black FSN III line at ac = 5
√

5
3 .

Region VII Enclosed by the green PFM curve (3.18). This region is subdivided
into two smaller regions by the blue DFN curve.

We now list the singularities in each region and their types. To do so, we introduce
the following notation with reference to Fig. 5. In Fig. 5a, there are two symmetric
folded singularities and six non-symmetric folded singularities. We label the symmet-

123



   53 Page 24 of 62 Journal of Nonlinear Science            (2024) 34:53 

ric folded singularities as M�
s and Mu

s , corresponding to the lower (�) and upper (u)
symmetric folded singularities, respectively. For the non-symmetric folded singulari-
ties, we first note that there is reflection symmetry in the diagonal line {u1 = u2}, so
that we may focus on just the upper left half of the plane. We call the non-symmetric
folded singularity with the smallest (u1, u2)-coordinates M�

ns , with � denoting lower,
see FN in Fig. 5 for example. The non-symmetric folded singularity with moderate-
size (u1, u2)-coordinates is labeled as Mm

ns , with m denoting middle, and is a FS in
Fig. 5. Finally, the non-symmetric folded singularity with large (u1, u2)-coordinates
is Mu

ns , with u denoting upper, see FF in Fig. 5), for example.
Overall, regions Va, Vb, Vc, and VIIa (shaded in blue in Fig. 7a) are of most interest

for the strong symmetry breaking rhythms studied in this article. System (1.6) has non-
symmetric FNs in these regions. Hence, whether an oscillator exhibits SAOs LAOs,
or MMOs is determined by how the orbit passes through the neighborhood relative to
the canards of the FN. These FNs lie off the symmetry axis (u1 = u2, v1 = v2), and
we will see that their strong and weak canards are oriented so that a strong asymmetry
develops between the two oscillators as the orbit is guided by them.. In particular, the
orientations of the strong and weak canards of such an FN guide the orbits so that one
oscillator can stay close to its local minimum for the remainder of the period while
the other can make a large excursion. In this manner, the amplitude of oscillations
exhibited by one oscillator can remain small during the entire period, while that of the
other becomes large, resulting in strong symmetry breaking.

Remark 7 As will be shown, some of the SAOs in strong symmetry breaking rhythms
are induced by return mechanisms, as the orbit makes a short, fast jump from one
patch to another, instead of by canards. Hence, it may also be possible to create other
symmetry-breaking rhythms using this mechanism.

4 Strong Symmetry Breaking SAO-LAO Rhythms and the Key FN
Primarily Responsible for them

In this section, we study strong symmetry breaking SAO-LAO rhythms. They are
denoted 0s10, where s is the number of SAOs made by oscillator 1 per period while
oscillator 2 exhibits oneLAO.Representative 0210 rhythms are studied in Sect. 4.1 (see
Figs. 8a and 9a). There, we also identify the non-symmetric FN primarily responsible
for the strong nature of the symmetry breaking. Then, in Sect. 4.2, we study the branch
of stable 0210 rhythms in parameter space, showing how these SAO-LAOs emerge
from asymmetric canard explosions of SAO-LCC rhythms. Finally, in Sect. 4.3, we
extend the results to 0s10 rhythms for s ≥ 2.

4.1 Two representative SAO-LAO Symmetry Breaking Rhythms

For the first representative asymmetric 0210 SAO-LAO rhythm, shown in Fig. 8, the
orbit enters the funnel of the FN in the maximal rotation sector (Rmax) and stays close
to the weak canard, γw, of this FN during its passage through the neighborhood. In
fact, it is so close to γw that the SAOs are below the visible threshold. Then, when it
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Fig. 8 A representative asymmetric 0210 rhythm. a Time series. Oscillator 1 (blue) exhibits two SAOs
and oscillator 2 (red) an LAO per period. b Projection of the orbit (black) into the (u1, u2) plane. At the
local minimum of u1 (red ducky), the orbit enters the funnel of the non-symmetric FN, close to its weak
canard γw (dashed blue curve). It remains close to γw , crossing the fold curve L (black curve) near L1−
and L2− (cyan ducky) in quick succession, just right of Esymm. There, oscillator 2 makes its fast up-jump,
while oscillator 1 remains near its minimum. Hence, the amplitudes of the oscillators split into large (red)
and small (blue) due to the passage through the neighborhood of FN, which makes it primarily responsible
for the strong symmetry breaking. Subsequently, the orbit lands on the upper (yellow) saddle sheet (blue
ducky) and follows the true canard, γt , of the upper FS as u1 slowly reaches the maximum of its SAO (green
ducky). Hence, the first maximum in oscillator 1 occurs after the up-jump in oscillator 2. Finally, the orbit
makes a short hop over to the stable (blue) sheet Sa (yellow ducky) and then oscillator 2 jumps back down
to complete its LAO (red ducky). The influence of the upper FS point on the orbit is described below. Note
the different scales on the axes. Because oscillator 1 exhibits SAOs, the dynamics in the u1 direction lie
near the branch of the fold set L near L1− ≈ {u1 = 1.29}. Here, a = 6.47, du = 8 × 10−4, and dv = 0.5
(region Vc of Fig. 7), with β = 0.001

leaves the neighborhood of this FN, the orbit passes right of the equilibrium Esymm as
shown in the inset, and oscillator 1 remains near its local minimum, while oscillator
2 is forced to make a fast up-jump and begin its LAO.

Next, during the plateau portion of the LAO of oscillator 2 (between the blue and
green duckies), the orbit lies close to the true canard (red) of the upper FS (near the
blue ducky). The length of this plateau portion is determined by how close the orbit
is to that canard of the FS point when it approaches the upper branch. Moreover, we
observe that, during this portion, oscillator 1 continues to stay near its local minimum.
Finally, oscillator 1 makes a small jump back to its left attracting branch (to near the
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yellow ducky), and then oscillator 2 makes the down-jump of its LAO. In this manner,
oscillator 1 remains near its local minimum for the entire period, and only undergoes
SAOs,while oscillator 2makes both its fast up and down jumpswith the slow segments
in between, hence exhibiting its entire LAO.

For this first representative rhythm, passage through the neighborhood of the FN
point is what first causes the orbits of the two oscillators to separate and their ampli-
tudes to become distinct. The weak canard γw of the FN guides the orbit across the
portion L2− of the fold curve, where the amplitude of oscillator 1 remains small, and
that of oscillator 2 must become large, since it must jump up to its right branch. In
this manner, the FN is the primary mechanism responsible for the strong symmetry
breaking between the two oscillators, since the large split in the amplitudes is initiated
during the passage through the neighborhood of the FN.We note that the upper FS also
influences the dynamics, but its role is limited to the plateau portion where oscillator
2 already has large amplitude (as described above).

We also observe that, for these parameter values, the key non-symmetric FN has
an eigenvalue ratio of μ ≈ 0.0672, which implies that for 0 < β  1 this FN not
only has strong and weak canards, but it also has six secondary canards by (3.15), and
Rmax = R7. (These secondary canards do not play a role in the attractor shown in
Fig. 8, but they do for other initial conditions, causing oscillator 2 to undergo MMOs
with small-amplitude rotations about the weak canard γw).

In the second representative asymmetric 0210 rhythm, shown in Fig. 9, the orbit
enters (near the red ducky) the funnel of the FN and passes directly through the R0
rotation sector, very close to the strong canard, γs of the FN. This is in contrast with
the situation for the first representative rhythm, where the passage is near the weak
canard of the FN point. Hence, along the orbit of the second rhythm, oscillator 2
does not exhibit any small-amplitude rotations before its fast up-jump. Indeed, for
the parameter values here, oscillator 2 cannot exhibit the SAOs needed to make an
MMO, and instead exhibits an LAO. This is because, for the parameters here, the
non-symmetric FN has an eigenvalue ratio of μ ≈ 0.568 and, hence, there are no
secondary canards (by (3.15)), i.e., the only canards associated to it are its strong and
weak canards. Further along, the orbit stays close to the strong canard to just before
L2− (cyan ducky). However, before oscillator 2 reaches its local minimum on L2−,
the orbit makes a small, fast jump back to the saddle sheet to a point above L2− (blue
ducky), passing above the fold curve L1− and the symmetric FS. Hence, oscillator 1
performs one SAO and is already back on its left attracting branch before the up-jump
in oscillator 2 has even begun. Moreover, oscillator 1 remains near its left attracting
branch for the rest of the period (including as it makes its second, shorter SAO), while
oscillator 2 undergoes its entire relaxation oscillation.

In this manner, the key FN makes the strong symmetry breaking possible also for
this second representative rhythm. Its strong canard guides the orbit through to the
other side, until the small, fast jump back occurs. Hence, oscillator 1 remains near its
minimum and oscillator 2 is forced to make a fast up-jump.

Finally, we observe that in these rhythms, the occurrence of the first maximum
of the SAO of oscillator 1 relative to the LAO of oscillator 2 is determined by the
structural difference in whether the orbit follows closely the strong or the weak canard
of the FN. For the first representative 0210 rhythm, the peak in oscillator 1 occurs
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Fig. 9 A second representative asymmetric 0210 rhythm, and the non-symmetric FN primarily responsible
for the strong symmetry breaking. a Time series: oscillator 1 (blue) undergoes SAOs while oscillator 2 (red)
exhibits LAOs. b Deconstruction in the (u1, u2) phase plane. The orbit (black) stays close to the strong
canard γs (blue, double arrows) of FN, as it passes through the neighborhood. Then, (cyan ducky) it bends
back and makes a small, fast jump back to the yellow sheet (blue ducky). Note that this small, fast jump
passes above the fold curve L1− and the symmetric (lower) FS point, and hence FS has no direct impact
on the orbit. Then, the up-jump occurs (to the upper attracting sheet, green ducky), in which u2 begins its
relaxation oscillation. Subsequently, the orbit slowly drifts back to a neighborhood of L2+, and, near the
yellow ducky, the orbit returns to the lower attracting blue sheet and completes its cycle. Overall, passage
through the neighborhood of the FN close to γs , and the subsequent small, fast jump back of oscillator 1 to
its left branch, causes the amplitude of oscillator 1 to remain small, while that of oscillator 2 must become
large, since the orbit lands (blue ducky) on the other side of L2−. Here, oscillator 1 has its first SAO well
before the up-jump of oscillator 2, since the orbit is near the strong canard of the FN. Note the differences
in the scales on the two axes. Here, a = 6.54, du = 8 × 10−4, dv = 1.0588 with β = 0.003. The singular
geometry corresponds to region Vc of Fig. 7

after the fast jump up in oscillator 2 (see the inset in Fig. 8a). This is because, after
the up-jump, the true canard of the FS off the symmetry axis (near the blue ducky)
acts as the lane marker guiding the orbit, while oscillator 1 slowly reaches its local
maximum and oscillator 2 is on its upper stable branch. As a result, the local maximum
of u1 occurs after the up-jump in u2, as does the second SAO. This contrasts with the
dynamics observed for the second representative 0210 rhythm, where the first SAO
occurs before the up-jump in u2 since the orbit is near the strong canard of the FN.

Remark 8 For the parameters corresponding to these rhythms, the fold set L , recall
(3.4), lies close to the folds, L1± and L2±, of the individual oscillators, which are
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straight lines. The gaps between the blue and red patches are small, since du is small
here. Hence, we use the labels L1± and L2± to indicate the segments of L that are
close to the fold curves of these individual oscillators.

4.2 Branches of Strong Symmetry Breaking SAO-LAO Rhythms Created Primarily
by the same FN

The asymmetric 0210 rhythms presented in the previous subsection lie on the same
branch of 0210 rhythms in the parameter space. We now study the dynamics along this
branch as a function of the bifurcation parameter a. For all of the orbits, the same FN
is again the primary mechanism responsible for the strong symmetry breaking, since
the split between the amplitudes of the oscillators occurs during the passage through
the neighborhood of that FN.

For the given parameter set, the (green) branch of 0210 rhythms forms an isola. The
full isola, with its various segments, is shown in Fig. 10a. One sees that the green isola
consists of a left nearly vertical segment (inset in Fig. 10a), a snaking plateau with
many segments (inset in Fig. 11a), a right nearly vertical segment (inset in Fig. 12a),
and a lower plateau joining the two nearly vertical segments. (We note that the main
frames in Figs. 10a, 11a, and 12a are identical, for reference, but the plots in the insets
show magnifications of the different segments of the isola.) The stable segment of the
0210 isola lies on the snaking plateau and is delimited by a saddle-node bifurcation
and a period-doubling bifurcation. The other segments of the green isola, including
the two nearly vertical segments on which the asymmetric canard explosions occur,
represent unstable orbits.

We now describe the properties of the solutions along the three main segments of
this isola. Each segment is indicated by different markers: squares (Fig. 10); diamonds,
stars, triangles, hats (Fig. 11); and turtles (Fig. 12). Also, within the snaking portion of
the isola (Fig. 11), we use a color gradient for the markers (as indicated in the caption)
to show the progression of orbits as the parameter a is varied. In this manner, one may
continue from the end of one segment to the beginning of the next.

We begin with the left, nearly vertical segment of the 0210 isola, which occurs
at a ≈ 6.461823 (inset (ai) in Fig. 10a with square markers). It corresponds to an
asymmetric canard explosion in which oscillator 1 exhibits two SAOs per event while
oscillator 2 grows from an SAO to an LAO, via a family of LCCs. Moreover, it occurs
O (β2

)
close to the analytically predicted aasym,c ≈ 6.461791, see formula (E.1) for

aasym,c(β) in Appendix E.
Solutions (at each of the square markers along this nearly vertical segment of the

0210 isola) are compared to the underlying singular limit structures in the (u1, u2)
phase plane in Fig. 10b. There are five folded singularities in the region of phase
space where the asymmetric canard explosion occurs. There is a symmetric FS near
the intersection of L1− and L2− see the inset of panel (b)). Its true canard (red,
single arrow) coincides with the axis of symmetry. The remaining folded singularities
are non-symmetric. The FNs have strong canards, γs (blue, double arrows), and weak
canards, γw (blue, dashed, single arrow). There is a non-symmetric FS at the boundary
between the upper attracting and saddle sheets, with true and faux canards, γt and γ f ,
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Fig. 10 The primary asymmetric canard explosion leading to 0210 SAO-LAO rhythms. a The entire isola
(green) of 0210 rhythms, with its many segments, as a function of the bifurcation parameter a: loci of stable
orbits (solid curve) and unstable orbits (dashed curve, with equal spaces between dashes; note some spaces
are covered by markers). The isola comes close to, but does not touch, the Hopf point (black dot). Inset (ai)
shows a magnification of the segment of the isola corresponding to the left asymmetric canard explosion
of SAO-LCC rhythms centered at a = 6.461823, along with the sequence of colored squares that denote
the orbits shown (black, red, green, navy blue, purple, yellow, and cyan). b Projection of solutions into
the (u1, u2) plane corresponding to the square markers in the inset (ai). These solutions closely follow the
weak canard, γw , of the non-symmetric FN. The inset in b shows an enlargement of the region near the
intersection of L1− and L2−. (Note the difference in the scales on the axes). The corresponding time series
for the red, blue, and cyan orbits are shown in panels (c), (d), and (e), respectively. The SAOs of oscillator
1 are shown in black, and the rhythms of oscillator 2 are shown in red, blue, and cyan. c Time series of a
SAO-LCC rhythm in which oscillator 2 exhibits a jump-back canard (i.e., a headless duck). d Time series of
a SAO-LCC rhythm in which oscillator 2 exhibits the maximal canard. e Time series of a SAO-LCC rhythm
in which oscillator 2 exhibits a jump-away canard (i.e., a duck with head). Here, du = 8× 10−4, dv = 0.5,
and β = 0.001. Rhythms observed along the other segments of the green isola are illustrated below

respectively. The other non-symmetric folded singularity near the intersection of L1−
and L2− is an FS (however it has no direct influence on the dynamics of the rhythm
shown).

The 0210 rhythms along the asymmetric canard explosion in Fig. 10(ai) closely
follow the weak canard, γw, of the non-symmetric FN on L near L1− (Fig. 10b).
Starting with the black orbit (black square in (a)), both oscillators exhibit SAOs around
their respective lower folds, i.e., around L1− and L2−. For parameters further up the
vertical green branch (see the inset (ai)), the LCCs are such that oscillator 2 follows
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Fig. 11 Asymmetric 0210 SAO-LAO rhythms for du = 8 × 10−4, dv = 0.5, and β = 0.001. a Same
bifurcation diagram as in Fig. 10a. (ai) Upper half of the snaking branch. (aii) Lower half of the snaking
branch. b Growth of the orbit segments that follow the true canard, γt , of the FS (diamonds in (aii): red,
brown, olive green). c Growth of the SAOs near L1− and L2− (stars in (aii): green and navy blue). d
Replacement of a canard-induced SAO with an SAO induced by a fast jump from the lower saddle sheet to
the lower attracting sheet (triangles in (ai): blue, indigo, orange). e Change in the return mechanism (hats in
(ai): orange, olive, lime-green). The ducky colors have been chosen in part for the contrast with the colors
of the patches

its unstable branch on the saddle sheet for progressively longer times (red and green
orbits) until it reaches the maximal canard (blue orbit), which reaches a neighborhood
of L2+. The associated time series in Fig. 10c, d show that oscillator 1 stays small
amplitude while oscillator 2 grows in amplitude. As the solution continues to move
further up the green vertical branch, oscillator 2 exhibits fast jumps in the u2 direction
onto the upper blue attracting sheet. These fast jumps to the upper blue attracting
sheet occur closer and closer to L2− as the LP point on the vertical branch is reached
(magenta, yellow, and cyan orbits). The time series show that, for these jump-away
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Fig. 12 The second asymmetric canard explosion of the 0210 SAO-LAO rhythms, for the same parameter
values as in Fig. 10. The same FN is the key mechanism responsible for the strong symmetry breaking
here also, since—after the orbit passes through the neighborhood of the FN—the amplitude of oscillator 1
remains small while oscillator 2 makes an LCC. a Same diagram as shown in Fig. 10a, but with inset (ai)
showing amagnification of the rightmost asymmetric canard explosion, and the sequence of colors denoting
the orbits shown (black, red. green, navy blue, yellow, and cyan). b Projection of the orbits on the (u1, u2)
plane of the solutions corresponding to the turtle markers. These solutions closely follow the secondary
canard, γ1, of the same FN. The time series of the red, green, and yellow orbits are shown in panels (c),
(d), and (e), respectively. The short segments on which the oscillators rapidly jump down correspond to
SAOs that are induced by the fast returns, while the small bumps midway between these are canard-induced
SAOs. The latter occur because the orbit enters the funnel of the FN in the rotation sector R1, between the
strong canard γs and the first secondary canard γ1, close to γ1. Hence, it makes one rotation about γw . Note
that the SAOs of oscillator 1 are shown in black to better contrast with the colored rhythms of oscillator 2
and that the scales on the axes are different

canards, oscillator 2 has grown to a relaxation oscillator (Fig. 10e). For these rhythms,
the same FN is the mechanism that creates the strong symmetry breaking.

Next, the plateau portion of the 0210 isola consists of four distinct segments, dis-
tinguished by diamond, star, triangle, and hat markers (Figs. 11ai, aii). The part of
the snaking plateau with the diamond markers contains the stable segment of the 0210

isola, and it is enclosed by the saddle-node (LP) and period-doubling (PD) bifurcation
points. The solutions corresponding to the diamond markers are shown in Fig. 11b.
The key singularities involved in these rhythms are the non-symmetric FN on L1−
and the uppermost non-symmetric FS on L1−. Starting on the lower attracting sheet,
the solutions follow the weak canard, γw, of the non-symmetric FN on L1− up to a
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neighborhood of the location where L1− and L2− meet. There, the solutions jump
to the upper saddle sheet, where they then follow the true canard, γt , of the upper
non-symmetric FS for long times. Then, the solutions jump in the u1 direction away
from the saddle sheet and return to the lower attracting sheet via relaxation dynamics.

The solutions corresponding to the star markers in Fig. 11aii are shown in Fig. 11c.
Starting on the lower attracting sheet, the solutions lie in the rotational sector enclosed
by the secondary canards, γ1 and γ2, of the non-symmetric FN on L1−. Consequently,
the solutions exhibit two SAOs as they pass near the FN in the neighborhood of the
intersection of L1− and L2−. Then, there is a fast jump in the u2 direction to the upper
saddle sheet. There, the solutions slowly drift toward the fold curve L2+, where they
then execute a fast jump in the u2 direction down to the lower saddle sheet. From there,
the solutions then return to the lower attracting sheet, and the cycle repeats. Also, in
this manner, the FN is again the mechanism for the strong symmetry breaking, since
the amplitude of oscillator 1 remains small while oscillator 2 executes an LAO after
the passage through the neighborhood of the FN.

Remark 9 The green solution in Fig. 11c immediately executes its fast u1 jump back
to the lower attracting sheet, whereas the blue solution spends some time drifting
along the saddle sheet away from L1− before it makes its fast u1 jump leftward. This
difference arises because the green orbit lands on one side of the saddle slowmanifold,
whereas the blue orbit lands on the other side.

The solutions corresponding to the triangle markers in Fig. 11ai are shown in
Fig. 11d. The blue solution here has the same deconstruction as the blue rhythm from
Fig. 11c. That is, the solution lies in the rotational sector enclosed by the secondary
canards, γ1 and γ2, of the non-symmetric FN and hence exhibits two SAOs near the
FN. As the parameter a is increased, the landing point of the orbit on its downward u2
jump moves closer to the saddle slow manifold until it eventually crosses the saddle
slow manifold and the orbits simply jump left to the attracting blue sheet without any
rightward u1 excursions on the saddle sheet (compare the light blue and dark blue
rhythms). Moreover, as the parameter a is increased, the solution moves through the
maximal secondary canard γ1, which causes the amplitudes of the SAOs to grow.
Additionally, after the solution has passed through γ1, the second SAO is no longer
canard-induced but is due to a fast transition from the lower saddle sheet to the lower
attracting sheet (compare the SAOs of the dark blue and orange orbits, for instance).

The solutions corresponding to the hats in Fig. 11ai are shown in Fig. 11e. As the
parameter a is varied along this part of the 0210 isola, the changes in the dynamics
occur due to the positions of the solutions relative to the upper and lower saddle slow
manifolds. The up-jump in the u2 direction for the orange solution puts it to the left of
the saddle slowmanifold, so it immediately jumps left to the upper attracting sheet. The
olive solution, on the other hand, lands close enough to the upper saddle slowmanifold
that it is able to follow the saddle slow manifold for long times before exhibiting a
fast jump in the u1 direction. Eventually, the solutions are able to follow the upper
saddle sheet for long enough that they encounter the fold curve L2+, which causes
them to switch their direction of fast jump to the u2 direction and they jump down to
the lower saddle sheet (e.g., see the lime-green rhythm). A similar sequence is seen
for the solutions on this lower saddle sheet, with solutions either jumping left to the
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lower attracting sheet or exhibiting long excursions to the right before they execute
their fast u1-jump back to the lower attracting sheet.

Finally, the green 0210 isola has another nearly vertical segment at a ≈ 6.465513
(Fig. 12ai). This second nearly vertical segment corresponds to an asymmetric canard
explosion of a different type from that studied in Fig. 10. The solutions (Fig. 12b) along
this part of the 0210 branch lie in the R1 rotational sector (between γs and γ1), and they
closely follow the maximal secondary canard γ1 of the non-symmetric FN on L (near
L1−). The black solution (corresponding to the black turtle in (ai)) exhibits a small
oscillation in the neighborhood of the intersection of L1− and L2−. This SAO carries
the solution from the blue attracting sheet to the red repelling sheet. There, a fast jump
occurs in the u1 direction that takes the solution to the yellow saddle sheet, followed
by a fast jump in the u2 direction that takes the solution back to the attracting sheet.
Throughout the period, the amplitudes stay small. This black orbit may be thought of
as a small headless duck.

As the vertical green branch in (ai) is traversed, the LCC closely follows γ1 for
progressively longer times on the repelling sheet (red and green trajectories in (b))
before the u1 and u2 jumps return the solution to the attracting sheet. This corresponds
to a growth of the amplitude of oscillator 2 (Fig. 12c, d) until themaximal headless duck
is attained (given approximately by the green orbit). Further up the bifurcation curve
in (ai), after the maximal canard is reached, there is a switch in the return mechanism.
For the blue, magenta, yellow, and cyan solutions, the escape from the secondary
canard occurs via an up-jump in the u2-direction. These orbits may be thought of as
ducks with heads. Finally, along this segment, the orbit exhibits a more traditional
relaxation-type excursion back to the blue attracting sheet. For these solutions, the
time series of oscillator 2 exhibits more classic relaxation-type oscillations (Fig. 12e).

4.3 Extension to 0s10 SAO-LAO rhythms with s ≥ 2

The 0210 SAO-LAO orbits studied in this section are the first in a family of 0s10

SAO-LAO rhythms with s ≥ 2. In each of the rhythms in this family, oscillator 1
exhibits s SAOs per period, while oscillator 2 undergoes one relaxation oscillation
(i.e., LAO). For example, 0310 rhythms are observed with β = 0.01, du = 0.00088,
dv = 0.155172, and 6.5149 ≤ a ≤ 6.5364.

For each of these 0s10 rhythms, s − 1 of the SAOs that oscillator 1 makes are
induced by the canards of the same non-symmetric FN, and the other SAO is induced
by the return mechanism. The orbits of these rhythms enter the funnel region of the
FN. In particular, they enter between the γs−2 and γs−1 secondary canards, close to
the latter. Hence, they make s − 1 oscillations about the weak canard γw, i.e., they
make s − 1 canard-induced SAOs.

The plateaus of stable 0s10 SAO-LAO rhythms terminate at one end in period
doubling bifurcations (see, for example, Fig. 10a for s = 2). The 0s10 rhythm becomes
unstable, and a new stable SAO-LAO rhythm is observed consisting of two different
0s10 events in alternation, which we label as an (0s10)2 SAO-LAO rhythm.Moreover,
for parameter values near the period-doubling bifurcation, these two different 0s10

events are close to the unstable 0s10 rhythm. As the parameter is varied, the differences
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between the two events grow until there is another period-doubling bifurcation to a
(0s10)4 rhythm, and so forth. We explored in detail the case with s = 3, where we
observed the period doubling sequence up to a branch of stable (0310)16 SAO-LAO
rhythms (for example, by varying du from 0.00620407 to 0.00880550 with a = 6.54,
β = 0.01, and dv = 0.155172).

We also observed alternating rhythms that exhibit two events per period, an 0s110

SAO-LAO event and an 0s211 SAO-MMO event. For these, the returns to the funnel
of the non-symmetric FN alternate between the R0 and R1 rotational sectors.

5 Strong Symmetry Breaking SAO-MMO rhythms

In this section, we present SAO-MMO rhythms of (1.6) with strong symmetry break-
ing. Denoted by 0s11s2 for integers s1, s2 ≥ 1, oscillator 1 exhibits s1 small amplitude
oscillations per period, and the MMO that oscillator 2 exhibits each period consists
of one LAO and s2 SAOs. In parameter space, these SAO-MMO rhythms occur nat-
urally close to the asymmetric canard explosion aasym,c(β) (recall (E.1)) analyzed in
Appendix E. A partial bifurcation diagram showing the stable branches of a selection
of these asymmetric rhythms is shown in Fig. 13. Also, as we will show in this section,
the same non-symmetric FN studied in Sect. 4 is responsible for the strong symmetry
breaking, by making it possible for oscillator 1 to maintain small amplitude during
the entire period while oscillator 2 exhibits an MMO each period.

With an exception, each labeled plateau of stable SAO-MMO rhythms in Fig. 13
belongs to a distinct isola. The exception involves the two magenta 01418 plateaus on
the left side of Fig. 13a, which belong to the same isola, and there may be other such
pairs of plateaus not shown. These plateaus of stable, strong symmetry breaking SAO-
MMO rhythms appear, numerically, to densely fill the parameter interval shown. In the
gaps where no isolas have been drawn, e.g., between the magenta 01418 branch and the
blue 044124 branch, the attractor is observed numerically to be an asymmetric 0s11s2

SAO-MMO in which both s1 and s2 are large. The stable plateaus for these particular
families are especially narrow and have been omitted from Fig. 13. (The numeri-
cal continuation encounters non-convergence issues here. Coordinate and parameter
scalings together with transformations would be required to resolve this continuation
issue, but we leave this for future work). Plateaus of stable 0s11s2 SAO-MMO rhythms
with low values of s1 and s2 were also observed for larger values of dv (see, e.g., case
5 of Table 3).

The deconstruction of a representative stable, strong symmetry breaking 0613 SAO-
MMO rhythm is shown in Fig. 14. For this rhythm, oscillator 1 exhibits six SAOs per
period while oscillator 2 exhibits a 13 MMO every period (Fig. 14a). The projection
of the solution into the (u1, u2) phase plane shows that the dynamics are concentrated
around the branch of the fold set L near L1− (Fig. 14b).

Starting at the red ducky, the solution lies in the funnel of the non-symmetric FN on
L near L1−. In this funnel, the solution drifts toward the FN (red to cyan ducky), close
to its weak canard. It follows γw from the attracting sheet to the saddle sheet, past the
symmetric equilibrium, and onto the repelling sheet. Here, the canard dynamics of the
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Fig. 13 a Families of strong symmetry breaking SAO-MMO rhythms (black, red, blue, magenta, cyan,

and orange curves) in a small,O
(
β3/2

)
neighborhood of the leftmost asymmetric canard explosion of the

(green) 0210 branch, recall aasym,c(β) from (1.5). Only the stable plateaus from each SAO-MMO branch
have been shown. b Zoom on an interval of a values corresponding to some SAO-MMO rhythms for which
both s1 and s2 are large. Inset: further zoom on some small plateaus of such stable SAO-MMO branches.
Here, du = 8 × 10−4, dv = 0.5, and β = 0.001

non-symmetric FN, the canard dynamics of the symmetric FS, and the dynamics of
the symmetric equilibrium produce the complex array of SAOs seen in Fig. 14c.

After the SAOs near the non-symmetric FN and the symmetric FS have been com-
pleted, the solution jumps up to a neighborhood of the upper saddle manifold (blue
ducky). In the process, the amplitude of oscillator 2 has become large, while that of
oscillator 1 remains small. From there, the solution follows the true canard of the FS
up to the green ducky (in the same manner as for the second 0210 SAO-LAO rhythm)
where it jumps back to the upper attractingmanifold (yellow ducky). The solution then
quickly reaches a neighborhood of the fold L2+ and executes a fast u2-jump down
to the lower attracting manifold. This down-jump brings the solution back to the red
ducky and completes the cycle.

In Fig. 14, the parameter values are in region Vc of Fig. 7, and they are such that
the eigenvalue ratio of the non-symmetric FNs is μ ≈ 0.0432, which is O (√β

)
and close to zero. Hence, the system is close to bifurcation. In fact, the system is
close to two different bifurcations of singularities. Namely, the system is extremely
close to a FSN II (Krupa and Wechselberger 2010), because the symmetric FS and
symmetric equilibrium Esymm are almost coincident. This pair of folded and ordinary
singularities undergoes a transcritical bifurcation on the FSN II curve in Fig. 7, and the
number of maximal canards associated to a FN near this bifurcation is estimated to be
O (β−1/2

)
(Krupa and Wechselberger 2010). In addition, the system is also close (but
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Fig. 14 A strong symmetry breaking 0613 SAO-MMO rhythm. The same FN studied for the SAO-LAO
rhythms is also responsible here for the strong symmetry breaking. a Time series showing that oscillator 1
(blue) exhibits six small-oscillations per period while oscillator 2 (red) exhibits a 13 MMO in each period. b
Projection of the solution into the (u1, u2) phase plane. cMagnified view of the SAOs near the intersection
of L1− and L2−. The non-symmetric FNs each have a singular strong canard γs (blue, double arrows) and
a singular weak canard (blue, single arrow). The symmetric FS has a true canard that coincides with the axis
of symmetry and forms a heteroclinic connection with the symmetric equilibrium, Esymm. The dynamics of
the orbit in the neighborhood of these FN and FS is complex due to the fact that the singularities are close to
two different bifurcations. There is also a non-symmetric FS, which possesses true and faux canards, γt and
γ f , respectively. The orbit has a segment near the true canard (blue to green ducky), leading to oscillator 1

attaining the maximum of its largest SAO. Here, a = 6.46174, du = 8 × 10−4, dv = 0.5 (corresponding
to region Vc of Fig. 7), and β = 0.001. Note the different scales on the axes

not as close) to an FSN III (Roberts 2018), because the (key) non-symmetric FN (and
its mirror image in the axis of symmetry) and the symmetric equilibrium are close
together. These three singularities merge on the vertical black FSN III curve in Fig. 7,
and the number of maximal canards induced by the FN in this case is estimated to be
O (β−1/2

)
, see Section 7.4.5 of (Roberts 2018).

In summary, we have shown that system (1.6) has strong symmetry breaking 0s11s2

SAO-MMO rhythms for many pairs (s1, s2). In parameter space, the plateaus of stable
segments along the branches of all these rhythms lie close to the asymmetric canard
explosion at aasym,c(β) = 6.454972 . . ., recall (E.1). Dynamically, the orbits of these
SAO-MMOs are similar in several respects to the second representative 0210 SAO-
LAO rhythm, especially in that they are close to the weak canard during the passage
through the neighborhood of the FN. The main difference is that here the key FN is
much closer to the symmetric FS and fixed point, Esymm, so that the FN has multiple
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rotation sectors here, and one observes rhythms in which oscillator 1 can havemultiple
SAOs while oscillator 2 has many SAOs as part of its MMO.

Remark 10 While the dynamics near FSN II and FSN III points have each been studied
individually, there have been no studies of a system in which both bifurcations occur
almost simultaneously. This is beyond the scope of this article, and we leave it as an
open problem for coupled oscillator systems.

6 Weak Symmetry Breaking Rhythms in (1.6)

Rhythms exhibiting weak symmetry breaking have also been observed in the coupled
LE model (1.6). Each of these rhythms is a small perturbation of a symmetric state of
the coupled oscillators.

The dynamics of these rhythms are also shepherded by the folded singularities
and their associated canards. However, there are typically more folded singularities
involved for each rhythm than there are for the strong symmetry breaking rhythms,
since the symmetric rhythms to which the weak symmetry breaking rhythms are close
can involve twice as many folded singularities.

6.1 Canardioids

The first example of a weak symmetry breaking rhythm is a canardioid, which lies
close to a 13 AP rhythm. It is shown in Fig. 15, along with its deconstruction.

The projection into the (u1, u2) phase plane (Fig. 15b and the enlargement in
Fig. 15c) show theweak symmetry breaking. For this rhythm, there are six singularities
in the neighborhood of where the SAOs occur (Fig. 15b, c). There is a pair of non-
symmetric FNs on L near L1− and L2−, a symmetric FS at the boundary between
the red repelling sheet and the yellow saddle sheet (whose strong canard lies on the
symmetry line, acting as a separatrix), a pair of non-symmetric FSs, and the symmetric
equilibrium Esymm.

For the non-symmetric FNs, the eigenvalue ratio isμ ≈ 0.568, so that by (3.15) only
the strong and weak canards persist for small, nonzero β. Hence, each FN has a pair
of rotational sectors R0 and R1, dividing the attracting manifold of the symmetrically
coupled system into four distinct sectors. The zero-rotation sector R0 of the non-
symmetric FN on L near L1− is the region bounded above by the axis of symmetry
and below by the primary strong canard of that FN. Solutions with initial conditions
in this sector encounter the fold curve and then exhibit a fast jump in the u1-direction,
without executing any small oscillations around the weak canard of that FN. Similarly,
the zero-rotation sector R0 of the other non-symmetric FN, on L near L2−, is the
region bounded below by the axis of symmetry and above by the strong canard of
that FN. Solutions in this region exhibit fast jumps in the u2-direction. Then, the R1
rotational sector of the non-symmetric FN on L near L1− is the region of the attracting
manifold below (enclosed by) the strong canard. Solutions with initial conditions in
this region undergo one rotation around the weak canard of this FN before leaving the
neighborhood. Similarly, solutions with initial conditions in the R1 rotational sector
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Fig. 15 Aweak symmetry breaking canardioid. a Time series. Oscillators 1 (blue) and 2 (red) exhibit nearly
AP quasiperiodic 13 rhythms. Overall, the orbit lies close to a symmetric 13 AP rhythm. b Projection onto
the (u1, u2) plane. c Enlargement showing the key components of the deconstruction of the canardioid. The
non-symmetric FNs have an eigenvalue ratio of μ ≈ 0.568, so that only the strong and weak canards exist.
The strong canards of these FNs (blue, double arrow) and the true canard of the symmetric FS (red, single
arrow) are the main lane markers guiding the trajectory. Also shown are the sectors, R0 and Rmax = R1.
After the orbit enters a sector R0 (e.g., near the green ducky), it will pass through the neighborhood of the
FN and then make a large excursion near the symmetry axis. Instead, after the orbit enters a sector R1 (e.g.,
near the cyan or red ducky), it will pass through the neighborhood of the FN and then make an SAO (e.g., to
the yellow ducky). Here, a = 6.54, du = 8 × 10−4, dv = 1.0588, and β = 0.014. The singular geometry
here corresponds to region Vc of Fig. 7. d Persistence of the singular strong canards (blue) as primary strong
canards for β = 0.0025 (orange), β = 0.005 (light blue), β = 0.01 (magenta), and β = 0.014 (green)

enclosed by the strong canard of the FN on L near L2− execute one small oscillation
around that FN before they leave the neighborhood.

The canardioid dynamics can be understood in terms of these four sectors. (See
the deconstruction of the canardioid in Fig. 15b and the enlargement in Fig. 15c).
Starting at the red ducky, the solution lies in the R1 sector of the FN on L near L1−.
As such, the solution is able to move slowly beyond the attracting patch (Sa , blue),
through a corner of the saddle patch (Ss , yellow), and onto the repelling patch (Sr ,
red) for some time (red to yellow ducky). During this time, oscillators 1 and 2 both
move to being near their repelling branches, but their amplitudes remain relatively
small, near their local minima. Then, the repulsion causes the solution to execute a
short fast u1-jump to the left to the saddle patch (yellow to blue ducky), during which
oscillator 1 moves back to the left (stable) side of its local minimum. This is followed
by a short, fast jump back to the attracting manifold (blue to green ducky), during
which oscillator 2 moves back to the left (stable) side of its local minimum. The return
to the attracting manifold injects the solution into the R0 rotational sector of the same
FN. The solution thus passes through the neighborhood of the FN without exhibiting
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any canard dynamics and makes a large-amplitude excursion instead (green ducky to
well beyond the yellow ducky). This large-amplitude excursion is responsible for the
rightmost part of the heart-shape in Fig. 15b.

The leftmost part of the heart-shaped orbit is created in a similar manner, but with
the roles of the two oscillators reversed. After the solution completes the rightmost
part, it eventually returns to the attracting patch and lands in the R1 sector of the other
non-symmetric FN on L near L2− (cyan ducky). From there, the solution undergoes
a similar sequence—with the roles of oscillators 1 and 2 reversed—leading to an
SAO near that FN followed by a large-amplitude excursion for u2, during which time
oscillator 1 makes SAOs. This LAO of oscillator 2 forms the upper (leftmost) part of
the heart-shaped orbit. Since the entire orbit traces out a curve that is heart-shaped,
we refer to it as a canardioid. Overall, the canardioid is close to being a 13 AP rhythm,
i.e., it is a weak symmetry breaking rhythm.

The unfolding of the strong canard for various values of β is shown in Fig. 15d.
As β is decreased from the value used for frames (a)–(c), the primary strong canards
move further from the axis of symmetry. Hence, the R0 sectors get larger, and the set
of initial conditions leading to large-amplitude excursions gets proportionally larger.
This shows how the relative sizes of R0 and R1 change with β.

Remark 11 The rhythms shown in Figs. 9 and 15 both have segments in the zero rota-
tion sector R0 of the non-symmetric FN. However, in the former, the orbit enters very
close to the strong canard γs , at the boundary of R0 with R1, so that orbit subsequently
returns to the attracting patch, the amplitude of oscillator 1 remains small, and there
is strong symmetry breaking. In contrast, the latter orbit enters further away from γs ,
in the middle of R0, and hence the orbit stays near the symmetry line, the amplitudes
of both oscillators become large, and there is weak symmetry breaking.

6.2 Weak Symmetry Breaking APMMO-MMO Rhythms

Another example of weak symmetry breaking in (1.6) is the butterflied canardioid.
A representative example is shown in Fig. 16. The deconstruction of the butterflied
canardioid in the (u1, u2) plane (Fig. 16b) reveals that it is asymmetric, and that it is
a small perturbation of an AP MMO-MMO.

There are seven singularities (see Fig. 16b): two symmetric FSs, the symmetric
equilibrium, two non-symmetric FNs, and two non-symmetric FSs. The FNs each
have an eigenvalue ratio of μ ≈ 0.104. Hence, by (3.15), there will be four secondary
canard solutions that persist for sufficiently small β, as well as the primary strong
and primary weak canards. The strong canard, γs , and secondary canards, γ1 and γ2,
are shown for each FN in Fig. 16c, d. Recall that the maximal canards partition the
attracting manifold into sectors: solutions that enter the sector R j , enclosed by γ j and
γ j+1 for j = 0, 1, 2, 3, 4, exhibit j oscillations in the neighborhood of the FN.

The deconstruction of the butterflied canardioid proceeds as follows. Starting at
the red ducky, the solution is in the R0 sector of the FN on L near L1− (Fig. 16d).
The solution flows toward L1− and proceeds to execute a fast jump in the u1 direction
toward the lower right attractingmanifold (Fig. 16b, red to yellow ducky). The solution
quickly reaches a neighborhood of the fold L1+ and jumps back in the u1 direction
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Fig. 16 A weak symmetry breaking butterflied canardioid in (1.6). It is close to an AP 11 MMO rhythm.
a Time series. Oscillators 1 (blue) and 2 (red) exhibit periodic 11 MMOs that are close to being in AP. b
Projection into the (u1, u2) plane. Each non-symmetric FN has eigenvalue ratio μ ≈ 0.104 so that there
are four secondary canards by (3.15) in addition to the primary strong and weak canards. The strong canard
(blue, γs ), first secondary canard (red, γ1), and second secondary canard (green, γ2) have been computed. c
TheMMO for oscillator 2 is canard-induced, because the orbit falls into the R1 rotational sector between γs
and γ1. d The MMO for oscillator 1 is not canard-induced. Instead, the global return projects the orbit onto
the saddle manifold, and the subsequent jump back to the attracting sheet induces a small oscillation. Here,
a = 6.6, du = 2 × 10−4, dv = 0.155, and β = 0.01. The singular geometry for this example corresponds
to region Vc of Fig. 7

to the lower left attracting manifold (yellow to green ducky). The solution lands in
the sector R1 of the other FN on L , near L2−. Consequently, the solution exhibits a
canard-induced oscillation in the neighborhood of that other FN about its weak canard
(with u2 exhibiting an oscillation and u1 increasing monotonically), before it jumps
up in the u2 direction (green to blue ducky). The solution then exhibits a fast u2 jump
down to the lower saddle manifold (blue to magenta ducky). The repulsion of the
saddle manifold then induces another fast jump in the u1 direction to the lower left
attracting manifold. This returns the solution to the R0 sector of the FN on L near
L1−.
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From the deconstruction, we see that the asymmetry in the rhythm comes from
the local dynamics around the two non-symmetric FNs. The MMOs exhibited by
oscillator 2 are canard-induced (Brøns et al. 2006), with the SAOs generated by the
canard dynamics of the FN on L2−. The MMOs exhibited by oscillator 1, on the
other hand, are entirely due to the return mechanism, and they have segments near
the symmetry axis. The SAOs in the MMOs of oscillator 1 come from the small, fast
jump from the lower saddle manifold to the lower left attracting manifold.

Period-doubling of MMO-MMO rhythms has also been observed. This is similar
to the period-doubling of MMO rhythms observed in single oscillators, such as, for
example, in models of pituitary lactotroph cells (see figures 2-5 in (Vo et al. 2012)),
only here there is an asymmetry between the coupled oscillators.

7 Conclusions and Discussion

In this article, we analyzed strong symmetry breaking rhythms in pairs of symmet-
rically coupled, identical Lengyel-Epstein oscillators (1.6). These include families
of 0s10 SAO-LAO, SAO-LCC, and 0s11s2 SAO-MMO rhythms. The amplitudes and
behaviors of the two oscillators differ substantially.

The analysis of these rhythms has been based on the folded singularities of (1.6), as
well as on the dynamics induced by their canards (see the summary of the main folded
singularities given in Fig. 7 and Table 2). The locations of the folded singularities have
been determined as functions of system parameters (Eqs. (3.11) and (3.12)), and their
bifurcations have been determined (Sect. 3.5). FSN I–III bifurcations arise, as does a
new pitchfork bifurcation in which a folded singularity changes stability and two new
folded singularities are created.

An FN that lies on the fold curve L between the lower left attracting Sa and saddle
sheet Sr , off the symmetry axis (see Sect. 3.4),was identified as the primarymechanism
for the creation of the strong symmetry breaking rhythms. The strong, weak, and
secondary canards of this FN guide the orbits in the four-dimensional phase space,
splitting the oscillators in such a way that the amplitude of oscillator 1 remains small
for the entire period, while oscillator 2 makes a large excursion.

For the family of strong symmetry breaking 0s10 SAO-LAO rhythms, passage near
the strong or the weak canard of this FN causes the orbit of oscillator 1 to stay near its
local minimum for the entire period and oscillator 2 to make its LAO, as illustrated in
Figs. 8 and 9 (for s = 2). Furthermore, the analysis in Sect. 4 shows that, for orbits that
pass near the strong canard of the FN, the up-jump in oscillator 2 occurs after the first
SAO of oscillator 1, whereas for orbits that pass through the neighborhood near the
weak canard, oscillator 2 jumps before oscillator 1. Also, of the s SAOs that oscillator
1 exhibits during each period, typically s − 1 of them are induced by canards of the
FN, while the other SAO occurs during the passage near the true canard of the upper
FS point, and is hence a return-induced SAO, recall Sect. 4.2. In some rhythms, as, for
example, in some 0310 rhythms, there is a tiny SAO that oscillator 1 undergoes just
after the down jump of oscillator 2 is completed. The branches of stable SAO-LAO
rhythms end in period-doubling bifurcations, and the numerical evidence indicates
that the sequence follows the Feigenbaum scenario.
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Explosions of strong symmetry breaking SAO-LCC rhythms were also discovered
and analyzed. As illustrated in Fig. 10, oscillator 1 exhibits SAOs while oscillator 2
exhibits LCCs. Analysis based on the method of geometric desingularization (App. E)
led to the asymptotic formula for the point aasym,c(β) at which this explosion is cen-
tered, (E.1), and good agreement was found between the numerically observed value
at which the explosion occurs and the analytical prediction. This asymmetric canard
explosion is the bifurcation sequence by which the SAO-LAO rhythms are created
(Fig. 10a). Twoother explosions of asymmetric SAO-LCC rhythmswere also observed
(Figs. 11 and 12).Moreover, this phenomenon should arise in other systems of coupled
fast–slow oscillators that have canards.

We observe families of 0s11s2 SAO-MMO strong symmetry breaking rhythms
(recall Fig. 13) just to the left of this strong symmetry breaking canard explosion
in parameter space. The same non-symmetric FN is the primary mechanism making
these possible, as well, as illustrated in Fig. 14. The orbit in phase space is in the s2−1
rotation sector Rs2−1 of this FN. Hence, typically s2 − 1 of oscillator 2’s SAOs in the
MMO are canard-induced; the other occurs during the passage near the true canard of
the upper FS, and is hence return-induced. The number of secondary canards, which
is given by (3.15), determines how many rotation sectors are in the funnel of the FN,
and the asymptotic estimates of the widths of the rotation sectors help determine how
likely each of the different strong symmetry breaking orbits is to be found.

For the strong symmetry breaking orbits, the main effect of increasing the coupling
strength du may be understood as follows. Starting with du small and values of a
just to the right of aasym,c, one observes stable SAO-LAO rhythms, since one is just
to the right of the asymmetric canard explosion. Then, for larger values of du (with
the other parameters fixed), one observes SAO-MMO rhythms of varying complexity.
For larger values of du , the nearly vertical segment where the asymmetric canard
explosion occurs shifts rightward in a (by formula (E.1)). Thus, in the simulations with
a unaltered, one is now in the parameter regime to the left of that canard explosion,
which is densely filled with the stable plateaus of neighboring SAO-MMO isolas
(recall Fig. 13). Numerical simulations confirm the analytical result that, for larger
values of du , one observes 0s11s2 rhythms with larger values of s1 and s2.

The theories of folded singularities and geometric desingularization are developed
as asymptotic theories, valid here for β sufficiently small, and various of the compar-
isons to the theory have been done by performing simulations for sequences of values
of β. To supplement the theory, it is also of interest to fix the reaction rates, coupling
strengths, and initial conditions for (1.6), and perform simulations for a sequence of
small values of β. The results are reported in Appendix D, where we note that kinetics
parameters are chosen there to be the same as those in Case 6 of Table 3.

We contrast the dynamics of strong symmetry breaking rhythmswith those of other,
asymmetric rhythms of (1.6) that are close to IP and AP symmetries, see Sect. 6.
For example, asymmetric rhythms dubbed canardioids (Figs. 15 and 16) lie close to
AP MMO-MMO rhythms. More folded singularities are involved in making these
rhythms possible (than for strong symmetry breaking rhythms), since they are close
to symmetric states.

During the course of this study, we discovered an explosion of AP LCCs (recall
Sect. 2 and Fig. 3). While these AP LCC rhythms have anti-phase symmetry, they
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are of independent interest, and they mediate the transition between AP SAO-SAO
rhythms and AP LAO-LAO rhythms, in analogy to how classical IP LCC-LCC orbits
mediate the transition between IP SAO-SAO rhythms and IP LAO-LAO rhythms. As
shown in App. C using the same method employed throughout this article, we found
that the AP LCCs of the headless duck type are created by a pair of non-symmetric
FNs and follow their strong canards (Fig. 17b). AP LCCs of the type ducks with heads
occur further along this branch (see the green and blue orbits in Fig. 3c), completing
the explosion of AP LCCs. Even further along the branch, the AP LCCs are guided
by the true canards of a pair of non-symmetric FSs (Fig. 17c). The true and faux
canards of the symmetric FS also play important roles. Furthermore, the dependence
of these rhythms on the folded singularity canards shows why the explosion of AP
LCCs occurs over a relatively large range of parameter values, as opposed to the
exponentially narrow interval over which the explosion of IP LCCs occurs in (1.6).

We expect that the method employed here, of using geometric singular perturbation
theory and identifying the folded singularities and their bifurcations, to study a pair
of identical LE oscillators (1.6) coupled through both the slow and fast variables can
also be applied to other pairs of coupled, planar, fast–slow relaxation oscillators, such
as the van der Pol model.

The approach based on Cartesian product quilts and folded singularities that we
introduced in Awal et al. (2023) and further develop here is expected to have a number
of natural extensions that are also useful for strong symmetry breaking inmore general
symmetrically coupled, identical fast–slow oscillators, including oscillators with one
(ormore) fast variables and two (ormore) slow variables, aswell as to strong symmetry
breaking in systems of three or more identical coupled oscillators.

We end with a few open problems. It is of interest to determine how the SAO-MMO
rhythms are organized. Might there be a hierarchy of Farey sequences? So far, we have
only found rhythms of these types in which oscillator 2 has one LAO or MMO event
per period. Are there also SAO-MMO rhythms with two or more LAO orMMO events
per period, as is the case for single oscillators with two (or more) slow variables and
one (or more) fast variables and FN points. (Here, we note that the rhythms in Figure
5.1 vary in the fifth decimal place, and hence we think the search for rhythms with
two or more LAO or MMO events per period -if they exist- is challenging and the
stability intervals might be even narrower). Also, within the rich cluster of 0s11s2 orbits
in which oscillator 2 has just one LAO or MMO event per period, how are the various
plateaus organized?
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ADerivation of the Characteristic Equation (2.5)

In this appendix, we present a brief derivation of the characteristic Eq. (2.5) for the
Jacobian matrix of system (2.1) linearized about Esymm. The Jacobian matrix has the
following block form:

Df =
[
fuI + duC fvI

βguI βgvI + βdvC

]
, (A.1)

where all the derivatives are evaluated at Esymm, I is the 2 × 2 identity matrix, and

we recall that C =
[−1 1
1 −1

]
is the coupling matrix. Hence, because the 2× 2 blocks

commute, the determinant is

det [Df − λI ] = det
[
(fu − λ)(βgv − λ)I + βdv(fu − λ)C + du(βgv − λ)C

+βdudvC
2 − βfvguI

]
. (A.2)

Then, using the fact that C2 = −2C and grouping the terms, one finds that
det [Df − λI ] is given by:

det
[
λ2I − (fu + βgv)λI − (du + βdv)λC + β(fugv − fvgu)I + β(dvfu + dugv − 2dudv)C

]
.

Next, we recall the notation introduced in Sect. 2, q1 = (fu+βgv) and q2 = β( fugv −
fvgu) are the trace and determinant, respectively, of the Jacobian of a single LE
oscillator, and q3 = du + βdv and q4 = β(dv( fu − du) + du(gv − dv)) arise due to
the coupling. Hence,

det [Df − λI ] = det
[
λ2I − λ (q1I + q3C) + q2I + q4C

]
. (A.3)

Finally, we observe that the 2 × 2 matrix in (A.3) is of the form

[
α γ

γ α

]
, and we use

the algebraic relation α2 − γ 2 = (α + γ )(α − γ ) when evaluating this determinant

123

http://creativecommons.org/licenses/by/4.0/


Journal of Nonlinear Science            (2024) 34:53 Page 45 of 62    53 

Table 3 Rhythms varying a, with the other parameters fixed at du = 8.1 × 10−4, dv = 1.0588, and
β = 0.01 and initial conditions fixed at (u1, v1) = (0.63, 2.82) and (u2, v2) = (3.27, 2.70)

Case Range of a Rhythms

1 0.0 ≤ a ≤ 6.46330 Steady state (Esymm), Hopf bifurcation at aH,IP

2 6.46340 ≤ a ≤ 6.5071838 In-phase SAO-SAO (01)

3 6.5071839 ≤ a ≤ 6.5110612 Leapfrog SAO-SAO with period-doubling

3a 6.5071839 ≤ a ≤ 6.5090538 p-1

3b 6.5090539 ≤ a ≤ 6.5091047 p-2

3c 6.5091048 ≤ a ≤ 6.5091156 p-4

3d 6.5091157 ≤ a ≤ 6.5091180 p-8

3e 6.5091181 ≤ a ≤ 6.5091184 p-16

3f 6.5091185 ≤ a ≤ 6.5110612 Chaos

4 6.5110613 ≤ a ≤ 6.530257 In-phase LAO-LAO

5 6.530258 ≤ a ≤ 6.534073 Strong symmetry breaking SAO-MMO (0211, 0311, 0411)

In-phase LAO-LAO

6 6.534074 ≤ a ≤ 6.550624 Strong symmetry breaking SAO-LAO (0210)

7 6.550625 ≤ a ≤ 6.560000 In-phase LAO-LAO

to arrive at

det[Df − λI] =
(
λ2 − q1λ + q2

) (
λ2 − (q1 − 2q3) λ + (q2 − 2q4)

)
.

This yields (2.5).

BMultistability in (1.6)

In this appendix, we briefly discuss some of themultistability observed in system (1.6),
which is indicated by the bifurcation diagrams shown in Sects. 2–5. For example, Fig. 3
shows that, for a representative pair of values (du, dv), stable IP LAO-LAO rhythms
exist over a broad range of values of the bifurcation parameter a, and this is also
the case for a large regime in the (du, dv) parameter plane (data not shown). Over
different parts of these intervals, other stable rhythms co-exist, such as 0s110 SAO-
LAO rhythms and 0s11s2 SAO-MMO rhythms, as shown in the bifurcation diagrams
in Figs. 10a and 13. This type of multistability was also observed in pairs of identical
van der Pol oscillators coupled only through the slow variables, see Awal et al. (2023).

To further illustrate the multistability, we carry out direct numerical integration
varying the parameter a, and keeping the other parameters fixed. The results are shown
in Table 3. The symmetric steady state Esymm is stable (case 1) until aH,IP, where the
family of stable SAO-SAO rhythms (case 2) is created. The SAO-SAO states undergo
period doubling (case 3) just before the canard point ac. For values of a greater than
ac, the given initial condition lies in the basin of attraction of either the stable IP
LAO-LAO rhythm or the stable SAO-LAO or SAO-MMO rhythms (cases 4-7). The
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initial condition fixed in these simulations is in different basins of attraction as a
varies, but the basins exist over the range. The numerical integration was carried out
using MATLAB ODE solver 113 for ODEs with absolute and relative tolerances of
1 × 10−9 and 1 × 10−12, respectively.

The period doubling observed in case 3 appears to follow the classical Feigenbaum
scenario. For the doubling from p2 to p4, one finds 4.703 (approximately), and for
the doubling from p4 to p8, one finds approximately 4.696, where for reference we
recall that the Feigenbaum constant is 4.6692.... Similar period doubling results were
observed for other parameter sets (data not shown).

C Canard Explosion of the Antiphase Rhythms

In this appendix, we deconstruct the AP rhythms and describe their bifurcations in
terms of the folded singularities and their associated canards. The focus is on the novel
explosion of AP LCCs.

We start by recalling that the AP rhythms lie along the dashed blue curve in the
bifurcation diagram shown in Fig. 3a. The key branches of AP rhythms are also shown
here in Fig. 17a. The AP rhythms (black curve) emerge from the subcritical AP Hopf
bifurcation at aH,AP (black marker) of the symmetric equilibrium state Esymm. The
AP curve has three segments separated by fold bifurcations, which are labeled as LP1
and LP2. Recall from Sect. 2 that there is a novel type of canard explosion that occurs
along the lowermost segment of the AP curve. Also, we recall that for this parameter
set, all of the AP rhythms are unstable. However, it is possible to tune the parameters
so that parts of the AP branch become stable (e.g., with dv = 0.05 the uppermost
segment of the AP branch is stable).

To understand the AP rhythms, we briefly describe the geometry of the system
in the (u1, u2) plane and identify the key singularities. (This also helps keep the
appendix relatively self-contained.) The critical manifold consists of six patches, with
four attracting sheets, Sa (blue) in the corners, one continuously connected saddle
sheet, Ss (yellow) surrounding the attracting sheets, and a repelling sheet, Sr (red) in
the interior. (For small du , the saddle sheet is almost the cross product of four disjoint
saddle sheets, and the gap between the attracting and repelling sheets is very small).

There are eight singularities involved in the dynamics and bifurcations of the AP
rhythms:

• The symmetric equilibrium Esymm: lies on Sr for all a values for which the AP
rhythms exist.

• Symmetric FS: lies near the intersection of L1− and L2−. Its true canard coincides
with the axis of symmetry and is shown in Fig. 17b–g as a solid red line. Its faux
canard is shown as a dashed red curve.

• Non-symmetric FN/FF: lies at the boundary between the lower attracting and lower
saddle sheets. Depending on parameters, it may be a FN or a FF. When it is a FN,
its strong canard is shown as a blue curve.
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Fig. 17 a Bifurcations of the AP solutions with respect to a for du = 8× 10−4, dv = 0.5, and β = 0.001.
Insets: magnifications of LP1 and LP2. The remaining panels show solutions in the (u1, u2) plane. b AP
LCC (left diamond in (a)) that closely follows the strong canards of the FNs. c AP LCC (right diamond in
(a)) that closely follows the true canards of the non-symmetric FSs. dComparison of solutions before (solid
black) and after (dashed black) the LP1 bifurcation (magenta/green triangles in (a)). e Representative AP
LCC rhythm from the uppermost branch of the AP curve (red mustache in (a)). f Mechanism for the LP2
bifurcation. Before/after the bifurcation, the solution (solid/dashed black) lies outside/inside the funnel (see
the gold/cyan stars in (a)). g Representative AP LCC rhythm from the innermost branch of the AP curve
(black soccer ball in (a))
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• Non-symmetric FS: lies at the boundary between the saddle and repelling sheets.
Its true canard is shown as a red curve, and it connects the saddle and repelling
manifolds.

• Non-symmetric FS: lies at the boundary between the upper attracting and upper
saddle sheets. Its true canard is shown as a green curve (to distinguish it from the
true canards of the other FSs).

For each of the non-symmetric folded singularities listed above, there is a mirror
singularity obtained by reflection across the diagonal line {u1 = u2}.

With the geometry of the system laid out, we now deconstruct the AP rhythms.
Starting near theAPHopf bifurcation aH,AP on the lowermost AP branch, the solutions
(Fig. 17b, black curve) are small-amplitude AP canard cycles. The slow segments on
the saddle sheets closely follow the strong canards (Fig. 17b, blue curves) of the non-
symmetric FNs, and the fast jumps (double arrows) mediate the transitions between
the different branches of the saddle slow manifolds. In the (u, v) phase plane, these
are AP headless ducks (see the black and red orbits in Fig. 3c). Since these solutions
trace out segments of unstable saddle slow manifolds, they must be unstable.

As the parameter a is increased along the lowermost AP branch, the AP canard
cycles grow in amplitude until they reach the AP maximal canard (see the red solution
in Fig. 3c). Then, as a is further increased, the slow segments of the solution eventually
switch from closely following the strong canards of the non-symmetric FNs to closely
following the true canards of the non-symmetric FSs (Fig. 17c). Subsequently, the
slow segments of the solution stay close to the true canards (red curve) of the non-
symmetric FSs. (This FS mechanism allows the solutions to traverse the saddle slow
manifold for long times without the need for a FN, which is necessary since the non-
symmetric FN becomes a FF at a ≈ 6.69.) An example of these AP LCCs, which are
ducks with heads, is given by the green curve in Fig. 3c.

As a is further increased along the lowermost AP branch, the fast jumps eventually
project the orbits onto the faux canard (dashed red curve) of the symmetric FS. The
solution follows the faux canard toward the symmetric FS for some time before jump-
ing away and executing a large-amplitude excursion (Fig. 17d, solid black curve). As
a is increased toward the saddle-node bifurcation LP1 in Fig. 17a, the solution follows
the faux canard of the symmetric FS for longer times up to some maximal distance
(approximately corresponding to when the orbit reaches the fold curves L1−/L2−).
The a-value for which the solution traces the faux canard the maximal distance corre-
sponds to the saddle-node bifurcation at LP1. After the saddle-node bifurcation LP1,
the AP branch turns around and the solutions escape the faux canard by jumping back
toward the attracting manifold and then executing their large-amplitude excursions
(Fig. 17d, dashed black curve).

Along the uppermost segment of the AP branch, the AP solutions consist of an
LAO followed by an SAO, as illustrated by the curves in the (u, v) phase plane in
Fig. 3d (and marked by the corresponding mustaches). Starting at the peak of the orbit
near the uppermost non-symmetric FS, there is a slow drift along the upper saddle
sheet that closely follows the true canard of the non-symmetric FN (Fig. 17e, green
curve). This is followed by a fast jump down to the lower saddle sheet. On this saddle
sheet, there is short segment of slow drift to the right, which is then followed by a
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fast jump back to left to the lower attracting sheet. This slow drift and fast jump back
are responsible for the SAO observed in the AP solutions. Moreover, the fast jump
projects the solution into the region enclosed by the true canard (red diagonal line)
of the symmetric FS and the strong canard (blue curve) of the lower non-symmetric
FN. Since the orbit lands outside the funnel of the FN, there are no canard dynamics,
and the solution drifts toward the fold L1−, where it then jumps toward the rightmost
non-symmetric FS. The rest of the orbit is then obtained by symmetry across the line
{u1 = u2}.

As a is decreased toward the saddle-node bifurcation at LP2, the slow segments
of the solutions on the lower attracting manifold approach the strong canards of the
non-symmetric FNs (Fig. 17f, solid black curve). At the saddle-node bifurcation LP2,
the slow segments of the solutions land precisely on the strong canards. After the
bifurcation has occurred, the AP solutions enter the funnel of the non-symmetric FNs
but remain close to the strong canard itself (Fig. 17f, dashed black curve). As such,
solutions on the innermost part of the AP branch have slow segments that closely
follow the strong canards of the non-symmetric FNs, and slow segments that closely
follow the true canards of the outermost non-symmetric FSs (Fig. 17g). Representative
rhythms are illustrated in Fig. 3e.

D Results fromNumerical Simulations Varyingˇ

In this appendix, we briefly report on some results observed in numerical simulations
of Eq. (1.6) as the parameter β is varied, while the other parameters are fixed. The
results are reported in Table 4. The observed strong symmetry breaking rhythms are
SAO-LAO rhythms (cases 3, 5, and 6). Weak symmetry breaking states are seen in
Case 9; as β is taken closer to the upper end of this range, the asymmetric rhythms are
successively close toAP (13)4, (13)2, and 13 rhythms, respectively, where the subscript
denotes the number of different 13 events per period. There are also symmetric states,
including AP MMO rhythms (case 1), IP SAO rhythms, and the ubiquitous IP LAO
rhythms (cases 2, 4, and 7).

E Analysis of the Asymmetric Canard Explosion that Consists of
Broken-Symmetry SAO-LCC Rhythms

In this appendix, we use the method of geometric desingularization (a.k.a. the blow-
up method) to analyze the asymmetric canard explosion of system (1.6) in which one
oscillator (taken to be oscillator 2 here) undergoes an explosion of LCCs while the
other exhibits SAOs. We show analytically that, for du = O(β2) and dv = O(β), the
asymmetric canard explosion is given asymptotically in 0 < β  1 by

aasym,c(β) = 5

√
5

3
+ 5β + 4

3

√
5

3
du + 2

3

√
5

3
βdv + 153

√
15

64
β2 + O(β3). (E.1)
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Table 4 Rhythms varying β, with the other parameters fixed at a = 6.54, du = 8.1 × 10−4, and dv =
1.0588, and the initial conditions fixed at (u1, v1) = (0.63, 2.82), (u2, v2) = (3.27, 2.70)

Case Range of β Rhythms

1 0.0000100 ≤ β ≤ 0.0018972 Anti-phase 11 MMO

2 0.0018973 ≤ β ≤ 0.0021305 In-phase LAO

3 0.0021306 ≤ β ≤ 0.0049863 Asymmetric 0210 SAO-LAO

4 0.0049864 ≤ β ≤ 0.0083500 In-phase LAO

5 0.0083501 ≤ β ≤ 0.0106483 Asymmetric 0210 SAO-LAO

6 0.0106484 ≤ β ≤ 0.0109592 Asymmetric period-doubled 0210 SAO-LAO

7 0.0109593 ≤ β ≤ 0.0139345 In-phase LAO

8 0.0139346 ≤ β ≤ 0.0139380 Leapfrog

9 0.0139376 ≤ β ≤ 0.0141157 Weak symmetry breaking of AP 13 MMO

(reverse period-doubling cascade)

10 Weak symmetry breaking of AP SAO

(reverse period doubling cascade)

10a β = 0.014640 Weak symmetry breaking of AP (02)N for large N

10b β = 0.014660 Weak symmetry breaking of AP (02)4 SAO

10c 0.014666 ≤ β ≤ 0.014695 Weak symmetry breaking of AP (02)2 SAO

10d 0.014696 ≤ β ≤ 0.014832 Weak symmetry breaking of AP 02 SAO

10e 0.014833 ≤ β ≤ 0.015543 Very weak symmetry breaking of AP 02 SAO

11 0.015544 ≤ β ≤ 0.0165 In-phase SAO

This analysis confirms the numerical observations of the asymmetric canard explosion
shown in Fig. 10. Numerical simulations of (1.6) with parameters set at β = 0.001,
du = 0.0008, and dv = 0.5 show that the asymmetric canard explosion point occurs
at a = 6.46182. This agrees to within O(β2) of the value of asymm,c(0.001) =
6.46179... predicted by (E.1), as expected based on the order of the remainder terms
in the asymptotic expansion. Note that the analytic prediction matches the numerically
computed location of the asymmetric canard explosion quite well, despite (i) dv being
O(1) in Fig. 10, whereas the analysis requires it to beO(β), and (ii) the branch being
computed in Fig. 10(ai) is the asymmetric explosion of the 0210 branch, whereas the
analysis pertains to the asymmetric explosion of the 0110 rhythms. This is because,
even though there are two SAOs in the 0210 rhythms, those SAOs scale similarly
to the 0110 rhythm that the following blow-up and Melnikov analysis is based on.
Moreover, in the 0210 rhythms, only one of the SAOs is created by passage through
the FN point. The other SAO is created by the slow passage near the true canard γt
of the upper non-symmetric FS point, during the segment where oscillator 2 is on its
right/upper branch (as shown in Fig. 8 and as is the case for the orbits shown in the
left, near-vertical segment of the explosion in Fig. 10). Hence, the local analysis for
the asymmetric canard explosion is the same for the two types of orbits, since they
have the same local dynamics near FN. Also, we note that the linear dependence of
aasym,c(β) on du and dv at leading order agrees with the results observed numerically.
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Asymmetric canard explosions were first observed in Awal et al. (2023) for pairs
of coupled, identical van der Pol oscillators, with coupling only through the slow
variable. The analysis here shows that the method developed in Awal et al. (2023) is
morewidely applicable to including fast–slow systemswith coupling in both variables.
(Also, the opposite situation in which oscillator 1 undergoes an explosion of LCCs
while oscillator 2 exhibits SAOs, may be found using the same analysis, with the
scalings of the two oscillators switched.)

E.1 Blow-up Transformation

We start by recalling from (1.5) that the parameter value at which a single LE oscillator

undergoes a canard explosion is (uc, vc, ac) =
(√

5
3 ,

8
3 , 5

√
5
3

)
. With this as a point

of reference, it is useful to translate the dependent variables and the a parameter so
that the canard point is at the origin:

u1 = uc + ū1, v1 = vc + v̄1, u2 = uc + ū2, v2 = vc + v̄2, a = ac + ā.

Also, we observe that the asymmetric canard explosion occurs for small values of du
and dv , and so we rescale these as du = β2d̄u and dv = βd̄v . Hence, the coupled
system (1.6) becomes

dū1
dt

= f (uc + ū1, vc + v̄1) + β2d̄u(ū2 − ū1)

dv̄1
dt

= β

(
g(uc + ū1, vc + v̄1) + βd̄v(v̄2 − v̄1)

)

dū2
dt

= f (uc + ū2, vc + v̄2) − β2d̄u(ū2 − ū1)

dv̄2
dt

= β

(
g(uc + ū2, vc + v̄2) − βd̄v(v̄2 − v̄1)

)
,

(E.2)

where we recall that f (u, v) = a−u− 4uv
1+u2

and g(u, v) = u− uv
1+u2

. (Note that here
it is convenient to keep the original ordering of the equations, as in (1.6).)

With β = 0, the origin (ū1, v̄1, ū2, v̄2) = (0, 0, 0, 0) is a nilpotent point of (E.2),
with a quadruple eigenvalue at zero. Hence, it is useful to apply the method of geo-
metric desingularization (a.k.a. the blow-up method), which blows up the origin into a
topological hemisphere. This desingularization effectively acts as a microscope, mag-
nifying the flow near the nilpotent point to be a flow on and near a hemisphere, where
the degeneracies in the original system are lifted, and all of the orbits can readily be
distinguished and analyzed with classical invariant manifold theory.

We introduce the time-dependent small quantity r = r(t) ≥ 0, scale the dependent
variables with the appropriate powers of r , and elevate the small parameter β to the
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status of a variable, by setting:

ū1 = 1

5
ā + r4x1, v̄1 = v̄1,S(ū1) + 1√

2

(
5

3

)1/4

r5y1, ū2 = 5

2
r x2,

v̄2 = 25

8
r2y2, β = r2β̂. (E.3)

Therefore, the new dependent variables are x1, y1, x2, y2, and β̂. Also, we scale the
parameter ā as

ā = r2φ1 + r4φ2 + · · · , (E.4)

where the φi , i = 1, 2, . . ., are parameters whose values will be determined in the
course of the analysis. We recall the formula for the critical manifold (3.2), which in
the rescaled variables (with β = 0) is

v̄i,S(ū) = 8ā + 2
√
15āū + 2

√
15ū2 + 3āū2 − 3ū3

4
(√

15 + 3ū
) , i = 1, 2.

With the transformations (E.3) and (E.4) of the variables and the parameters, the

origin in (E.2) is blown up into the 4-sphere, S4 =
{
x21 + y21 + x22 + y22 + β̂2 = 1

}
,

which is embedded in R
5. For ū1 and v̄1, the powers of r in (E.3) are determined by

how close oscillator 1 is observed to stay near the canard point, at the local minimum
of the fast nullcline v̄1 = v̄1,S(ū1), during the entire time in which oscillator 2 exhibits
its LCCs. For ū2 and v̄2, the powers of r in (E.3) are the same as those used in the
analysis of the LCCs in the canard explosion of a single, uncoupled LE oscillator.
The relative powers of r reflect the fact that the fast nullcline of oscillator 2 is locally
parabolic, so that ū2 and v̄2 are scaled linearly and quadratically in r , respectively, as
is also the case in other fast–slow planar systems such as the coupled, identical van
der Pol oscillators studied in Awal et al. (2023). Furthermore, the various constants in
(E.3) are chosen so that the coefficients in the final system are well balanced.

Now, since there is no one single coordinate chart that can be used to study the
full dynamics on and near the entire upper hemisphere, we proceed as in the method
of geometric desingularization by examining the flow in different charts. Here, for
system (E.2), we use the following charts:

Kentry/exit = {y2 = 1} (Entry/exit chart)

Kresc = {β̂ = 1} (Rescaling or Central chart)
(E.5)

We emphasize that the charts Kentry/exit and Kresc are sufficient for studying the canard
dynamics on and near the upper hemisphere. A characterization of the full dynamics
on and near the upper hemisphere would require us to study the dynamics in additional
coordinate charts.
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E.2 Dynamics in the Central Chart and Derivation of (E.1)

In the rescaling (or central) chart Kresc, the change of variables is given by setting
β̂ = 1 in (E.3):

ū1 = 1

5

(
r2φ1 + r4φ2 + · · ·

)
+ r4x1,

v̄1 = v̄1,S(ū1) + 1√
2

(
5

3

)1/4

r5y1, ū2 = 5

2
r x2,

v̄2 = 25

8
r2y2, β = r2, (E.6)

per the definition of chart Kresc. Let ω = 31/453/4

2
√
2

. With these variables, system (E.2)
becomes

dx1
dt

= r

[
−ωy1 + 5

2
d̄u x2

]
+ O

(
r2
)

,

dy1
dt

= r

[
ωx1 + 5

2
ωd̄v y2 − 1

ω
d̄vφ1

]
+ O

(
r2
)

,

dx2
dt

= r

[
5
√
15

8

(
x22 − y2

)
+ 2

5
φ1

]
+ O

(
r2
)

dy2
dt

= r x2 + O
(
r2
)

.

As a final step, we desingularize this vector field by employing the rescaled time
variable:

t̃2 = ωr t,

and we also rescale x2 and y2 so that the system is in its simplest form for finding the
asymmetric canard point at the heart of the canard explosion:

x̃1 = x1, ỹ1 = y1, x̃2 = ωx2, ỹ2 = 5
√
15

8
y2.
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Hence, the vector field we study in the rescaling chart is:

dx̃1
dt̃2

= −ỹ1 + 4√
15

d̄u x̃2 + O(r),

dỹ1
dt̃2

= x̃1 + 4

5
√
15

d̄v(5ỹ2 − 2φ1) + O(r),

dx̃2
dt̃2

= x̃22 − ỹ2 + 2

5
φ1 + O(r),

dỹ2
dt̃2

= x̃2 + O(r).

(E.7)

This is the main vector field we study in chart Kresc.
For small values of r , the full system (E.7) is a perturbation of the r = 0 system:

dx̃1
dt̃2

= −ỹ1 + 4√
15

d̄u x̃2,

dỹ1
dt̃2

= x̃1 + 4

5
√
15

d̄v(5ỹ2 − 2φ1),

dx̃2
dt̃2

= x̃22 − ỹ2 + 2

5
φ1,

dỹ2
dt̃2

= x̃2. (E.8)

Crucially, one observes that the (x̃2, ỹ2) subsystem of (E.8) is independent of the vari-
ables x̃1 and ỹ1. In fact, in the full system (E.7), the (x̃2, ỹ2) subsystem is independent
of x̃1 and ỹ1 up to and including terms of O(r5). Hence, we first analyze the (x̃2, ỹ2)
subsystem of (E.8) and then consider the full system (E.7) as a small-amplitude per-
turbation.

The (x̃2, ỹ2) subsystem of (E.8) is a one-degree-of-freedom Hamiltonian system,
with

H(x̃2, ỹ2) = 1

2
e−2 ỹ2

(
−x̃22 + ỹ2 + 1

2
− 2φ1

5

)
(E.9)

and non-canonical form

dx̃2
dt̃2

= e2 ỹ2
∂H

∂ ỹ2
,

dỹ2
dt̃2

= −e2 ỹ2
∂H

∂ x̃2
.

(E.10)
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In chart Kresc, the LCC solutions of (1.6) are represented in the limit r = 0 by the
following parabolic solution of (E.10):

� = (x̃2, ỹ2) =
(
1

2
t̃2,

1

4
t̃22 − 1

2
+ 2φ1

5

)
, t̃2 ∈ (−∞,∞).

This solution is a heteroclinic orbit of (E.10), connecting two points at infinity. When
the (x̃2, ỹ2) plane is projected on the hemisphere, one observes that � connects two
points on the equator. In fact, it lies in the transverse intersection of a center-stableman-
ifold,Ca , and a center-unstablemanifold,Cr , on the invariant hemisphere {r = 0}. (We
determine what these center-stable and center-unstable manifolds are in Appendix E.3
and show that the special solution � lies in their intersection in Appendix E.4.)

Remark E.1 Wedetermine the (x̃1, ỹ1) components of the special solution� by solving
the forced linear system

dx̃1
dt̃2

= −ỹ1 + 4√
15

d̄u x̃2,

dỹ1
dt̃2

= x̃1 + 4

5
√
15

d̄v(5ỹ2 − 2φ1).

The solution

[
x̃1(t̃2)
ỹ1(t̃2)

]
=
⎡
⎣

√
15x̃1(0)−2(d̃u+2d̃v)√

15
−ỹ1(0)

ỹ1(0)
√
15x̃1(0)−2(d̃u+2d̃v)√

15

⎤
⎦
[
cos t̃2
sin t̃2

]
+
⎡
⎣ 2d̄u+4d̄v−d̄v t̃22√

15
2(d̄u+d̄v)t̃2√

15

⎤
⎦

consists of a simple harmonic oscillator with a forced response that is, at most,
quadratic in t̃2.

Now, we determine the parameter values for which the center-unstable and center-
stable manifolds in system (E.7) intersect transversely with 0 < r  1. This is
achievedusingMelnikov theory. In particular, the splitting distance between the center-
unstable and center-stable manifolds as measured on the hyperplane {x̃2 = 0} is

D(r) = D1r + D2r
2 + D3r

3 + D4r
4 + D5r

5 + O(r6). (E.11)
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Here,

D1 = ω

5

∫ ∞

−∞
∇H ·

(
x̃2 ỹ2 − 7x̃32 , x̃

2
2 − ỹ2

)T |� dt̃2 = − 3

25
ωe1−

4φ1
5

√
π

2
(φ1 − 5),

D2 =
∫ ∞

−∞
∇H ·

(√
15

8
x̃22 (5x̃

2
2 + ỹ2) + 2φ2

5
,
1

8

√
3

5
(x̃2 ỹ2 − 7x̃32)

)T

|� dt̃2 = 0,

D3 = ω

40
√
15

∫ ∞

−∞
∇H ·

(
−x̃2(64d̂u + 165x̃42 + 105x̃22 ỹ2,

1

5
(375x̃42 + 75x̃22 ỹ2

+64d̄v(−5ỹ2 + 2φ1))
)T |� dt̃2

= ω

320
√
15

e1−
4φ1
5

√
π

2
(975 + 256d̄u + 128d̄v + 138φ1),

D4 =
∫ ∞

−∞
∇H ·

(
15

64
x̃62 + 75

64
x̃42 ỹ2 + 2

25
d̄uφ1,− 3

64
x̃32(11x̃

2
2 + 7ỹ2)

)T

|� dt̃2 = 0,

and

D5 = 3ω

64

∫ ∞

−∞
∇H ·

(
x̃52 (17x̃

2
2 − 11ỹ2), x̃

6
2 + 5x̃42 ỹ2 + 512

1875
d̄vφ

2
1 + 1024

75
√
15

d̄vφ2

)T

|� dt̃2

= 3ω

64
e1−

4φ1
5

√
π

2

(
−105

16
+ 39φ1

16
+ 512

1875
d̄vφ

2
1 + 1024

75
√
15

d̄vφ2

)
.

Hence, for all sufficiently small values of r > 0, D(r) has simple zeroes for

φ1 = 5 + 1

192

√
5

3

(
1665 + 256d̄u + 128d̄v

)
r2 + O(r4),

φ2 = −
√
15

2
+ O(r2).

In turn, recalling the scalings of ā, β, du , and dv , we find that D(r) has simple zeroes
for

ā = 5β + 4

3

√
5

3
du + 2

3

√
5

3
βdv + 153ω2

40
β2 + O(β3).

Finally, translating this result for the simple zeroes back to the original parameter
a = ac + ā, one finds that the asymmetric canard explosion is centered at

aasym,c(β) = 5

√
5

3
+ 5β + 4

3

√
5

3
du + 2

3

√
5

3
βdv + 153

√
15

64
β2 + O(β3),

for du = O(β2) and dv = O(β), which is precisely formula (E.1).
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E.3 Dynamics in the Entry/Exit Chart

The Melnikov calculation performed in Appendix E.2 determines the parameters for
which there is an intersection of the center-stable and center-unstable manifolds, Ca

and Cr . Here, we examine the nature of these manifolds and determine where they
originate from. The analysis here and in Appendix E.4 closely follows the approach
in Szmolyan and Wechselberger (2001).

In the entry/exit chart Kentry/exit, the blow-up transformation is given by setting
y2 = 1 in (E.3):

u1 = 1

5
r21Eβ1Eφ1 + r41E x1E + · · · , v1 = v1,S(u1) + 1√

2

(
5

3

)1/4

r51E y1E ,

u2 = 5

2
r1E x2E , v2 = 25

8
r21E , β = r21Eβ1E .

Here, the subscript E is used to distinguish the new variables (x1E , x2E , y1Er1E , β1E )

in the entry/exit chart from the variables in the rescaling chart. The distinction will be
important especially in the transformations between coordinate charts carried out in
Appendix E.4. However, here in this subsection, we drop the subscript E to declutter
the notation.

Transformation and desingularization by a factor of r1 (i.e., rescaling time as t̃1 =
r1t) gives the dynamics in the entry/exit chart Kentry/exit as

dx1
dt̃1

= −ωy1 + O(r1, β1),

dx2
dt̃1

= 5
√
15

8

(
x22 − 1

)
+ O(r1, β1),

dy1
dt̃1

= β1

(
ωx1 − 5

2
x2y1 + O(r1, β1)

)
,

dr1
dt̃1

= r21β1

(
1

2
x2 + O(r1, β1)

)
,

dβ1

dt̃1
= −β2

1 (x2 + O(r1)) .

(E.12)

This system has two invariant subspaces, {r1 = 0} and {β1 = 0}.
The dynamics in the invariant subspace {r1 = 0} ∩ {β1 = 0} is given by

dx1
dt̃1

= −ωy1,

dx2
dt̃1

= 5
√
15

8

(
x22 − 1

)
,

dy1
dt̃1

= 0.
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This system possesses a line, La,1 = {(x1,−1, 0, 0, 0)}, of normally hyperbolic

attracting equilibria with nonzero eigenvalue λa = − 5
√
15
4 . Similarly, the system

possesses a line, Lr ,1 = {(x1, 1, 0, 0, 0)}, of normally hyperbolic repelling equilibria

with nonzero eigenvalue λr = 5
√
15
4 .

The dynamics in the invariant hyperplane {β1 = 0} are given by

dx1
dt̃1

= −ωy1 + O(r1),

dx2
dt̃1

= 5
√
15

8

(
x22 − 1

)
+ O(r1),

dy1
dt̃1

= 0,

dr1
dt̃1

= 0.

(E.13)

For this system, there are normally hyperbolic surfaces, Sa,1 and Sr ,1, of equilibria
that emanate from the lines La,1 and Lr ,1, respectively. The surfaces Sa,1 and Sr ,1
correspond to the attracting and repelling sheets of the critical manifold (of oscillator
2). On Sa,1 and Sr ,1, the nonzero eigenvalues are O(r1) perturbations of the nonzero
eigenvalues λa and λr , respectively.

The dynamics in the invariant hyperplane {r1 = 0} are given by

dx1
dt̃1

= −ωy1 + O(β1),

dx2
dt̃1

= 5
√
15

8

(
x22 − 1

)
+ O(β1),

dy1
dt̃1

= β1

(
ωx1 − 5

2
x2y1 + O(β1)

)
,

dβ1

dt̃1
= −β2

1 x2.

(E.14)

The lines La,1 and Lr ,1 are equilibria of this system with triple-zero eigenvalue and
one nonzero eigenvalue. Consequently, there exist 3D center manifolds,Ca,1 andCr ,1,
of the lines La,1 and Lr ,1.

With the analysis above, we can draw the following conclusions about the blown-up
system (E.12). First, there exists an attracting 4D center manifold, Ma,1, of the line,
La,1, of equilibria. The center manifold Ma,1 contains the surface, Sa,1, of equilibria,
aswell as the centermanifoldCa,1.Moreover, for r1, β1, and |x1| sufficiently small, the
center manifold Ma,1 has a graph representation, i.e., x2 = ha(x1, y1, r1, β1) for some
function ha . Additionally, the branch of the center manifold Ca,1 in r1 = 0 is unique
for x2 < 0. Similarly, there exists a repelling 4D center manifold, Mr ,1, of the line,
Lr ,1, of equilibria. The center manifold Mr ,1 contains the surface, Sr ,1, of equilibria,
as well as the center manifold Cr ,1. Moreover, for r1, β1, and |x1| sufficiently small,
the center manifold Mr ,1 has a graph representation, i.e., x2 = hr (x1, y1, r1, β1) for
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some function hr . Finally, the branch of the center manifold Cr ,1 in r1 = 0 is unique
for x2 > 0.

E.4 Connecting the Dynamics Between the Two Charts

In Appendix E.2, we determined the parameters for which an intersection between
a center-stable manifold, Ca , and a center-unstable manifold, Cr , would persist. In
Appendix E.3, we determined the center manifolds of the lines of equilibria La,1
and Lr ,1. Here, we show that the center manifolds Ca,1 and Cr ,1 from the entry/exit
chart are precisely the center-stable and center-unstable manifolds that intersect in the
rescaling chart. To distinguish between objects in these charts, we include an E or C
subscript corresponding to the entry/exit and central charts, respectively. That is, the
variables in the entry/exit chart are (x1E , x2E , y1E , r1E , β1E ) and the variables in the
central chart are (x1C , x2C , y1C , y2C , r2C ).

The following transition maps, defined for y2C > 0 and β1E > 0, respectively,
enable one to transport solutions from one chart to another:

(x1E , x2E , y1E , r1E , β1E ) = κCE (x1C , x2C , y1C , y2C , r2C )

=
(
x1C
y22C

,
x2C√
y2C

,
y1C

y5/22C

, r2C
√
y2C ,

1

y2C

)
,

(x1C , x2C , y1C , y2C , r2C ) = κEC (x1E , x2E , y1E , r1E , β1E )

=
(
x1E
β2
1E

, x2E
√

β1E ,
y1E

β
5/2
1E

,
1

β1E
, r1E

√
β1E

)
.

That is, κCE is the change of coordinates that maps objects from the central chart to
the entry/exit chart, and κEC is the change of coordinates that takes objects from the
entry/exit chart and transports them to the central chart.

We use κCE to determine where the special solution � from the central chart ends
up in the entry/exit chart as t → ±∞ (recalling also that t was rescaled there). To do
this, we calculate the limit

lim
t→∞ κCE (�(t)) = (0, 1, 0, 0, 0),

which is a point on the line Lr ,1 of equilibria. By calculating the tangent vec-

tor, limt→∞
d
dt κCE (�(t))

‖ d
dt κCE (�(t))‖ , of the special solution in the entry/exit chart at the point

(0, 1, 0, 0, 0), it can be shown that κCE (�) lies in the tangent space of the center
manifold Cr ,1. Similarly, we find that

lim
t→−∞ κCE (�(t)) = (0,−1, 0, 0, 0),

which is a point on the line La,1 of equilibria. As before, it can be shown, by calculating

the tangent vector, limt→−∞
d
dt κCE (�(t))

‖ d
dt κCE (�(t))‖ , of the special solution in the entry/exit chart
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at the point (0,−1, 0, 0, 0) that κCE (�) lies in the tangent space of the center manifold
Ca,1.

Thus, the special orbit� from the central chart emanates from a point on La,1 along
the unique part of the center manifold Ca,1 in r1 = 0, β1 > 0 in chart Kentry/exit. It
then moves across the hemisphere and terminates at a point on Lr ,1 along the unique
part of the center manifold Cr ,1 in r1 = 0, β1 > 0 in chart Kentry/exit. Since the center
manifolds Ca,1 and Cr ,1 can be extended along the special solution �, it follows that
� corresponds to the intersection of the center manifolds across the sphere S5.
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