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Abstract
We consider a system of interacting particles governed by the generalized Langevin
equation (GLE) in the presence of external confining potentials, singular repulsive
forces, as well as memory kernels. Using a Mori–Zwanzig approach, we represent the
system by a class of Markovian dynamics. Under a general set of conditions on the
nonlinearities, we study the large-time asymptotics of the multi-particle Markovian
GLEs. We show that the system is always exponentially attractive toward the unique
invariant Gibbs probability measure. The proof relies on a novel construction of Lya-
punov functions.We then establish the validity of the small-mass approximation for the
solutions by an appropriate equation on any finite-time window. Important examples
of singular potentials in our results include the Lennard–Jones andCoulomb functions.

Keywords Lyapunov functions · Singular potentials · Small mass limits

Mathematics Subject Classification 60H10

1 Introduction

Given N ≥ 2, we are interested in the following system of generalized Langevin
equations in Rd , d ≥ 1:

d xi (t) = vi (t)dt, i = 1, . . . , N ,
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m d vi (t) = −γ vi (t)dt − ∇U (xi (t))dt −
∑

j �=i

∇G
(
xi (t) − x j (t)

)
dt +√

2γ dWi,0(t)

+
∫ t

0
Ki (t − s)vi (s)dsdt + Fi (t)dt . (1.1)

System (1.1) is introduced to describe the evolution of N interactingmicro-particles in
a thermally fluctuating viscoelastic medium, see Baczewski and Bond (2013), Bock-
ius et al. (2021), Duong (2015), Duong and Pavliotis (2019), Gomes et al. (2020),
Gottwald et al. (2015), Jung et al. (2018, Ness et al. (2015), Wei et al. (2016) and
references therein. The bivariate process (xi (t), vi (t)), i = 1, . . . , N represents the
position and velocity of the i th particle. On the vi -equation in (1.1),m > 0 is the parti-
cle’smass, γ > 0 governs the viscous friction, {Wi,0}i=1,...,N are independent standard
d-dimensional Wiener processes, U : Rd → [0,∞) represents a confining potential
satisfying polynomial growth and certain dissipative conditions andG : Rd \{0} → R

is a singular repulsive potential. Furthermore, the i th particle is subjected to a convo-
lution term involving the convolution kernel Ki : [0,∞) → [0,∞) that characterizes
the delayed response of the fluid to the particle’s past movement (Kneller 2011;Mason
and Weitz 1995; Mori 1965). In accordance with the fluctuation-dissipation relation-
ship (Kubo 1966; Zwanzig 2001), the random force Fi (t) is a mean-zero, stationary
Gaussian process linked to Ki via the relation

E[Fi (t)Fi (s)] = Ki (|t − s|). (1.2)

In the absence ofmemory effects, that is setting Ki ≡ 0 and Fi ≡ 0, (1.1) is reduced
to the classical underdamped Langevin system modeling Brownian particles driven
by repulsive external forces

d xi (t) = vi (t)dt, i = 1, . . . , N ,

m d vi (t) = −γ vi (t)dt − ∇U (xi (t))dt −
∑

j �=i

∇G(xi (t) − x j (t))dt +√
2γ dWi,0(t).

(1.3)

In particular, the large-time asymptotic of (1.3) is well-understood. That is under a
wide class of polynomial potentialU and singular potential G, including the instances
of Lennard–Jones and Coulomb functions, system (1.3) admits a unique invariant
probability measure which is exponentially attractive and whose formula is given by
Conrad and Grothaus (2010), Cooke et al. (2017), Grothaus and Stilgenbauer (2015),
Herzog and Mattingly (2019), Lu and Mattingly (2019)

π(dx, dv) = 1

Z
exp

{
−
(1
2

N∑

i=1

m|vi |2 +
N∑

i=1

U (xi ) +
∑

1≤i< j≤N

G(xi − x j )
)}

dxdv.

In the above, Z is the normalization constant, x = (x1, . . . , xN ) and v = (v1, . . . , vN ).
However, as pointed out elsewhere in Kubo (1966), Zwanzig (2001), the presence of
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elasticity in a viscoelastic medium induces a memory effect between the motion of
the particles and the surrounding molecular bombardment. It is thus more physically
relevant to consider (1.1). On the other hand, in the absence of singularities in (1.1)
(G ≡ 0), there is a vast literature in the context of, e.g., large-time behaviors (Glatt-
Holtz et al. 2020; Herzog et al. 2023; Ottobre and Pavliotis 2011; Pavliotis 2014;
Pavliotis et al. 2021) as well as small-mass limits (Herzog et al. 2016; Hottovy et al.
2015; Lim and Wehr 2019; Lim et al. 2020; Nguyen 2018; Shi and Wang 2021). In
contrast, much less is known about the system (1.1) in the presence of both memory
kernels and singular potentials for any of those limiting regimes.

The main goal of the present article is thus twofold. Firstly, under a general set of
conditions on the nonlinearities and memory kernels, we asymptotically characterize
the equilibrium of (1.1) when t → ∞. More specifically, we aim to prove that under
these practical assumptions, (1.1) is exponentially attractive toward a unique ergodic
probability measure. Secondly, we explore the behaviors of (1.1) in the small-mass
regime, i.e., by takingm to zero on the right-hand side of the vi -equation in (1.1). Due
to the singular limit when m is small, the velocity v(t) is oscillating fast, whereas the
position x(t) is still moving slow. Hence, we seek to identify a limiting process q(t)
such that x(t) can be related to q(t) on any finite-time window. We now provide a
more detailed description of the main results.

1.1 Geometric Ergodicity

In general, there is noMarkovian dynamics associatedwith (1.1), owing to the presence
of the memory kernels. Nevertheless, it is well known that for kernels which are a sum
of exponential functions, we may adopt the Mori–Zwanzig approach to produce a
Markovian approximation to (1.1) (Glatt-Holtz et al. 2020; Kubo 1966; Mori 1965;
Ottobre and Pavliotis 2011; Pavliotis 2014; Zwanzig 2001). More specifically, when
Ki is given by

Ki (t) =
ki∑

�=1

λ2i,�e
−αi,�t , t ≥ 0, (1.4)

for some positive constants λi,�, αi,�, � = 1, . . . , ki , following the framework of
Baczewski andBond (2013),Doob (1942),Duong andShang (2022),Goychuk (2012),
Ottobre and Pavliotis (2011), Pavlioti (2014), we can rewrite (1.1) as the following
system

d xi (t) = vi (t)dt, i = 1, . . . , N ,

m d vi (t) = −γ vi (t)dt − ∇U (xi (t))dt +√
2γ dWi,0(t)

−
∑

j �=i

∇G
(
xi (t) − x j (t)

)
dt +

ki∑

�=1

λi,�zi,�(t)dt,

d zi,�(t) = −αi,�zi,�(t)dt − λi,�vi (t)dt +√
2αi,� dWi,�(t), � = 1, . . . , ki . (1.5)

See Pavliotis (2014, Proposition 8.1) for a detailed discussion of this formulation.
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Denoting zi = (zi,1, . . . , zi,ki ) ∈ (Rd)ki , i = 1, . . . , N , we introduce the
Hamiltonian function HN defined as

HN (x, v, z1, . . . , zN ) = 1

2
m|v|2 +

N∑

i=1

U (xi ) +
∑

1≤i< j≤N

G(xi − x j ) + 1

2

N∑

i=1

|zi |2.

(1.6)

The corresponding Gibbs measure is given by:

πN (x, v, z1, . . . , zN ) = 1

ZN
exp

{− HN (x, v, z1, . . . , zN )
}
dxdvdz1 . . . dzN , (1.7)

where ZN is the normalization constant. Under suitable assumptions on the potentials,
cf. Assumptions 2.1 and 2.3, one can rely on the Hamiltonian structure to show that
(1.5) is always well-posed. That is a strong solution of (1.5) exists and is unique for all
finite time. Furthermore, by a routine computation (Pavliotis 2014, Proposition 8.2), it
is not difficult to see that the Gibbs measure πN as in (1.7) is an invariant probability
measure of (1.5) and that there is dissipation toward such a measure. On the other
hand, as observed elsewhere in Conrad and Grothaus (2010), Cooke et al. (2017),
Grothaus and Stilgenbauer (2015), Herzog and Mattingly (2019), Lu and Mattingly
(2019), in the presence of the nonlinearities, the Hamiltonian (1.6) does not produce
an energy estimate of the form

d

dt
E[V (t)] ≤ −cE[V (t)] + C, t ≥ 0,

which is needed to obtain geometric ergodicity. In this paper, we tackle the problem
by exploiting the technique of Lyapunov function, cf. Definition 3.1, and successfully
establish the uniqueness ofπN aswell as an exponential convergent rate towardπN .We
note that our result covers important examples of singular potentials such as Lennard–
Jones functions and Coulomb functions. We refer the reader to Theorem 2.8 for a
precise statement of this result and to Sect. 3 for its proof.

Historically, in the absence of repulsive forces, (1.5) is reduced to the following
single-particle GLE

d x(t) = v(t)dt,

m d v(t) = −γ v(t)dt − ∇U (x(t))dt +
k∑

i=1

λi zi (t)dt +√
2γ dW0(t),

d zi (t) = −αi zi (t)dt − λiv(t)dt +√
2αi dWi (t), i = 1, . . . , k, (1.8)

whose large-time asymptotic has been studied extensively (Glatt-Holtz et al. 2020;
Herzog et al. 2023; Ottobre and Pavliotis 2011; Pavliotis 2014). Particularly, mixing
rates for the kernel instances of finite sum of exponentials were established in Otto-
bre and Pavliotis (2011, Pavliotis (2014) via the weak Harris Theorem (Hairer and
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Mattingly 2011; Meyn and Tweedie 2012). Analogously, kernel instances as an infi-
nite sum of exponentials were explored in Glatt-Holtz et al. (2020). In this work, the
uniqueness of invariant probability measures was obtained by employing the so-called
asymptotic coupling argument. Recently in Herzog et al. (2023), a Gibbsian approach
was adopted from Liu (2002), Mattingly and Sinai (2001), Mattingly (2002) to study
more general kernels that need not be a sum of exponentials.

Turning back to our ergodicity results for singular potentials, the proof of Theorem
2.8 relies on two ingredients: an irreducibility condition and a suitable Lyapunov
function (Hairer andMattingly 2011; Mattingly et al. 2002; Meyn and Tweedie 2012).
Whereas the irreducibility is relatively standard and can be addressed by adapting to
the argument in, e.g., Herzog and Mattingly (2019, Corollary 5.12) and Mattingly et
al. (2002, Proposition 2.5), the construction of Lyapunov functions is highly nontrivial
requiring a deeper understanding of the dynamics. Notably, in case the viscous drag is
positive (γ > 0), we draw upon the ideas developed in Herzog and Mattingly (2019),
Lu and Mattingly (2019) tailored to our settings, cf. Lemma 3.5. On the other hand,
when γ = 0, it is worth pointing out that the method therein is unfortunately not
applicable owing to a lack of dissipation in v. To circumvent the issue, we effectively
build up a novel Lyapunov function specifically designed for (1.5), cf. Lemma 3.6. The
main idea of the construction is to realize the dominating effects at high energy (HN 

1). We do so by employing a heuristic asymptotic scaling allowing for determining
the leading order terms in “bad" regions, i.e., when |x| → 0 and |v|, |z| → ∞. In
turn, this will be crucial in the derivation of our Lyapunov functions that ultimately
will be invoked to conclude ergodicity when γ = 0. The heuristic argument will be
presented out in Sect. 3.1.1, whereas the proofs of Lemmas 3.5 and 3.6 are supplied
in Sect. 3.2.

1.2 Small-Mass Limit

In the second main topic of the paper, we investigate the small-mass limit for the
process x(t) = xm(t) in (1.5). Namely, by taking m to zero on the right-hand side of
the vi -equation in (1.5), we aim to derive a process q(t) taking values in (Rd)N such
that xm(t) can be well-approximated by q(t) on any finite-time window, i.e.,

sup
t∈[0,T ]

|xm(t) − q(t)| → 0, as m → 0, (1.9)

where the limit holds in an appropriate sense. In the literature, such a statement is also
known as the Smoluchowski–Kramer approximation (Freidlin 2004; Kramers 1940;
Smoluchowski 1916).

We note that in the absence of the singularities, there is a vast literature on limits of
the form (1.9) for various settings of the single-particle GLE as well as other second-
order systems. For examples, numerical simulations were performed in Hottovy et al.
(2012a, b). Rigorous results in this direction for state-dependent drift terms appear in
theworkofCerrai et al. (2020),Hottovy et al. (2015, 2012a), Pardoux andVeretennikov
(2003). Similar results are also established for Langevin dynamics (Herzog et al. 2016;
Duong et al. 2017), finite-dimensional single-particle GLE (Lim and Wehr 2019; Lim
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et al. 2020), as well as infinite-dimensional single-particle GLE (Nguyen 2018; Shi
and Wang 2021). Analogous study for the stochastic wave equation was central in the
work of Cerrai and Freidlin (2006a, 2006b), Cerrai et al. (2017, Cerrai and Glatt-Holtz
(2020, 2014), Cerrai and Salins (2016), Nguyen (2022). On the other hand, small-mass
limits in the context of repulsive forces are much less studied, but see the recent paper
(Choi and Tse 2022) for a quantification of the small-mass limit of the kinetic Vlasov–
Fokker–Planck equations with singularities. In our work, we investigate this problem
under a general set of conditions on the nonlinear potentials. More specifically, let us
introduce the following system

γ dqi (t) = −∇U (qi (t))dt −
∑

j �=i

∇G
(
qi (t) − q j (t)

)
dt +√

2γ dWi,0(t)

−
ki∑

�=1

λ2i,�qi (t)dt +
ki∑

�=1

λi,� fi,�(t)dt, i = 1, . . . , N ,

d fi,�(t) = −αi,� fi,�(t) + λi,� αi,� qi (t)dt +√
2αi,�dWi,�(t), � = 1, . . . , ki .

(1.10)

Our second main result states that the process q(t) satisfies the following limit in
probability for all ξ, T > 0

P

(
sup

t∈[0,T ]
|xm(t) − q(t)| > ξ

)
→ 0, as m → 0. (1.11)

The precise statement of (1.11) is provided in Theorem 2.10, while its detailed proof
is supplied in Sect. 4.

In order to derive the limiting system (1.10), wewill adopt the framework developed
in Herzog et al. (2016), Nguyen (2018) dealing with the same issue in the absence of
singular potentials. This involves exploiting the structure of the zi -equation in (1.5)
whilemaking use ofDuhamel’s formula and an integration by parts. In turn, this allows
for completely decoupling zi from vi , ultimately arriving at (1.10). See Sect. 4.1 for
a further discussion of this point. The proof of (1.11) draws upon the argument in
Herzog et al. (2016), Nguyen (2018), Ottobre and Pavliotis (2011) tailored to our
settings. Namely, we first reduce the general problem to the special case when the
nonlinearities are assumed to be Lipschitz. This requires a careful analysis on the
auxiliary memory variables zi (t), i = 1, . . . , N , as well as the velocity process vm(t).
We then proceed to remove the Lipschitz constraint by making use of crucial moment
bounds on the limiting process q(t). In turn, this relies on a delicate estimate on (1.10)
via suitable Lyapunov functions, which are also of independent interest. Similarly to
the ergodicity results, we note that the limit (1.11) is applicable to a wide range of
repulsive forces, e.g., the Lennard–Jones and Coulomb functions. To the best of the
authors’ knowledge, the type of limit (1.11) that we establish in this work seems to
be the first in this direction for stochastic systems with memory and singularities.
The explicit argument for (1.11) will be carried out while making use of a series of
auxiliary results in Sect. 4. The proof of Theorem 2.10 will be presented in Sect. 4.4.
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Finally, we remark that a crucial property that is leveraged in this work is the
choice of memory kernels as a finite sum of exponentials, cf. (1.4). This allows for
the convenience of employing Markovian framework to study asymptotic analysis for
(1.1) (Mori 1965; Ottobre and Pavliotis 2011; Pavliotis 2014; Zwanzig 2001) under
the impact of interacting repulsive forces. For SDEs with non-exponentially decaying
kernels, e.g., sub-exponential or power-law, with smooth nonlinearities though, we
refer the reader to Baeumer et al. (2015, Desch and Londen (2011, Glatt-Holtz et al.
(2020), Herzog et al. (2023, Nguyen (2018).

1.3 Organization of the Paper

The rest of the paper is organized as follows: in Sect. 2, we introduce the notations
as well as the assumptions that we make on the nonlinearities. We also state the
main results of the paper, including Theorem 2.8 on geometric ergodicity of (1.5) and
Theorem 2.10 on the validity of the approximation of (1.5) by (1.10) in the small-mass
regime. In Sect. 3, we address the construction of Lyapunov functions for (1.5) and
prove Theorem 2.8. In Sect. 4, we detail a series of auxiliary results that we employ
to prove the convergence of (1.5) toward (1.10). We also conclude Theorem 2.10 in
this section. In Appendix A, we provide useful estimates on singular potentials that
are exploited to establish the main results.

2 Assumptions andMain Results

Throughout, we let (�,F , (Ft )t≥0,P) be a filtered probability space satisfying
the usual conditions (Karatzas and Shreve 2012) and (Wi, j (t)), i = 1, . . . , N ,
j = 0, . . . , ki , be i.i.d standard d-dimensional Brownian Motions on (�,F ,P)

adapted to the filtration (Ft )t≥0.
In Sect. 2.1, we detail sufficient conditions on the nonlinearities U and G that we

will employ throughout the analysis. We also formulate the well-posedness through
Proposition 2.7. In Sect. 2.2, we state the first main result through Theorem 2.8 giving
the uniqueness of the invariant Gibbs measure πN defined in (1.7), as well as the
exponential convergent rate toward πN in suitable Wasserstein distances. In Sect. 2.3,
we provide our second main result through Theorem 2.10 concerning the validity of
the small mass limit of (1.5) on any finite-time window.

2.1 Main Assumptions

For notational convenience,wedenote the inner product and the norm inRd by 〈·, ·〉 and
| · |, respectively. Concerning the potentialU , we will impose the following condition
(Ottobre and Pavliotis 2011; Pavliotis 2014).

Assumption 2.1 (i) U ∈ C∞(Rd; [1,∞)) satisfies

|U (x)| ≤ a1(1 + |x |λ+1), |∇U (x)| ≤ a1(1 + |x |λ), x ∈ R
d , (2.1)

123



   62 Page 8 of 63 Journal of Nonlinear Science            (2024) 34:62 

and

|∇2U (x)| ≤ a1(1 + |x |λ−1), (2.2)

for some constants a1 > 0 and λ ≥ 1.
(ii) Furthermore, there exist positive constants a2, a3 such that

〈∇U (x), x〉 ≥ a2|x |λ+1 − a3, x ∈ R
d . (2.3)

(iii) If γ = 0, then λ = 1.

Remark 2.2 Thefirst two conditions (i) and (ii) inAssumption 2.1 are quite popular and
can be found in many previous literature for the Langevin dynamics (Glatt-Holtz et al.
2020; Mattingly et al. 2002; Nguyen 2018). In particular, U (x) essentially behaves
like |x |λ+1 at infinity. On the other hand, for the generalized Langevin counterpart, in
the absence of the viscous drag, i.e., γ = 0 in v−equation in (1.5), we have to impose
condition (iii) Ottobre and Pavliotis (2011) requiring U be essentially a quadratic
potential. We note, however, that this condition is unnecessary for the well-posedness.
Rather, it is to guarantee the existence of suitable Lyapunov functions, so as to ensure
geometric ergodicity of (1.5). See the proofs of Lemmas 3.4 and 3.6 for a further
discussion of this point.

Concerning the singular potential G, we will make the following condition (Bolley
et al. 2018; Herzog and Mattingly 2019; Lu and Mattingly 2019).

Assumption 2.3 (i) G ∈ C∞(Rd\{0};R) satisfies G(x) → ∞ as |x | → 0.
Furthermore, there exists a positive constant β1 ≥ 1 such that for all x ∈ R

d \ {0}

|G(x)| ≤ a1
(
1 + |x | + 1

|x |β1
)
, (2.4)

|∇G(x)| ≤ a1
(
1 + 1

|x |β1
)
, (2.5)

and |∇2G(x)| ≤ a1
(
1 + 1

|x |β1+1

)
, (2.6)

where a1 is the constant as in Assumption 2.1.
(ii) There exist positive constants β2 ∈ [0, β1), a4, a5 and a6 such that

∣∣∣∇G(x) + a4
x

|x |β1+1

∣∣∣ ≤ a5
|x |β2 + a6, x ∈ R

d \ {0}. (2.7)

Remark 2.4 (i) Although (2.7) is slightly odd looking, this condition essentially states
that ∇G can be expressed as:

∇G(x) = −c
x

|x |β1+1 + lower-order terms,
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hence the requirement β2 < β1. Also, ∇G has the order of |x |−β1 as |x | → 0, i.e.,

c

|x |β1 − C ≤ |∇G(x)| ≤ C

|x |β1 + C,

which need not imply (2.7). Condition (2.7) will be employed in the Lyapunov proofs
in Sect. 3.

(ii) A routine calculation shows that both the Coulomb functions

G(x) =
{

− log |x |, d = 2,
1

|x |d−2 , d ≥ 3,
(2.8)

and the Lennard–Jones functions

G(x) = c0
|x |12 − c1

|x |6 , (2.9)

satisfy (2.7). Particularly, in case of (2.9), we have

∇G(x) = −12c0
x

|x |14 + 6c1
x

|x |8 ,

which verifies (2.7) with β1 = 13 and β2 = 7. Another well-known example for the
case β1 = 1 is the log function G(x) = − log |x |, whereas the case β1 > 1 includes
the instance G(x) = |x |−β1+1.

(iiI) Without loss of generality, we may assume that

N∑

i=1

U (xi ) +
∑

1≤i< j≤N

G(xi − x j ) ≥ 0. (2.10)

Otherwise, we may replace U (x) by U (x) + c for some sufficiently large constant c,
which does not affect (1.5).

Under the above two assumptions, we are able to establish the geometric ergodicity
of (1.5), cf. Theorem 2.8, in any dimension d ≥ 1. They are also sufficient for the
purpose of investigating the small mass limits when either d ≥ 2 or β1 > 1. On the
other hand, when d = 1 and β1 = 1 (e.g., log potentials), wewill impose the following
extra condition on G.

Assumption 2.5 LetG and β1 be as in Assumption 2.3. In dimension d = 1, if β1 = 1,
then

a4 >
1

2
, (2.11)

where a4 is the positive constant from condition (2.7).
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Remark 2.6 As it turns out, in dimension d = 1, log potentials (β1 = 1) induce fur-
ther difficulty for the small-mass limit. To circumvent the issue, we have to impose
Assumption 2.5, which requires that the repulsive force be strong enough so as to
establish suitable energy estimates. See the proof of Lemma 4.3 for a detailed expla-
nation of this point. It is also worth mentioning that the threshold a4 > 1/2 is a
manifestation of Lemma A.2 and is perhaps far from optimality. Thus, the small-mass
limit in the case d = 1 and β1 = 1, cf. Theorem 2.10, remains an open problem for
all a4 ∈ (0, 1/2].

Having introduced sufficient conditions on the potentials, we turn to the issue of
well-posedness for (1.5). The domain where the displacement process xm(t) evolves
on is denoted byD and is defined as Bolley et al. (2018, Herzog andMattingly (2019),
Lu and Mattingly (2019)

D = {x = (x1, . . . , xN ) ∈ (Rd)N : xi �= x j if i �= j}. (2.12)

Then, we define the phase space for the solution of (1.5) as follows:

X = D × (Rd)N ×
N∏

i=1

(Rd)ki . (2.13)

The first result of this paper is the following well-posedness result ensuring the
existence and uniqueness of strong solutions to system (1.5).

Proposition 2.7 Under Assumptions 2.1 and 2.3, for every initial condition X0 =
(x(0), v(0), z1(0),. . . ,zN (0)) ∈ X, system (1.5) admits a unique strong solution
Xm(t; X0) = (

xm(t), vm(t), z1,m(t),..., zN ,m(t)
) ∈ X.

The proof of Proposition 2.7 is a consequence of the existence of Lyapunov
functions below in Lemmas 3.5 and 3.6. The argument can be adapted from the
well-posedness proof of Glatt-Holtz et al. (2020, Section 3) tailored to our settings.
Alternatively, the result can also be proved by using the Hamiltonian as in (1.6) to
establish suitable moment bounds. It, however, should be noted that Proposition 2.7
itself is highly nontrivial as well-posedness does not automatically follow a stan-
dard argument for SDEs (Khasminskii 2011) based on locally Lipschitz continuity,
owing to the presence of singular potentials. Nevertheless, the issue can be tackled by
constructing appropriate Lyapunov functions.

As a consequence of the well-posedness, we can thus introduce the Markov
transition probabilities of the solution Xm(t) by

Pm
t (X0, A):=P(Xm(t; X0) ∈ A),

which are well-defined for t ≥ 0, initial condition X0 ∈ X and Borel sets A ⊂ X.
Letting Bb(X) denote the set of bounded Borel measurable functions f : X → R, the
associated Markov semigroup Pm

t : Bb(X) → Bb(X) is defined and denoted by

Pm
t f (X0) = E[ f (Xm(t; X0))], f ∈ Bb(X).
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2.2 Geometric Ergodicity

We now turn to the topic of large-time properties of equation (1.5). Recall that a
probability measure μ on Borel subsets of X is called invariant for the semigroup Pm

t
if for every f ∈ Bb(X)

∫

X
f (X)(Pm

t )∗μ(dX) =
∫

X
f (X)μ(dX),

where (Pm
t )∗μ is defined as in Hairer and Mattingly (2011)

(Pm
t )∗μ(A) =

∫

X
Pm
t (X , A)μ(dX),

for all Borel sets A ⊂ X. Next, we denote byLN
m,γ the generator associated with (1.5).

One defines LN
m,γ for any ϕ ∈ C2(X;R) by

LN
m,γ ϕ =

N∑

i=1

[
〈∂xi ϕ, vi 〉 + 1

m

〈
∂vi ϕ, −γ vi − ∇U (xi ) −

∑

j �=i

∇G(xi − x j ) +
ki∑

�=1

λi,�zi,�
〉

+ γ

m2 �vi ϕ +
ki∑

�=1

〈∂zi,�ϕ,−αi,�zi,� − λi,�vi 〉 +
ki∑

�=1

αi,��zi,�ϕ
]
. (2.14)

In order to show that πN (X)dX defined in (1.7) is invariant for (1.5), it suffices to
show that πN (X) is a solution of the stationary Fokker–Planck equation

(LN
m,γ )∗πN (X) = 0, (2.15)

where (LN
m,γ )∗ is the dual of LN

m,γ , i.e.,

∫

X
LN
m,γ f1(X) · f2(X)dX =

∫

X
f1(X) · (LN

m,γ )∗ f2(X)dX ,

for any f1, f2 ∈ C2
c (X;R). In the absence of the singular potential G, this approach

was previously employed in Pavliotis (2014) for a finite-dimensional GLE and in
Glatt-Holtz et al. (2020) for an infinite-dimensional GLE. With regard to (2.15), we
may simply adapt to the proof of Pavliotis (2014, Proposition 8.2) tailored to our
setting with the appearance of G.

Concerning the unique ergodicity of πN , we will work with suitable Wasserstein
distances allowing for the convenience of measuring the convergent rate toward equi-
librium. For a measurable function V : X → (0,∞), we introduce the following
weighted supremum norm

‖ϕ‖V := sup
X∈X

|ϕ(X)|
1 + V (X)

.
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We denote by MV the collection of probability measures μ on Borel subsets of X
such that

∫

X
V (X)μ(dX) < ∞.

LetWV be the corresponding weighted total variation distance inMV associated with
‖ · ‖V , given by

WV (μ1, μ2) = sup
‖ϕ‖V ≤1

∣∣∣
∫

X
ϕ(X)μ1(dX) −

∫

X
ϕ(X)μ2(dX)

∣∣∣.

Weremark thatWV is aWasserstein distance. Indeed, by the dualKantorovich theorem

WV (μ1, μ2) = inf E
[(

(1 + V (X1)) + (1 + V (X2))
)
1{X1 �= X2}

]
,

where the infimum runs over all pairs of random variables (X1, X2) such that X1 ∼ μ1
and X2 ∼ μ2. We refer the reader to the monograph (Villani 2021) for a detailed
account of Wasserstein distances and optimal transport problems. With this setup, we
now state the first main result of the paper, establishing the unique ergodicity of πN

defined in (1.7) as well as the exponential convergent rate toward πN .

Theorem 2.8 Under Assumptions 2.1 and 2.3, for every m > 0 and γ ≥ 0, the
probability measure πN defined in (1.7) is the unique invariant probability measure
for (1.5). Furthermore, there exists a function V ∈ C2(X; [1,∞)) such that for all
μ ∈ MV ,

WV
(
(Pm

t )∗μ,πN
) ≤ Ce−ctWV (μ, πN ), t ≥ 0, (2.16)

for some positive constants c and C independent of μ and t.

In order to establish Theorem 2.8, we will draw upon the framework of Bolley et al.
(2018), Hairer and Mattingly (2011), Herzog and Mattingly (2019), Lu and Mattingly
(2019), Mattingly et al. (2002), Meyn and Tweedie (2012) tailored to our settings. The
argument relies on two crucial ingredients: a suitable Lyapunov function, cf. Definition
3.1, and a minorization condition, cf. Definition 3.2. Since it is not difficult to see that
the system (1.5) satisfies hypoellipticity (Ottobre and Pavliotis 2011; Pavliotis 2014),
we may employ a relatively standard argument (Mattingly et al. 2002; Pavliotis 2014)
to establish the minorization. On the other hand, constructing Lyapunov functions is
quite involved requiring a deeper understanding of the dynamics in the presence of
the singular potentials. Particularly, while the construction in the case γ > 0 can
be adapted to those in the previous work of Herzog and Mattingly (2019), Lu and
Mattingly (2019), the absence of the viscous drag γ = 0 induces further difficulty
owing to the interaction between the singular potentials, the velocity v and the auxiliary
variables {zi }i=1,...,N . To overcome this issue, we will follow (Athreya et al. 2012;
Cooke et al. 2017; Herzog and Mattingly 2015a, b, 2019; Lu and Mattingly 2019) and
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perform the technique of asymptotic scaling to determine the leading-order terms in
the dynamics at large energy states. All of this will be carried out in Sect. 3. The proof
of Theorem 2.8 will be given in Sect. 3.3.

2.3 Small-Mass Limit

We now consider the topic of small-mass limit and rigorously compare the solution
of (1.5) with that of (1.10) as m → 0.

As mentioned in Sect. 1.2, the derivation of (1.10) follows the framework of Cerrai
et al. (2020), Herzog et al. (2016), Lim and Wehr (2019, Lim et al. (2020) for finite-
dimensional second-order systems as well as Nguyen (2018, Shi andWang (2021) for
infinite-dimensional systems. The trick employed involves an integration by parts on
the z-equation of (1.5), so as to decouple the velocity from the other processes. As a
result, it induces extra drift terms appearing on the right-hand side of the q-equation
in (1.10). Also, the initial conditions of (1.10) are closely related to those of (1.5). For
the sake of clarity, we defer the explanation in detail to Sect. 4.1.

Due to the presence of singular potentials, the first issue arising from (1.10) is the
well-posedness. To this end, we introduce the new phase space for the solutions of
(1.10) defined as

Q = D ×
N∏

i=1

(Rd)ki ,

wherewe recallD being the state space for the displacement as in (2.12). The existence
and uniqueness of a strong solution in Q for (1.10) are guaranteed in the following
auxiliary result.

Proposition 2.9 Under Assumptions 2.1 and 2.3, for every initial condition Q0 =
(q(0), f1(0),. . . ,fN (0)) ∈ Q, system (1.10) admits a unique strong solution
Q(t; Q0) = (

q(t), f1(t),..., fN (t)
) ∈ Q.

Similar to the proof of Proposition 2.7, the argument of Proposition 2.9 follows
from the energy estimate established in Lemma 4.3 in Sect. 4.3. In turn, the result in
Lemma 4.3 relies on suitable Lyapunov function specifically designed for (1.10). It
will also be employed to study the small-mass limit.

We now state the second main result of the paper giving the validity of the
approximation of (1.5) by (1.10) in the small-mass regime.

Theorem 2.10 Suppose that Assumptions 2.1, 2.3 and 2.5 hold. For every (x(0), v(0),
z1(0),..., zN (0)) ∈ X, let Xm(t) = (

xm(t), vm(t), z1,m(t),..., zN ,m(t)
)
be the solution

of (1.5) and let Q(t) = (
q(t), f1(t),. . . , fN (t)

)
be the solution of (1.10) with the

following initial condition

qi (0) = xi (0), fi,�(0) = zi,�(0) + λi,�xi (0), i = 1, . . . , N , � = 1, . . . , ki .
(2.17)
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Then, for every T , ξ > 0, it holds that

P

{
sup

t∈[0,T ]
|xm(t) − q(t)| > ξ

}
→ 0, m → 0. (2.18)

In order to establish Theorem 2.10, we will adapt to the approach in Herzog et al.
(2016), Nguyen (2018) tailored to our settings. The argument can be summarized as
follows: we first truncate the nonlinearities in (1.5) and (1.10) while making use of
conditions (2.2) and (2.6). This results in Lipschitz systems, thus allowing for proving
the small-mass limit of the truncated systems. We then exploit the moment estimates
on (1.10), cf. Lemma 4.3, to remove the Lipschitz assumption. The explicit argument
will be carried out in a series of results in Sect. 4.

Finally, we remark that the convergence in (2.18) only holds in probability, but not
in L p. Following Higham et al. (2002, Theorem 2.2), the latter is a consequence of an
L p estimate on xm(t) that is uniform with respect to the mass, i.e.,

lim sup
m→0

sup
t∈[0,T ]

|xm(t)|p < ∞. (2.19)

Due to the singularities, (2.19) is not available in this work and would require further
insight. Therefore, the small-mass convergence in L p remains an open problem.

3 Geometric Ergodicity

Throughout the rest of the paper, c and C denote generic positive constants that may
change from line to line. Themain parameters that they depend onwill appear between
parenthesis, e.g., c(T , q) is a function of T and q. In this section, since we do not
take m → 0, we will drop the subscript m in xm, vm and elsewhere for notational
convenience.

In this section, we establish the unique ergodicity and the exponential convergent
rate toward the Gibbs measure πN defined in (1.7) for (1.5). The argument will rely
on the construction of suitable Lyapunov functions while making use of a standard
irreducibility condition. For the reader’s convenience, we first recall the definitions of
these notions below.

Definition 3.1 A function V ∈ C2(X; [1,∞)) is called a Lyapunov function for (1.5)
if the followings hold:

(i) V (X) → ∞ whenever |X | +∑
1≤i< j≤N |xi − x j |−1 → ∞ in X; and

(ii) for all X ∈ X,

LN
m,γ V (X) ≤ −cLN

m,γ V (X) + D, (3.1)

for some constants c > 0 and D ≥ 0 independent of X .

Definition 3.2 Let V be a Lyapunov function as in Definition 3.1. Denote

XR = {
X ∈ X : V (X) ≤ R

}
.
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The system (1.5) is said to satisfy aminorization condition if for all R sufficiently large,
there exist positive constants tR, cR , a probability measure νR such that νR(XR) = 1
and for every X ∈ XR and any Borel set A ⊂ X,

Pm
tR (X , A) ≥ cRνR(A). (3.2)

In Sect. 3.1, we provide a heuristic argument on the construction of a Lyapunov
function for the instance of single-particle GLE. In particular, we show that our con-
struction works well for this simpler setting, both in the case γ > 0 and γ = 0
through Lemmas 3.3 and 3.4, respectively. In Sect. 3.2, we adapt the construction
in the single-particle to the general N -particle system (1.5), and establish suitable
Lyapunov function so as to achieve the desired dissipative estimates. Together with
an auxiliary result on minorization, cf. Lemma 3.7, we will conclude the proof of
Theorem 2.8 in Sect. 3.3.

3.1 Single-Particle GLE

Following the framework developed inHerzog andMattingly (2019), Lu andMattingly
(2019), we will build up intuition for the construction of Lyapunov functions for the
full system (1.5) by investigating a simpler equation in the absence of interacting
forces. More specifically, we introduce the following single-particle GLE (N = 1)

d x(t) = v(t)dt,

m d v(t) = −γ v(t)dt − ∇U (x(t))dt − ∇G(x(t))dt +
k∑

i=1

λi zi (t)dt +√
2γ dW0(t),

d zi (t) = −αi zi (t)dt − λiv(t)dt +√
2αi dWi (t), i = 1, . . . , k. (3.3)

Let Lm,γ be the generator associated with (3.3). That is for γ ≥ 0,

Lm,γ ϕ = 〈∂xϕ, v〉 + 1

m

〈
∂vϕ,−γ v − ∇U (x) − ∇G(x) +

k∑

i=1

λi zi

〉

+ γ

m2�vϕ +
k∑

i=1

〈∂zi ϕ,−αi zi − λiv〉 +
k∑

i=1

αi�zi ϕ, (3.4)

where ϕ = ϕ(x, v, z1, . . . , zk) ∈ C2(R(k+2)d). Denote H

H
(
x, v, z1, . . . , zk

) = U (x) + G(x) + 1

2
m|v|2 + 1

2

k∑

i=1

|zi |2. (3.5)

Note that Lm,γ ϕ can be written as

Lm,γ ϕ = J∇H · ∇ϕ − σ∇H · ∇ϕ + div(σ∇ϕ), (3.6)
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where

∇H =

⎛

⎜⎜⎜⎜⎜⎝

∂x H
∂vH
∂z1H

...

∂zk H

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

∇U (x) + ∇G(x)
mv

z1
...

zk

⎞

⎟⎟⎟⎟⎟⎠
, ∇ϕ =

⎛

⎜⎜⎜⎜⎜⎝

∂xϕ

∂vϕ

∂z1ϕ
...

∂zkϕ

⎞

⎟⎟⎟⎟⎟⎠
,

J := 1

m

⎛

⎜⎜⎜⎜⎜⎝

0 I 0 · · · 0
−I 0 λ1 · · · λk
0 −λ1 0 · · · 0
...

...
...

. . .
...

0 −λk 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
, and σ = σγ :=

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 γ

m2 0 · · · 0
0 0 α1 · · · 0
...

...
...

. . .
...

0 0 0 · · · αk

⎞

⎟⎟⎟⎟⎟⎠
.

We notice that J is anti-symmetric while σ is positive semi-definite. This formulation
will be more convenient in the subsequent computations. In particular, if ϕ is linear in
v and z then the last term in (3.6) vanishes.

Now, there are two cases to be considered depending on the value of the viscous
constant γ , of which, the first case is when γ > 0.

3.1.1 Positive Viscous Constant � > 0

In this case, we observe that system (3.3) is almost the same as the following single-
particle Langevin equation without the auxiliary memory variables

d x(t) = v(t)dt,

m d v(t) = −γ v(t)dt − ∇U (x(t))dt − ∇G(x(t))dt +√
2γ dW0(t). (3.7)

Before discussing the Lyapunov construction for (3.3), it is illuminating to recapitulate
the heuristic argument for (3.7) from Herzog and Mattingly (2019), Lu and Mattingly
(2019, Mattingly et al. (2002). As a first ansatz, one can facilitate the Hamiltonian of
(3.7) given by

H̃(x, v) = 1

2
m|v|2 +U (x) + G(x).

Denoting by L̃ the generator associated with (3.7), i.e.,

L̃ϕ = 〈∂xϕ, v〉 + 1

m

〈
∂vϕ,−γ v − ∇U (x) − ∇G(x)

〉+ γ

m2�vϕ, (3.8)

a routine computation shows that

L̃H̃ ≤ −c|v|2 + D.
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While this is sufficient for the well-posedness of (3.7), it does not produce the dissipa-
tive effect on x when |x | → ∞ and |x | → 0, so as to establish geometric ergodicity.
In the absence of the singular potential G, one can exploit the trick in Mattingly et al.
(2002) by considering a perturbation of the form

H̃(x, v) + ε〈x, v〉, (3.9)

where ε is sufficiently small. Applying L̃ to the above function while making use of
condition (2.3), it is not difficult to see that

L̃(H̃(x, v) + ε〈x, v〉) ≤ −c(|v|2 +U (x)) + C .

On the other hand, in the work of Herzog andMattingly (2019), the following function
was introduced

exp
{
b(H̃(x, v) + ψ(x, v))

}
,

where the perturbation ψ(x, v) satisfies

L̃ψ(x, v) ≤ −C,

for a sufficiently large constantC . In order to constructψ , it is crucial to determine the
leading order terms in L̃whenU (x)+G(x) is large while v is being fixed. Following
the idea previously presented in Herzog and Mattingly (2019, Section 3.2), in this
situation, L̃ is approximated by

L̃ ≈ A1 = −∇(U (x) + G(x)) · ∇v.

In turn, this suggests ψ satisfies

A1ψ ≤ −C .

A candidate for the above inequality is given by Herzog and Mattingly (2019)

ψ(x, v) ∝ 〈v,∇(U (x) + G(x))〉
|∇(U (x) + G(x))|2 .

We refer the reader to Herzog and Mattingly (2019) for the derivation of ψ in more
detail. While this choice of ψ works well for Lennard–Jones and Riesz potentials,
it is not applicable to the class of log functions, of which, the Coulomb potential in
dimension d = 2 is a well-known example.

With regard to the specific instance of Coulomb potentials (2.8), in the work of Lu
andMattingly (2019), the authors tackle the Lyapunov issue by employing the scaling
transformation

x = κ−1 x̂, v = v̂,
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for κ > 0. In dimension d = 2 (with G(x) = − log |x |), L̃ as in (3.8) can be recast as

L̃ = v · ∇x + 1

m

(
− γ v − ∇U (x) + x

|x |2
)

· ∇v + γ

m2�v

= κ v̂ · ∇x̂ + 1

m

(
− γ v̂ − ∇U (κ−1 x̂) + κ

x̂

|x̂ |2
)

· ∇v̂ + γ

m2�v̂ .

Recalling condition (2.1), since |∇U (κ−1 x̂)| ≈ κ−λ|x̂ |λ, which is negligible as κ is
large, we observe that

L̃ ≈ κ v̂ · ∇x̂ + κ

m

x̂

|x̂ |2 · ∇v̂ , κ → ∞.

Likewise, in dimension d ≥ 3 (with G(x) = |x |2−d ),

L̃ = κ v̂ · ∇x̂ + 1

m

(
− γ v̂ − ∇U (κ−1 x̂) + 2κd−1 x̂

|x̂ |d
)

· ∇v̂ + γ

m2�v̂

≈ 2

m
κd−1 x̂

|x̂ |2 · ∇v̂ , k → ∞.

So, taking κ to infinity (i.e., taking |x | → 0) indicates

L̃ ≈ A2 =
{

v · ∇x + x
|x |2 · ∇v, d = 2,

x
|x |d · ∇v, d ≥ 3.

A typical choice of ψ satisfying A2ψ ≤ −C is given by

ψ(x, v) ∝ −〈x, v〉
|x | .

Together with (3.9), we deduce that a Lyapunov function V for (3.7) with Coulomb
potentials has the following form Lu and Mattingly (2019)

V ∝ H̃(x, v) + ε1〈x, v〉 − ε2
〈x, v〉
|x | ,

for some positive constants ε1 and ε2 sufficiently small.
Turning back to (3.3) in the case γ > 0, motivated by the above discussion, for

ε > 0, we introduce the function V1 given by

V1
(
x, v, z1, . . . , zk

):=H
(
x, v, z1, . . . , zk

)+ mε〈x, v〉 − mε
〈x, v〉
|x | , (3.10)

where H is defined in (3.5). Since (3.3) only differs from (3.7) by the appearance of
the linear memory variables zi ’s, it turns out that V1 is indeed a Lyapunov function
for (3.3). This is summarized in the following lemma.
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Lemma 3.3 Under Assumptions 2.1 and 2.3, let V1 be defined as in (3.10). For each
γ > 0 and m > 0, there exists a positive constant ε sufficiently small such that V1 is
a Lyapunov function for (3.3).

Proof Letting Lm,γ and H , respectively, be defined in (3.4) and (3.5), Itô’s formula
yields

Lm,γ H = −σ∇H · ∇H + div(σ∇H)

= −γ |v|2 −
k∑

i=1

αi |zi |2 + 1

m
· d
2
γ + d

2

k∑

i=1

αi . (3.11)

Similarly, we compute

Lm,γ

(
m〈x, v〉) = m|v|2 − γ 〈x, v〉 − 〈∇U (x) + ∇G(x), x〉 +

k∑

i=1

λi 〈zi , x〉. (3.12)

To estimate the right-hand side above, we recall from condition (2.3) that

−〈∇U (x), x〉 ≤ −a2|x |λ+1 + a3.

With regard to ∇G, condition (2.5) implies that

|〈∇G(x), x〉| ≤ a1
|x |β1−1 + a1|x |.

Concerning the cross terms 〈x, v〉 and 〈zi , x〉, for ε ∈ (0, 1), we employ Cauchy–
Schwarz inequality to deduce

−γ ε〈x, v〉 + ε

k∑

i=1

λi 〈zi , x〉 ≤ γ ε1/2|v|2 + ε1/2
k∑

i=1

λ2i |zi |2 + (k + γ )ε3/2|x |2.

Together with (3.12), we find

Lm,γ

(
εm〈x, v〉) ≤ (εm + γ ε1/2)|v|2 + ε1/2

k∑

i=1

λ2i |zi |2 + (k + γ )ε3/2|x |2

− a2ε|x |λ+1 + a3ε + ε
a1

|x |β1−1 + εa1|x |, (3.13)

whence,

Lm,γ

(
εm〈x, v〉) ≤ C

(
ε1/2|v|2 + ε1/2

k∑

i=1

|zi |2 + ε3/2|x |2 + ε
1

|x |β1−1 + 1

)

− a2ε|x |λ+1, (3.14)
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for some positive constant C independent of ε.
Turning to −〈x, v〉/|x |, it holds that

Lm,γ

(
− m

〈x, v〉
|x |

)

= −m
|v|2
|x | + m

|〈x, v〉|2
|x |3 + γ

〈x, v〉
|x | + 〈∇U (x), x〉

|x | + 〈∇G(x), x〉
|x |

−
k∑

i=1

λi
〈zi , x〉

|x | . (3.15)

It is clear that

−m
|v|2
|x | + m

|〈x, v〉|2
|x |3 ≤ 0.

From condition (2.1), we readily have

〈∇U (x), x〉
|x | ≤ |∇U (x)| ≤ a1(1 + |x |λ).

Also, recalling (2.7),

〈∇G(x), x〉
|x | = − a4

|x |β1 +
〈∇G(x) + a4

x
|x |β1+1 , x〉

|x | ≤ − a4
|x |β1 + a5

|x |β2 + a6

≤ − a4
2|x |β1 + C . (3.16)

In the last estimate above, we subsumed |x |−β2 into −|x |−β1 thanks to the fact that
β2 ∈ [0, β1) by virtue of the condition (2.7). Altogether, we deduce that

Lm,γ

(
− mε

〈x, v〉
|x |

)
≤ Cε

(
|v| +

k∑

i=1

|zi | + |x |λ + 1

)
− ε

a4
2|x |β1

≤ C

(
ε2|v|2 + ε2

k∑

i=1

|zi |2 + ε|x |λ + 1

)
− ε

a4
2|x |β1 . (3.17)

Now, we combine estimates (3.14) and (3.17) together with identities (3.10) and
(3.11) to infer

Lm,γ V1 = Lm,γ

(
H + mε〈x, v〉 − mε

〈x, v〉
|x |

)

≤ −c|v|2 − c
k∑

i=1

|zi |2 − cε|x |λ+1 − ε
c

|x |β1 + C
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+ C
(
ε1/2|v|2 + ε1/2

k∑

i=1

|zi |2 + ε3/2|x |2 + ε|x |λ + ε
1

|x |β1−1

)
,

for some positive constants c,C independent of ε. By taking ε sufficiently small,
we observe that the positive non-constant terms on the above right-hand side are
dominated by the negative terms. In particular, since λ ≥ 1, ε3/2|x |2 can be subsumed
into −ε|x |λ+1. As a consequence, we arrive at

Lm,γ V1 ≤ −c|v|2 − c
k∑

i=1

|zi |2 − cε|x |λ+1 − ε
c

|x |β1 + C . (3.18)

SinceU and G are bounded by |x |λ+1+|x |−β1 , (3.18) produces the desired Lyapunov
property of V1 for (3.3). The proof is thus finished. ��

3.1.2 Zero Viscous Constant � = 0

We now turn to the instance γ = 0. In this case, since there is no viscous drag on
the right-hand side of the v-equation in (3.3), the function V1 defined in (3.10) does
not produce the dissipation in v for large v. To circumnavigate this issue, we note that
the zi -equation in (3.3) still depends on v. So, we may exploit this fact to transfer
the dissipation from, say z1 to v. More specifically, let us consider adding a small
perturbation to V1 as follows:

V1 + mε〈v, z1〉.

Denote by Lm,0 the generator associated with (3.3) when γ = 0. That is, from (3.4),
we have

Lm,0ϕ = 〈∂xϕ, v〉 + 1

m

〈
∂vϕ,−∇U (x) − ∇G(x) +

k∑

i=1

λi zi

〉

+
k∑

i=1

〈∂zi ϕ,−αi zi − λiv〉 +
k∑

i=1

αi�zi ϕ. (3.19)

Applying Lm,0 to the cross term 〈v, z1〉, although Lm,0〈v, z1〉 provides the required
dissipative effect in v, it also induces a cross product 〈∇G(x), z1〉, which has the order
of |z1|/|x |−β1 by virtue of condition (2.5). That is

Lm,0〈v, z1〉 ≤ −c|v|2 + |z1|
|x |β1 . (3.20)

How to annihilate the effect caused by this extra term is the main difficulty that we
face in the case γ = 0.
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To circumvent the issue, from the proof of Lemma 3.3, particularly the estimate
(3.17), we see that

Lm,0

(
− 〈x, v〉

|x |
)

∝ − 1

|x |β1 + ϕ(x, v, z1, . . . , zk),

where ϕ(x, v, z1, . . . , zk) consists of lower-order terms. This suggests that we look
for a perturbation of the form

−〈x, v〉
|x | ψ(x, v, z1),

where ψ satisfies

ψ ≥ c|z1|, and |Lm,0ψ | = O(|v| + |z|). (3.21)

From (3.20) and (3.21), the terms |z1|/|x |β1 and O(|v| + |z|) suggest that the issue
is where |v|, |z| are large and |x | is small. To derive ψ , it is important to understand
the dynamics in Lm,0 in this “bad region". So, we introduce the following scaling
transformation

(x, v, z1, . . . , zk) = (κ−a x̂, κv̂, κ ẑ1, κ ẑ2, . . . , κ ẑk),

for some positive constant a > 1. Recalling Lm,0 as in (3.19), under this scaling, we
find that

Lm,0 = v · ∇x + 1

m

(
− ∇U (x) − ∇G(x) +

k∑

i=1

λi zi

)
· ∇v

+
k∑

i=1

(− αi zi − λiv
) · ∇zi +

k∑

i=1

αi�zi

= κa+1v̂ · ∇x̂ + 1

mκ

(
− ∇U (κ−a x̂) − ∇G(κ−a x̂) + κ

k∑

i=1

λi ẑi

)
· ∇v̂

+
k∑

i=1

(− αi ẑi − λi v̂
) · ∇ẑi + κ−2

k∑

i=1

αi�ẑi .

Recalling condition (2.1) and condition (2.5), suppose heuristically that

−∇U (κ−a x̂) − ∇G(κ−a x̂) ≈ −κ−aλ∇U (x̂) − κaβ1∇G(x̂),

implying,

Lm,0 ≈ κa+1v̂ · ∇x̂ − κ−aλ−1∇U (x̂) · ∇v̂ − κaβ1−1∇G(x̂) · ∇v̂ +
k∑

i=1

ẑi · ∇v̂
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−
k∑

i=1

(ẑi + v̂
) · ∇ẑi + κ−2

k∑

i=1

�ẑi .

Observe that

Lm,0 ≈ κa+1v̂ · ∇x̂ − κaβ1−1∇G(x̂) · ∇v̂ , κ → ∞.

In other words, when κ is large, the dominant balance of terms in the above
transformation is contained in

Am,0 = v · ∇x − ∇G(x) · ∇v.

Together with the requirement (3.21), a typical choice for ψ is given by

ψ =
√
a1|z1|2 + 1

2m|v|2 + G(x) +U (x) + a2,

for some positive constants a1, a2 to be chosen later. In the above, we note that the
appearance of U (x) is to ensure the expression under the square root is positive. In
summary, the candidate Lyapunov function for (3.3) looks like

V1 + mε〈v, z1〉 − mε
〈x, v〉
|x | ψ.

In Lemma 3.4, we will see that by picking a1, a2 carefully, we will achieve the Lya-
punov effect for (3.3). We finish this discussion by introducing the following function
V2 defined for ε ∈ (0, 1), R > 1,

V2
(
x, v, z1, . . . , zk

)

:=H
(
x, v, z1, . . . , zk

)+ εRm〈x, v〉 + εR2m〈v, z1〉 − εm
〈x, v〉
|x |

√
QR, (3.22)

where

QR = R4|z1|2 + m|v|2 + 2U (x) + 2G(x) + R. (3.23)

Lemma 3.4 Under Assumptions 2.1 and 2.3, let V2 be defined as in (3.22). For γ = 0
and every m > 0, there exist positive constants ε small and R large enough such that
V2 is a Lyapunov function for (3.3).

Proof Firstly, we note that when γ = 0, by virtue of Assumption 2.1, λ = 1. From
the estimate (3.13), we immediately obtain

Lm,0

(
εRm〈x, v〉

)
≤ CR

(
ε|v|2 + ε1/2

k∑

i=1

|zi |2 + ε3/2|x |2 + ε
1

|x |β1−1 + 1

)
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− a2εR|x |2.

Also, (3.11) is reduced to

Lm,0H = −
k∑

i=1

αi |zi |2 + d

2

k∑

i=1

αi .

As a consequence, we obtain

Lm,0
(
H + εRm〈x, v〉) ≤ CR

(
ε|v|2 + ε1/2

k∑

i=1

|zi |2 + ε3/2|x |2 + ε
1

|x |β1−1 + 1

)

− a2εR|x |2 −
k∑

i=1

αi |zi |2 + d

2

k∑

i=1

αi .

By taking ε sufficiently small, it follows that

Lm,0
(
H + mε〈x, v〉)

≤ −cεR|x |2 − c
k∑

i=1

|zi |2 + CεRm|v|2 + CεR
1

|x |β1−1 + CR, (3.24)

for some positive constants c, C independent of ε and R.
Next, we consider the cross term 〈v, z1〉 on the right-hand side of (3.22). Itô’s

formula yields (recalling γ = 0)

Lm,0
(
εm〈v, z1〉

)

= −ε〈∇U (x) + ∇G(x), z1〉 + ε

k∑

i=1

λi 〈zi , z1〉 − εα1m〈v, z1〉 − λ1εm|v|2. (3.25)

We invoke condition (2.1) with Cauchy–Schwarz inequality to infer

−ε〈∇U (x), z1〉 ≤ εa1(1 + |x |)|z1| ≤ a1ε
3/2|x |2 + a1ε

1/2|z1|2 + a1ε|z1|.

Similarly,

ε

k∑

i=1
λi 〈zi , z1〉 − εα1m〈v, z1〉 ≤ ε

k∑

i=1

λ2i |zi |2+εk|z1|2 + ε1/2α2
1m|z1|2+ε3/2m|v|2.

Concerning the cross term 〈∇G(x), z1〉, recall from (2.5) that

|∇G(x)| ≤ a1
|x |β1 + a1.
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As a consequence,

−ε〈∇G(x), z1〉 ≤ εa1
|z1|
|x |β1 + εa1|z1| ≤ εa1

|z1|
|x |β1 + 1

2
ε(|z1|2 + a21).

Altogether, we deduce that the bound

Lm,0
(
R2εm〈v, z1〉

)

≤−λ1εR
2m|v|2+CεR2 |z1|

|x |β1 + Cε3/2R2(|v|2 + |x |2)+Cε1/2R2
k∑

i=1

|zi |2+CεR2,

(3.26)

holds for some positive constant C independent of R and ε.
Turning to the last term on the right-hand side of (3.22), a routine calculation

together with (3.15) gives

Lm,0

(
− εm

〈x, v〉
|x |

√
QR

)

= ε

(
− m

|v|2|x |2 − |〈x, v〉|2
|x |3 + 〈∇U (x) −∑k

i=1 λi zi , x〉
|x | + 〈∇G(x), x〉

|x |
)√

QR

− εm
〈x, v〉
|x | · 〈v,

∑k
i=1 λi zi 〉√
QR

+ εR6m
〈x, v〉
|x | · α1|z1|2 + λ1〈v, z1〉√

QR

+ 1

2
α1εR

6m
〈x, v〉
|x | · 1√

QR

(
d − R6|z1|2

QR

)

= I1 − I2 + I3 + I4. (3.27)

Concerning I4, we recall from (3.23) that

QR ≥ R6|z1|2 + m|v|2, (3.28)

whence

I4 ≤ 1

2
α1εR

6d
√
m.

With regard to I1, we invoke conditions (2.1) and (2.4) to see that

QR ≤ R6|z1|2 + m|v|2 + a1
(
1 + |x |2 + 1

|x |β1 + |x |
)

+ R2.

As a consequence,

ε
〈∇U (x) −∑k

i=1 λi zi , x〉
|x |

√
QR ≤ ε

[
a1(1 + |x |) +

k∑

i=1

λi |zi |
]√

QR
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≤ 1

2
ε

[
a1(1 + |x |) +

k∑

i=1

λi |zi |
]2

+ 1

2
εQR

≤ Cε

(
R6

k∑

i=1

|zi |2 + |v|2 + |x |2 + 1

|x |β1 + R2
)

.

On the other hand, estimate (3.16) implies the bound

ε
〈∇G(x), x〉

|x |
√
QR ≤ ε

(
− a4

2|x |β1 + C
)√

QR

= −ε
a4
2

· 1

|x |β1
√
QR + Cε

√
QR

≤ −cε
R3|z1| + R

|x |β1 + Cε
(
R6|z1|2 + |v|2 + |x |2 + 1

|x |β1 + R2
)
.

It follows that

I1 ≤ −cε
R3|z1| + R

|x |β1 + Cε

(
R6

k∑

i=1

|zi |2 + |v|2 + |x |2 + 1

|x |β1 + R2
)

.

With regard to I2 on the right-hand side of (3.27), since QR ≥ m|v|2, we find

−I2 = −εm
〈x, v〉
|x | · 〈v,

∑k
i=1 λi zi 〉√
QR

≤ ε
√
m|v|

k∑

i=1

λi |zi | ≤ Cε

(
|v|2 +

k∑

i=1

|zi |2
)

.

Turning to I3, we estimate as follows:

I3 = εR6m
〈x, v〉
|x | ·

(
α1|z1|2√

QR
+ λ1〈v, z1〉√

QR

)

≤ εR3m|v| · α1|z1| + εR6√m|v| · λ1|z1|
≤ Cε(|v|2 + R12|z1|2),

where in the first inequality we have used
√
QR ≥ R3|z1| (which follows from (3.28))

and
√
QR ≥ √

m|v|. Now, we collect the estimates on I j , j = 1, . . . , 4, together with
expression (3.27) to infer (recalling ε < 1 < R)

Lm,0

(
− εm

〈x, v〉
|x |

√
QR

)

≤ −cε
R3|z1| + R

|x |β1 + Cε

(
R12

k∑

i=1

|zi |2 + |v|2 + |x |2 + 1

|x |β1 + R6
)
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≤ −cε
R3|z1| + R

|x |β1 + Cε

(
R12

k∑

i=1

|zi |2 + |v|2 + |x |2 + R6
)

. (3.29)

In the last implication above, we subsumed Cε|x |−β1 into −cεR|x |−β1 , by taking R
large enough.

Turning back to V2 given by (3.22), we combine (3.24), (3.26) and (3.29) to arrive
at the estimate

Lm,0V2 ≤ −cεR|x |2 − c
k∑

i=1

|zi |2 + CεR|v|2 + CεR
1

|x |β1−1 + CR

− cεR2|v|2 + CεR2 |z1|
|x |β1 + Cε3/2R2(|v|2 + |x |2)+ Cε1/2R2

k∑

i=1

|zi |2

+ CεR2

− cε
R3|z1| + R

|x |β1 + Cε

(
R12

k∑

i=1

|zi |2 + |v|2 + |x |2 + R6
)

,

i.e.,

Lm,0V2 ≤ −(cεR2−CεR − Cε3/2R2 − Cε)|v|2−(c−Cε1/2R2 − CεR12)

k∑

i=1

|zi |2

− (cεR − Cε3/2R2 − Cε)|x |2 − cεR
1

|x |β1 − (cεR3 − cεR2)
|z1|
|x |β1

+ CεR
1

|x |β1−1 + CR + CεR6.

Since c,C are independent of ε and R, wemay take R sufficiently large and then shrink
ε to zero while making use of the fact that 1

|x |β1−1 can be subsumed into |x |2 + |x |β1 .
It follows that

Lm,0V2 ≤ −cεR2|v|2 − c
k∑

i=1

|zi |2 − cεR|x |2 − cεR
1

|x |β1 + CεR6. (3.30)

This produces the Lyapunov property of V2 for (3.3) in the case γ = 0, thereby
finishing the proof. ��

3.2 N-particle GLEs

We now turn our attention to the full system (1.5) and construct Lyapunov functions
for (1.5) based on the discussion of the single-particle GLE in Sect. 3.1.

We start with the case γ > 0 and observe that there is a natural generalization
of the function V1 defined in (3.10) to an arbitrary number of particles N ≥ 2 in an
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arbitrary number of dimensions d ≥ 1. More specifically, for ε > 0, we introduce the
following function V 1

N given by

V 1
N (x, v, z1, . . . , zN )

= HN (x, v, z1, . . . , zN ) + εm〈x, v〉 − εm
N∑

i=1

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉
, (3.31)

where HN is the Hamiltonian as in (1.6). In Lemma 3.5, stated and proven next, we
assert that one may pick ε sufficiently small to ensure the Lyapunov property of V 1

N .

Lemma 3.5 Under Assumptions 2.1 and 2.3, let V 1
N be the function defined as (3.31).

For all γ > 0 and m > 0, there exists a positive constant ε sufficiently small such that
V 1
N is a Lyapunov function for (1.5).

Proof We first consider the Hamiltonian HN given by (1.6). Applying LN
m,γ as in

(2.14) to HN gives

LN
m,γ HN = −γ |v|2 −

N∑

i=1

ki∑

�=1

αi,�|zi,�|2 + 1

2m
γ Nd + 1

2

N∑

i=1

ki∑

�=1

αi,�. (3.32)

Next, a routine calculation on the cross term 〈x, v〉 gives

LN
m,γ

(
εm〈x, v〉) = εm|v|2 − εγ 〈x, v〉 + ε

N∑

i=1

〈
xi ,

ki∑

�=1

zi,�
〉

− ε

N∑

i=1

〈xi ,∇U (xi )〉 − ε
∑

1≤i< j≤N

〈xi − x j ,∇G(xi − x j )〉.

(3.33)

Recalling (2.3), we readily have

−
N∑

i=1

〈xi ,∇U (xi )〉 ≤ −a2

N∑

i=1

|xi |λ+1 + Na3.

Also, from (2.5), it holds that

−
∑

1≤i< j≤N

〈xi − x j ,∇G(xi − x j )〉 ≤ a1
(
N 2 +

∑

1≤i< j≤N

1

|xi − x j |β1−1

)
.
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Concerning the other cross terms on the right-hand side of (3.33) we invoke Cauchy–
Schwarz inequality to infer

−εγ 〈x, v〉 + ε

N∑

i=1

〈
xi ,

ki∑

�=1

zi,�
〉
≤ C

(
ε1/2|v|2 + ε1/2

N∑

i=1

|zi |2 + ε3/2|x|2
)

for some positive constant C independent of ε. We now collect the above estimates
together with expression (3.33) to obtain

LN
m,γ

(
εm〈x, v〉) ≤ C

(
ε1/2|v|2+ε1/2

N∑

i=1

|zi |2 + ε3/2|x|2+ε
∑

1≤i< j≤N

1

|xi − x j |β1−1

)

− a2ε
N∑

i=1

|xi |λ+1 + C . (3.34)

Next, we turn to the last term on the right-hand side of (3.31). A routine calculation
produces

LN
m,γ

(
− m

N∑

i=1

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)

= −m
∑

1≤i< j≤N

|vi − v j |2
|xi − x j | + m

∑

1≤i< j≤N

|〈vi − v j , xi − x j 〉|2
|xi − x j |3

+ γ
∑

1≤i< j≤N

〈vi − v j , xi − x j 〉
|xi − x j | +

∑

1≤i< j≤N

〈∇U (xi ) − ∇U (x j ), xi − x j 〉
|xi − x j |

+
N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

∑

� �=i

∇G(xi − x�)

〉
−

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

ki∑

�=1

λi,�zi,�

〉
.

(3.35)

We proceed to estimate the above right-hand side while making use of Cauchy–
Schwarz inequality. It is clear that

−m
∑

1≤i< j≤N

|vi − v j |2
|xi − x j | + m

∑

1≤i< j≤N

|〈vi − v j , xi − x j 〉|2
|xi − x j |3 ≤ 0,

which is negligible. Also,

γ
∑

1≤i< j≤N

〈vi − v j , xi − x j 〉
|xi − x j | −

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

ki∑

�=1

λi,�zi,�

〉
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≤ γ (N − 1)
N∑

i=1

|vi | + (N − 1)
N∑

i=1

ki∑

�=1

λi,�|zi,�|.

Concerning the cross terms involving ∇U , we invoke condition (2.1) and obtain

∑

1≤i< j≤N

〈∇U (xi ) − ∇U (x j ), xi − x j 〉
|xi − x j | ≤ (N − 1)a1

(
N +

N∑

i=1

|xi |λ
)
.

With regard to the cross terms involving ∇G, we recast them as follows:

N∑

i=1

〈∑

j �=i

xi −x j
|xi − x j | ,

∑

� �=i

∇G(xi − x�)

〉
= −a4

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

∑

� �=i

xi − x�

|xi − x�|β1+1

〉

+
N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

∑

� �=i

∇G(xi − x�)

+ a4
xi − x�

|xi − x�|β1+1

〉
.

In view of Lemma A.1, we readily have

−a4

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

∑

� �=i

xi − x�

|xi − x�|β1+1

〉
≤ −2a4

∑

1≤i< j≤N

1

|xi − x j |β1 .

On the other hand, condition (2.7) implies the bound

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

∑

� �=i

∇G(xi − x�) + a4
xi − x�

|xi − x�|β1+1

〉

≤ (N − 1)
N∑

i=1

∑

� �=i

∣∣∣∇G(xi − x�) + a4
xi − x�

|xi − x�|β1+1

∣∣∣

≤ (N − 1)

[
2

∑

1≤i<�≤N

a5
|xi − x�|β2 + N (N − 1)a6

]
.

In the above, a4, a5 and a6 are the constants as in condition (2.7). Since β2 ∈ [0, β1),
we observe that |xi − x�|−β2 can be subsumed into −|xi − x�|−β1 . It follows that

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j | ,

∑

� �=i

∇G(xi − x�)

〉
≤ −a4

∑

1≤i< j≤N

1

|xi − x j |β1 + C . (3.36)
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From the identity (3.35), we infer the estimate

LN
m,γ

(
− εm

N∑

i=1

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)

≤ −a4ε
∑

1≤i< j≤N

1

|xi − x j |β1 + Cε

(
1 +

N∑

i=1

|vi | +
N∑

i=1

|xi |λ +
N∑

i=1

ki∑

�=1

|zi,�|
)

.

(3.37)

Now, we collect (3.32), (3.34), (3.35) together with the expression (3.31) of V 1
N

and deduce

LN
m,γ V

1
N ≤ −γ |v|2 −

N∑

i=1

ki∑

�=1

αi,�|zi,�|2 − a2ε
N∑

i=1

|xi |λ+1

− a4ε
∑

1≤i< j≤N

1

|xi − x j |β1 + C

+ C

(
ε1/2|v|2 + ε1/2

N∑

i=1

|zi |2 + ε3/2|x|2 + ε
∑

1≤i< j≤N

1

|xi − x j |β1−1

)

+ Cε

( N∑

i=1

|vi | +
N∑

i=1

|xi |λ +
N∑

i=1

ki∑

�=1

|zi,�|
)

. (3.38)

In the above, we emphasize that C is a positive constant independent of ε. Finally, by
taking ε sufficiently small, we may infer

LN
m,γ V

1
N ≤ −1

2

(
γ |v|2 +

N∑

i=1

ki∑

�=1

αi,�|zi,�|2 + a2ε
N∑

i=1

|xi |λ+1

+ a4ε
∑

1≤i< j≤N

1

|xi − x j |β1
)

+ C .

This produces the desired Lyapunov property of V 1
N for system (1.5) in the case γ > 0,

as claimed. ��

Turning to the case γ = 0, analogous to the function V2 defined in (3.22) for the
single-particle system (3.3), for ε ∈ (0, 1) and R > 1, we introduce the function V 2

N
given by

V 2
N (x, v, z1, . . . , zN ) = HN (x, v, z1, . . . , zN ) + εRm〈x, v〉 + εR2m

N∑

i=1

〈vi , zi,1〉
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− ε

( N∑

i=1

m

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)√
QN

R , (3.39)

where

QN
R (x, v, z1, . . . , zN ) = R6

N∑

i=1

|zi,1|2 + m|v|2 + 2
N∑

i=1

U (xi )

+ 2
∑

1≤i< j≤N

G(xi − x j ) + R2. (3.40)

In Lemma 3.6, we prove that V 2
N is indeed a Lyapunov function for (1.5) in the case

γ = 0.

Lemma 3.6 Under Assumptions 2.1 and 2.3, let V 2
N be the function defined in (3.39).

In the case γ = 0, for every m > 0, there exist positive constants ε small and R large
enough such that V 2

N is a Lyapunov function for (1.5).

Proof We first consider the Hamiltonian HN as in (1.6). Since γ = 0, the identity
(3.32) is reduced to

LN
m,0HN = −

N∑

i=1

ki∑

�=1

αi,�|zi,�|2 + 1

2

N∑

i=1

ki∑

�=1

αi,�. (3.41)

With regard to the cross term 〈x, v〉, we note that since γ = 0, by virtue of Assump-
tion 2.1, λ = 1. We employ an argument similarly to that of the estimate (3.34) and
obtain the bound

LN
m,0

(
εRm〈x, v〉) ≤ −a2εR|x|2 + CR

(
ε|v|2 + ε1/2

N∑

i=1

|zi |2 + ε3/2|x|2 + 1

)

+ CεR
∑

1≤i< j≤N

1

|xi − x j |β1−1 . (3.42)

In the above, C is a positive constant independent of ε and R.
Concerning the cross terms 〈vi , zi,1〉, i = 1, . . . , N , on the right-hand side of

(3.39), applying Itô’s formula gives

LN
m,0

(
m〈vi , zi,1

)〉 =
〈
− ∇U (xi ) −

∑

j �=i

∇G(xi − x j ), zi,1

〉
+

ki∑

�=1

λi,�〈zi,�, zi,1〉

− αi,1m〈vi , zi,1〉 − λi,1m|vi |2.

From the condition (2.1) (λ = 1), we have

−ε〈∇U (xi ), zi,1〉 ≤ a1ε(|x | + 1)|zi,1| ≤ C(ε3/2|xi |2 + ε1/2|zi,1|2 + ε).
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In the last estimate above, we employed Cauchy–Schwarz inequality. Likewise,

ε

ki∑

�=1

λi,�〈zi,�, zi,1〉 − εαi,1m〈vi , zi,1〉 ≤ Cε1/2|zi |2 + Cε3/2|vi |2.

Also, condition (2.5) implies

−
N∑

i=1

〈∑

j �=i

∇G(xi − x j ), zi,1

〉
≤ a1

N∑

i=1

|zi,1|
(
2
∑

1≤i< j≤N

1

|xi − x j |β1 + N 2
)

≤ C
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1

+ C
N∑

i=1

|zi |2 + C .

It follows that for ε ∈ (0, 1) and R > 1,

LN
m,0

(
εR2m

N∑

i=1

〈vi , zi,1〉
)

≤ −εR2m
N∑

i=1

λi,1|vi |2

+ CR2
(

ε3/2(|x|2 + |v|2) + ε1/2
N∑

i=1

|zi |2 + ε

)

+ CεR2
( N∑

i=1

|zi |
∑

1≤i< j≤N

1

|xi − x j |β1 +
N∑

i=1

|zi |2 + 1

)
. (3.43)

In the above, we emphasize again that the positive constant C does not depend on ε

and R.
Next, we consider the last term on the right-hand side of (3.39). Observe that

N∑

i=1

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉
=

∑

1≤i< j≤N

〈vi − v j , xi − x j 〉
|xi − x j | .

So,

LN
m,0

(
− ε

N∑

i=1

m

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)√
QN

R

)

= −ε

√
QN

R LN
m,0

( N∑

i=1

m

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)
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− εm
∑

1≤i< j≤N

〈vi − v j , xi − x j 〉
|xi − x j | LN

m,0

√
QN

R

= I1 + I2. (3.44)

Concerning I1, from the estimate (3.37) (with λ = 1), we have

I1 =
√
QN

R LN
m,0

(
− ε

N∑

i=1

m

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)

≤ −a4ε
√
QN

R

∑

1≤i< j≤N

1

|xi − x j |β1 + Cε

(
1 + |v| + |x| +

N∑

i=1

ki∑

�=1

|zi,�|
)√

QN
R .

Recalling QN
R given by (3.40)

QN
R = R6

N∑

i=1

|zi,1|2 + m|v|2 + 2
N∑

i=1

U (xi ) + 2
∑

1≤i< j≤N

G(xi − x j ) + R2,

it is clear that

√
QN

R ≥
(
R6

N∑

i=1

|zi,1|2 + R2
)1/2

≥ cR3
N∑

i=1

|zi,1| + cR,

whence

− a4ε
√
QN

R

∑

1≤i< j≤N

1

|xi − x j |β1 ≤

− cεR3
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1

− cεR
∑

1≤i< j≤N

1

|xi − x j |β1 .

On the other hand, in view of conditions (2.1) and (2.4), it holds that

√
QN

R ≤ C

(
R3

N∑

i=1

|zi,1| + √
m|v| + |x| +

( ∑

1≤i< j≤N

1

|xi − x j |β1
)1/2

+ R

)
.

It follows that

ε

(
1 + |v| + |x| +

N∑

i=1

ki∑

�=1

|zi,�|
)√

QN
R
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≤ C ε

(
R6

N∑

i=1

|zi |2 + |v|2 + |x|2 +
∑

1≤i< j≤N

1

|xi − x j |β1 + R2
)

.

As a consequence,

I1 ≤ −a4ε
√
QN

R

∑

1≤i< j≤N

1

|xi − x j |β1 + Cε

(
1 + |v| + |x| +

N∑

i=1

ki∑

�=1

|zi,�|
)√

QN
R

≤ −cεR3
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1 − cεR
∑

1≤i< j≤N

1

|xi − x j |β1

+ C ε

(
R6

N∑

i=1

|zi |2 + |v|2 + |x|2 +
∑

1≤i< j≤N

1

|xi − x j |β1 + R2
)

, (3.45)

holds for some positive constants c, C independent of ε and R.
With regard to I2 on the right-hand side of (3.44), Itô’s formula yields the identity

LN
m,0

√
QN

R = 1√
QN

R

N∑

i=1

[〈
vi ,

ki∑

�=1

λi,�zi,�

〉
− R6αi,1|zi,1|2 − R6〈zi,�, vi 〉

+ 1
2αi,1d − 1

2QN
R

αi,1|zi,1|2
]
.

Since

N∑

i=1

U (xi ) +
∑

1≤i< j≤N

G(xi − x j ) ≥ 0,

we deduce the bound

|LN
m,0

√
QN

R | ≤ CR6 |v|∑N
i=1 |zi | +∑N

i=1 |zi |2 + 1

(R6
∑N

i=1 |zi |2 + |v|2 + 1)1/2
≤ CR6

( N∑

i=1

|zi | + 1

)
.

It follows that I2 satisfies

I2 = −εm
∑

1≤i< j≤N

〈vi − v j , xi − x j 〉
|xi − x j | LN

m,0

√
QN

R

≤ Cε
∑

1≤i< j≤N

|vi − v j |R6
( N∑

i=1

|zi | + 1

)

≤ CεR6
N∑

i=1

|vi |
( N∑

i=1

|zi | + 1

)
,
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whence

I2 ≤ Cε

(
|v|2 + R12

N∑

i=1

|zi |2 + R12
)

. (3.46)

Now, we collect (3.45), (3.46) together with (3.44) to arrive at the bound

LN
m,0

(
− ε

N∑

i=1

m

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)√
QN

R

)

≤ −cεR3
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1 − cεR
∑

1≤i< j≤N

1

|xi − x j |β1

+ Cε

(
R6

N∑

i=1

|zi |2 + |v|2 + |x|2 +
∑

1≤i< j≤N

1

|xi − x j |β1 + R2
)

+ Cε

(
|v|2 + R12

N∑

i=1

|zi |2 + R12
)

,

whence

LN
m,0

(
− ε

N∑

i=1

m

〈
vi ,
∑

j �=i

xi − x j
|xi − x j |

〉)√
QN

R

)

≤ −cεR3
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1 − cεR
∑

1≤i< j≤N

1

|xi − x j |β1

+ Cε

(
R12

N∑

i=1

|zi |2 + |v|2 + |x|2 +
∑

1≤i< j≤N

1

|xi − x j |β1 + R12
)

. (3.47)

In the above, we emphasize that c,C are independent of ε and R.
Turning back to V 2

N given by (3.39), from the estimates (3.41), (3.42), (3.43) and
(3.47), we obtain

LN
m,0V

2
N ≤ −I3 + I4,

where

I3 = −
N∑

i=1

ki∑

�=1

αi,�|zi,�|2 − a2εR|x|2 − εR2m
N∑

i=1

λi,1|vi |2

− cεR3
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1 − cεR
∑

1≤i< j≤N

1

|xi − x j |β1 ,
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and

I4 = 1

2

N∑

i=1

ki∑

�=1

αi,� + CR

(
ε|v|2 + ε1/2

N∑

i=1

|zi |2 + ε3/2|x|2 + 1

)

+ CεR2
( N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1 +
N∑

i=1

|zi |2 + 1

)

+ CεR
∑

1≤i< j≤N

1

|xi − x j |β1−1 + CR2
(

ε3/2(|x|2 + |v|2) + ε1/2
N∑

i=1

|zi |2 + ε

)

+ Cε

(
R12

N∑

i=1

|zi |2 + |v|2 + |x|2 +
∑

1≤i< j≤N

1

|xi − x j |β1 + R12
)

.

Since the constants c,C are independent of ε, R, we may infer

LN
m,0V

2
N ≤ −c

N∑

i=1

|zi |2 − cεR|x|2 − cεR2|v|2

− cεR3
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1 − cεR
∑

1≤i< j≤N

1

|xi − x j |β1

+ CεR(1 + Rε1/2)|v|2 + Cε(1 + R2ε1/2)|x|2 + Cε1/2R12
N∑

i=1

|zi |2

+ CεR2
N∑

i=1

|zi,1|
∑

1≤i< j≤N

1

|xi − x j |β1 +Cε
∑

1≤i< j≤N

1

|xi − x j |β1 +CR12.

Now, by first taking R sufficiently large and then shrinking ε small enough, we observe
that all the positive (non-constant) terms on the above right-hand side are dominated
by the negative terms. That is, the following holds

LN
m,0V

2
N ≤ −c

N∑

i=1

|zi |2 − cεR|x|2 − cεR2|v|2 − cεR
∑

1≤i< j≤N

1

|xi − x j |β1 + CR12.

This produces the desired Lyapunov property of V 2
N for (1.5) in the case γ = 0. The

proof is thus finished. ��

3.3 Proof of Theorem 2.8

The proof of Theorem 2.8 is based on the Lyapunov functions constructed in Sect. 3.2
and a local minorization, cf. Definition 3.2, on the transition probabilities Pm

t (X , ·).
The latter property is summarized in the following auxiliary result.
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Lemma 3.7 Under Assumption 2.1 and Assumption 2.3, system (1.5) satisfies the
minorization condition as in Definition 3.2.

The proof of Lemma 3.7 is relatively standard and can be found in literature for the
Langevin dynamics (Herzog andMattingly 2019; Ottobre and Pavliotis 2011). For the
sake of completeness, we briefly sketch the argument without going into details.

Sketch of the proof of Lemma 3.7 First of all, by verifying aHormander’s condition, see
Ottobre and Pavliotis (2011, page 1639), we note that the operator ∂t +LN

m,γ (γ ≥ 0)
is hypoelliptic (Hörmander 1967). This implies that the transition probabilities Pm

t
has a smooth density in X. Furthermore, we may adapt the proof of Herzog and
Mattingly (2019, Proposition 2.5) to study the control problem for (1.5). In particular,
by the Stroock-Varadhan support Theorem, it can be shown that Pm

t (X , A) > 0 for
t > 0, X ∈ X and every open set A ⊂ X. We then employ the same argument as those
in Herzog and Mattingly (2019,Corollary 5.12) and Mattingly et al. (2002, Lemma
2.3) to conclude the inequality (3.2), thereby concluding the minorization. ��

We are now in a position to conclude Theorem 2.8. The proof employs the weak-
Harris theorem proved in (Hairer and Mattingly 2011, Theorem 1.2).

Proof of Theorem 2.8 First of all, it is clear that πN defined in (1.7) is an invariant
measure for (1.5).Next,weobserve that fromLemma3.5 andLemma3.6, the functions
V 1
N and V 2

N , respectively, defined in (3.31) and (3.39) are Lyapunov functions for (1.5)
in the case γ > 0 and γ = 0. It follows thatHairer andMattingly (2011,Assumption 1)
holds. On the other hand, Lemma 3.7 verifies Hairer andMattingly (2011, Assumption
2). In view of Hairer and Mattingly (2011, Theorem 1.2), we conclude the uniqueness
of πN as well as the exponential convergent rate (2.16). ��

4 Small-Mass Limit

We turn to the topic of the small-mass limit for (1.5). In Sect. 4.1, we provide a heuristic
argument on how we derive the limiting system (1.10) as m → 0. We also outline the
main steps of the proof of Theorem 2.10 in this section. In Sect. 4.2, we prove a partial
result on the small-mass limit assuming the nonlinearities are globally Lipschitz. In
Sect. 4.3, we establish useful moment estimates on the limiting system (1.10). Lastly,
in Sect. 4.4, we establish Theorem 2.10 while making use of the auxiliary results from
Sect. 4.2 and Sect. 4.3.

4.1 Heuristic Argument for the Limiting System (1.10)

In this subsection,we provide a heuristic argument detailing howwederive the limiting
system (1.10) as well as its initial conditions from the original system (1.5). The
argument draws upon recent works in Herzog et al. (2016), Nguyen (2018) where
similar issues were dealt with in the absence of singular potentials. We formally set
m = 0 on the left-hand side of the vi−equation in (1.5) while substituting the vi (t)
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term on the right-hand side by dxi (t) to obtain

γ dxi (t) =
[

− ∇U (xi (t)) −
∑

j �=i

∇G(xi (t) − x j (t)) +
ki∑

�=1

λi,�zi,�(t)

]
dt

+√
2γ dW0(t).

Next, considering the zi,�−equation in (1.5), by Duhamel’s formula, zi,�(t) may be
written as:

zi,�(t) = e−αi,�t zi,�(0) − λi,�

∫ t

0
e−αi,�(t−r)vi (r)dr+√2αi,�

∫ t

0
e−αi,�(t−r)dWi,�(r).

(4.1)

We note that the above expression still depends on vi (t). Nevertheless, this can be
circumvented by employing an integration by parts as follows:

∫ t

0
e−αi,�(t−r)vi (r)dr = xi (t) − e−αi,�t xi (0) + αi,�

∫ t

0
e−αi,�(t−r)xi (r)dr .

Alternatively, we note that the above identity can be derived by applying Itô’s formula
to eαi,�t xi (t). Plugging back into (4.1), we find

zi,�(t) = e−αi,�t (zi,�(0) + λi,�xi (0)) − λi,�xi (t) − λi,�αi,�

∫ t

0
e−αi,�(t−r)xi (r)dr

+√
2αi,�

∫ t

0
e−αi,�(t−r)dWi,�(r), (4.2)

whence

zi,�(t) + λi,�xi (t) = e−αi,�t (zi,�(0) + λi,�xi (0)) − λi,�αi,�

∫ t

0
e−αi,�(t−r)xi (r)dr

+√
2αi,�

∫ t

0
e−αi,�(t−r)dWi,�(r).

Setting fi,�(t):=zi,�(t) + λi,�xi (t), we observe that (using Duhamel’s formula again)

d fi,�(t) = −αi,� fi,�(t) + λi,� αi,� xi (t)dt +√
2αi,�dWi,�(t), � = 1, . . . , ki ,

fi,�(0) = zi,�(0) + λi,�xi (0).

This together with setting qi (t):=xi (t) deduces the limiting system (1.10) as well as
the corresponding shifted initial conditions as in Theorem 2.10.

Next, for the reader’s convenience, we summarize the idea of the proof of Theorem
2.10. The argument essentially consists of three steps as follows (Herzog et al. 2016;
Lim and Wehr 2019; Lim et al. 2020).
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Step 1:We first truncate the nonlinear potentials in (1.5) and (1.10) obtaining a trun-
cated system whose coefficients are globally Lipschitz, and establish a convergence
in probability in the small mass limit. This result appears in Proposition 4.1 found in
Sect. 4.2.

Step 2: Next, we establish an exponential moment bound on any finite-time window
for the limiting system (1.10). This is discussed in details in Sect. 4.3, cf. Lemma 4.3.

Step 3: We prove Theorem 2.10 by removing the Lipschitz constraint from
Proposition 4.1 while making use of the energy estimates in Lemma 4.3.

4.2 Truncating (1.5) and (1.10)

For R > 2, let θR : [0,∞) → R be a smooth function satisfying

θR(t) =

⎧
⎪⎨

⎪⎩

1, 0 ≤ t ≤ R,

decreasing, R ≤ t ≤ R + 1,

0, t ≥ R + 1.

(4.3)

With the above cut-off θR , we consider a truncating version of (1.5) given by

d xi (t) = vi (t)dt, i = 1, . . . , N ,

md vi (t) = −γ vi (t)dt − θR(|xi (t)|)∇U (xi (t))dt +√
2γ dWi,0(t)

−
∑

j �=i

θR
(|xi (t) − x j (t)|−1)∇G

(
xi (t) − x j (t)

)
dt +

ki∑

�=1

λi,�zi,�(t)dt,

d zi,�(t) = −αi,�zi,�(t)dt − λi,�vi (t)dt +√
2αi,� dWi,�(t), � = 1, . . . , ki , (4.4)

as well as the following truncated version of (1.10)

γ dqi (t) = −θR(|qi (t)|)∇U (qi (t))dt −
∑

j�=i
θR
(|qi (t) − q j (t)|−1)∇G

(
qi (t)−q j (t)

)
dt

−
ki∑

i=1

λ2i,�qi (t)dt +
ki∑

�=1

λi,� fi,�(t)dt +√
2γ dWi,0(t),

d fi,�(t) = −αi,� fi,�(t) + λi,� αi,� qi (t)dt +√
2αi,�dWi,�(t), � = 1, . . . , ki ,

qi (0) = xi (0), fi,�(0) = zi,�(0) + λi,�xi (0). (4.5)

We now show that system (4.4) can be approximated by (4.5) on any finite-time
window in the small-mass regime.

Proposition 4.1 Under Assumptions 2.1 and 2.3, given any initial condition (x(0),
v(0), z1(0),. . . , zN (0)) ∈ X and R > 2, let

(
xRm(t), vRm(t), zR1,m(t),. . . , zRN ,m(t)

)
and(

qR(t), f R1 (t),. . . , f RN (t)
)
respectively solve (4.4) and (4.5). Then, for every T > 0,

the following holds
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E

[
sup

0≤t≤T

∣∣xRm(t) − qR(t)
∣∣4
]

≤ m · C, as m → 0, (4.6)

for some positive constant C = C(T , R) independent of m.

In order to establish Proposition 4.1, it is crucial to derive useful moment bounds
on the velocity process vRm(t). More precisely, we have the following result.

Lemma 4.2 Under Assumptions 2.1 and 2.3, given any initial condition (x(0), v(0),
z1(0),. . . , zN (0)) ∈ X and R > 2, let

(
xRm(t), vRm(t), zR1,m(t),. . . , zRN ,m(t)

)
be the

solution of (4.4). Then, for every T > 0, n > 1 and ε > 0, it holds that

mn
E

[
sup

0≤t≤T

∣∣vRm(t)
∣∣n
]

≤ m
n
2−εC, as m → 0, (4.7)

for some positive constant C = C(T , n, R, ε) independent of m.

For the sake of clarity, the proof of Lemma 4.2 will be deferred to the end of this
subsection. In what follows, we will assume Lemma 4.2 holds and prove Proposition
4.1. The argument is adapted from the proof of (Nguyen 2018, Proposition 9) tailored
to our settings.

Proof of Proposition 4.1 From the (xi , vi )−equations in (4.4), we find

mdvR
i (t) + γ dx Ri (t) = −θR(x Ri (t))∇U (x Ri (t))dt +√

2γ dWi,0(t)

−
∑

j �=i

θR
(|x Ri (t) − x Rj (t)|−1)∇G

(
x Ri (t) − x Rj (t)

)
dt

+
ki∑

�=1

λi,�z
R
i,�(t)dt .

Substituting zRi,�(t) by the expression (4.2) into the above equation produces

mdvR
i (t) + γ dx Ri (t)

= −θR(|x Ri (t)|)∇U (x Ri (t))dt

+√
2γ dWi,0(t) −

∑

j �=i

θR
(|x Ri (t) − x Rj (t)|−1)∇G

(
x Ri (t) − x Rj (t)

)
dt

+
ki∑

�=1

λi,�e
−αi,�t

[
zi,�(0) + λi,�xi (0)

]

−
( ki∑

�=1

λ2i,�

)
x Ri (t)

−
ki∑

�=1

λ2i,�αi,�

∫ t

0
e−αi,�(t−r)x Ri (r)dr
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+
ki∑

�=1

λi,�
√
2αi,�

∫ t

0
e−αi,�(t−r)dWi,�(r)dt . (4.8)

Similarly, from the fi,�−equation of system (4.5), we have

f Ri,�(t) = e−αi,�t (zi,�(0)+λi,�xi (0))−λi,�αi,�

∫ t

0
e−αi,�(t−r)qR

i (r)dr

+√
2αi,�

∫ t

0
e−αi,�(t−r)dWi,�(r).

Plugging into qi−equation of (4.5) yields

γ dqR
i (t)

= −θR(|qR
i (t)|)∇U (qR

i (t))dt

+√
2γ dWi,0(t −

∑

j �=i

θR
(|qR

i (t) − qR
j (t)|−1)∇G

(
qR
i (t) − qR

j (t)
)
dt

+
ki∑

�=1

λi,�e
−αi,�t

[
zi,�(0) + λi,�xi (0)

]−
( ki∑

�=1

λ2i,�

)
qR
i (t)

−
ki∑

�=1

λ2i,�αi,�

∫ t

0
e−αi,�(t−r)x Ri (r)dr

+
ki∑

�=1

λi,�
√
2αi,�

∫ t

0
e−αi,�(t−r)dWi,�(r)dt . (4.9)

Setting x̄ Ri = x Ri − qR
i , we subtract (4.9) from (4.8) to obtain the identity

mdvR
i (t) + γ dx̄ Ri (t) = −

[
θR(|x Ri (t)|)∇U (x Ri (t)) − θR(|qR

i (t)|)∇U (qR
i (t))

]
dt

−
∑

j �=i

[
θR
(|x Ri (t) − x Rj (t)|−1)∇G

(
x Ri (t) − x Rj (t)

)

− θR
(|qR

i (t) − qR
j (t)|−1)∇G

(
qR
i (t) − qR

j (t)
)]
dt

−
( ki∑

�=1

λ2i,�

)
x̄ Ri (t) −

ki∑

�=1

λ2i,�αi,�

∫ t

0
e−αi,�(t−r) x̄ Ri (r)dr .

(4.10)

By the choice of θR as in (4.3) and conditions (2.2) and (2.6), we invoke the mean
value theorem to infer

|θR(|x |)∇U (x) − θR(|y|)∇U (y)| ≤ C |x − y|, x, y ∈ R
d ,
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and

|θR
(|x |−1)∇G(x) − θR

(|y|−1)∇G(y)| ≤ C |x − y|, x, y ∈ R
d \ {0},

for some positive constant C = C(R). From (4.10), we arrive at the a.s. bound

|x̄ Ri (t)|n ≤ Cmn|vR
i (t) − v(0)|n + C

∫ t

0

N∑

j=1

|x̄ Rj (r)|ndr ,

whence

|x̄R(t)|n ≤ Cmn|vR(t) − v(0)|n + C
∫ t

0

N∑

j=1

|x̄R(r)|ndr .

Gronwall’s inequality implies that

E sup
t∈[0,T ]

|x̄R(t)|n ≤ Cmn
E sup

t∈[0,T ]
|vR(t) − v(0)|n .

Setting n = 4, by virtue of Lemma 4.2, this produces the small-mass limit (4.6), as
claimed. ��

We now turn to the proof of Lemma 4.2.

Proof of Lemma 4.2 From the vi−equation in (4.4), variation constant formula yields

mvR
i (t) = me− γ

m tvi (0) −
∫ t

0
e− γ

m (t−r)θR(|x Ri (r)|)∇U (x Ri (r))dr

−
∫ t

0
e− γ

m (t−r)
∑

j �=i

[
θR
(|x Ri (r) − x Rj (r)|−1)∇G(x Ri (r) − x Rj (r))

]
dr

+
ki∑

�=1

λi,�

∫ t

0
e− γ

m (t−r)zRi,�(r)dr +√
2γ
∫ t

0
e− γ

m (t−r)dWi,0(r). (4.11)

With regard to the integral involving zi,�, since zRi,� satisfies the third equation in (4.4),
we have

zRi,�(t) = e−αi,�t zi,�(0)−λi,�

∫ t

0
e−αi,�(t−r)vR

i (r)dr +√
2αi,�

∫ t

0
e−αi,�(t−r)dWi,�(r).

Plugging back into (4.11), we obtain the identity

mvR
i (t) = me− γ

m tvi (0) −
∫ t

0
e− γ

m (t−r)θR(|x Ri (r)|)∇U (x Ri (r))dr
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−
∫ t

0
e− γ

m (t−r)
∑

j �=i

[
θR
(|x Ri (r) − x Rj (r)|−1)∇G(x Ri (r) − x Rj (r))

]
dr

+
ki∑

�=1

λi,�

∫ t

0
e− γ

m (t−r)e−αi,�r zi,�(0)dr

−
ki∑

�=1

λ2i,�

∫ t

0
e− γ

m (t−r)
∫ r

0
e−αi,�(r−s)vR

i (s)dsdr

+
ki∑

�=1

λi,�
√
2αi,�

∫ t

0
e− γ

m (t−r)
∫ r

0
e−αi,�(r−s)dWi,�(s)dr

+√
2γ
∫ t

0
e− γ

m (t−r)dWi,0(r)

= me− γ
m tvi (0) − I1 − I2 + I3 − I4 + I5 + I6. (4.12)

Concerning I1, we invoke condition (2.1) while making use of the choice of θR as in
(4.3) to obtain

|I1| ≤ C
∫ t

0
e− γ

m (t−r)dr = mC,

for some positive constant C = C(R) independent of m. Likewise, we employ
condition (2.5) to infer

|I2| ≤ C
∫ t

0
e− γ

m (t−r)dr = mC .

Similarly, it is clear that

|I3| ≤ m
ki∑

�=1

λi,�|zi,�(0)|.

Concerning I4, observe that

|I4| ≤
ki∑

�=1

λ2i,�

∫ t

0
e− γ

m (t−r)dr
∫ t

0
sup

s∈[0,r ]
|vR

i (s)|dr ≤ m
ki∑

�=1

λ2i,�

∫ t

0
sup

s∈[0,r ]
|vR

i (s)|dr .

With regard to the noise term I5, note that

∣∣∣
∫ t

0
e− γ

m (t−r)
∫ r

0
e−αi,�(r−s)dWi,�(s)dr

∣∣∣
n

≤
∣∣∣
∫ t

0
e− γ

m (t−r)dr
∣∣∣
n

sup
r∈[0,T ]

∣∣∣
∫ r

0
e−αi,�(r−s)dWi,�(s)

∣∣∣
n
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≤ mn

γ n
sup

r∈[0,T ]

∣∣∣
∫ r

0
e−αi,�(r−s)dWi,�(s)

∣∣∣
n
.

We employ Burkholder’s inequality to infer

E sup
t∈[0,T ]

∣∣∣
∫ t

0
e− γ

m (t−r)
∫ r

0
e−αi,�(r−s)dWi,�(s)dr

∣∣∣
n

≤ mn

γ n
E sup

t∈[0,T ]

∣∣∣
∫ t

0
eαi,�sdWi,�(s)

∣∣∣
n ≤ mnC(T , n).

Turning to I6, we set

Yi,0(t):=
∫ t

0
e−β(t−r)dWi,0(r), β:= γ

m
,

and let Zi,0 ∼ N (0, 1) be a random variable independent ofWi,0(t). Then, the process

Xi,0(t):=Zi,0e
−βt +√

2βYi,0(t)

is a stationary solution to

dXi,0(t) = −βXi,0(t)dt +√
2βdWi,0(t), Xi,0(0) = Z .

For n ≥ 1, it holds by the definition of Xi,0(t) that

E sup
t∈[0,T ]

|Yi,0(t)|n ≤ Cβ− n
2

(
1 + E sup

t∈[0,T ]
|Xi,0(t)|n

)
.

By Pavliotis et al. (2022, Lemma B.1), it holds for all n > 1 that

E sup
t∈[0,T ]

|Xi,0(t)|n ≤ C
(
1 + log(1 + βT )

)n/2
.

As a consequence, for all ε > 0

β
n
2−ε

E sup
t∈[0,T ]

|Yi,0(t)|n < C(T , n).

In other words,

E sup
t∈[0,T ]

|Yi,0(t)|n < m
n
2−εC(T , n).

Now we collect the above estimates together with expression (4.12) to deduce that
for all n > 1 and ε > 0

mn
E sup

t∈[0,T ]
|vR(t)|n
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≤ mnC
(
|v(0)|n +

N∑

i=1

|zRi (0)|n + 1
)

+ m
n
2−εC + Cmn

∫ T

0
E sup

r∈[0,t]
|vR(r)|ndt,

holds for some positive constant C = C(T , n, R, ε) independent of m. In view of
Gronwall’s inequality, for all n > 1, we arrive at (4.7), as claimed. ��

4.3 Estimates on (1.10)

In this subsection, we provide several energy estimates on the limiting system (1.10)
on any finite-time window. More precisely, we have the following result.

Lemma 4.3 Under Assumptions 2.1, 2.3 and 2.5, for all (x(0), z1(0),..., zN (0)) ∈
D× (Rd)N , let Q(t) = (

q(t), f1(t),. . . , fN (t)
)
be the solution of (1.10) and β1 be the

constant as in Assumptions 2.3 and 2.5. For all ε, κ > 0 sufficiently small and T > 0,
the followings hold:

(a) If β1 > 1,

E

[
exp

{
sup

t∈[0,T ]

(
κ|q(t)|2 + κε

∑

1≤i< j≤N

1

|qi (t) − q j (t)|β1−1

)}]
≤ C, (4.13)

for some positive constant C = C(κ, ε, T , x(0), z1(0), . . . , zN (0)).
(b) Otherwise, if β1 = 1,

E

[
exp

{
sup

t∈[0,T ]

(
κ|q(t)|2 − κε

∑

1≤i< j≤N

log |qi (t) − q j (t)|
)}]

≤ C . (4.14)

The proof of Lemma 4.3 relies on two ingredients: the choice of Lyapunov functions
specifically designed for (1.10) and the exponential Martingale inequality. Later in
Sect. 4.4, we will particularly exploit Lemma 4.3 to remove the Lipschitz constraint
in Proposition 4.1 so as to conclude the main Theorem 2.10.

Proof of Lemma 4.3 (a) Suppose that β1 > 1. For ε > 0, we consider the functions �1
given by

�1(q, f1, . . . , fN ) = 1

2
γ |q|2 + 1

2

N∑

i=1

ki∑

�=1

1

αi,�
| fi,�|2 + ε γ

∑

1≤i< j≤N

1

|qi − q j |β1−1 .

(4.15)

We aim to show that �1(t) satisfies suitable energy estimate, allowing for establishing
the moment bound in sup norm (4.13).

From (1.10), we employ Itô’s formula to obtain

d

(
1

2
γ |q(t)|2 + 1

2

N∑

i=1

ki∑

�=1

1

αi,�
| fi,�(t)|2

)
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= −
N∑

i=1

( ki∑

�=1

λ2i,�

)
|qi (t)|2dt −

N∑

i=1

〈∇U (qi (t)), qi (t)〉dt + Nγ 2d dt

−
∑

1≤i< j≤N

〈∇G(qi (t) − q j (t)), qi (t) − q j (t)〉dt +
N∑

i=1

√
2γ 〈qi (t), dWi,0(t)〉

−
N∑

i=1

ki∑

�=1

| fi,�|2dt + α2
i,�d dt +√

2αi,�〈 fi,�(t), dWi,�(t)〉.

Recalling condition (2.3), we readily have

−
N∑

i=1

〈∇U (qi (t)), qi (t)〉 ≤ −Na2

N∑

i=1

|qi (t)|λ+1 + Na3.

To bound the cross terms involving G, we invoke (2.5) and obtain

−
∑

1≤i< j≤N

〈∇G(qi (t) − q j (t)), qi (t) − q j (t)〉

≤ a1
∑

1≤i< j≤N

(
|qi (t) − q j (t)| + 1

|qi (t) − q j (t)|β1−1

)
.

Since
∑

1≤i< j≤N |qi − q j | can be subsumed into −|q|2, we infer from the above
estimates that

d

(
1

2
γ |q(t)|2 + 1

2

N∑

i=1

ki∑

�=1

1

αi,�
| fi,�(t)|2

)

≤ −c|q(t)|2dt − c|q(t)|λ+1dt −
N∑

i=1

|fi |2 + Cdt + a1
∑

1≤i< j≤N

1

|qi − q j |β1−1 dt

+
N∑

i=1

√
2γ 〈qi (t), dWi,0(t)〉 +

N∑

i=1

ki∑

�=1

√
2αi,�〈 fi,�(t), dWi,�(t)〉, (4.16)

for some positive constant c, C independent of t .
Turning to the last term on the right-hand side of (4.15), a routine computation

gives

d

(
ε γ

∑

1≤i< j≤N

1

|qi (t) − q j (t)|β1−1

)

= −ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,−∇U (qi (t))dt
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−
∑

� �=i

∇G
(
qi (t) − q�(t)

)
dt

−
ki∑

i=1

λ2i,�qi (t)dt +
ki∑

�=1

λi,� fi,�(t)dt +√
2γ dWi,0(t)

〉

− ε(β1 − 1)(β1 + 1 − d)
∑

1≤i< j≤N

1

|qi (t) − q j (t)|β1+1 dt . (4.17)

Using Cauchy–Schwarz inequality, it is clear that

− ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,−
ki∑

i=1

λ2i,�qi (t) +
ki∑

�=1

λi,� fi,�(t)

〉

≤ Cε1/2|q(t)|2 + Cε1/2
N∑

i=1

|fi (t)|2 + Cε3/2
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 .

Concerning the cross terms involving U on the right-hand side of (4.17), we recall
that ∇U satisfies (2.2). In light of the mean value theorem, we infer

− ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,−∇U (qi (t))

〉

= ε(β1 − 1)
∑

1≤i< j≤N

〈qi (t) − q j (t),∇U (qi (t)) − ∇U (q j (t))〉
|qi (t) − q j (t)|2

≤ Cε
∑

1≤i< j≤N

(|qi (t)|λ−1 + |q j (t)|λ−1) ≤ Cε|q(t)|λ−1.

Turning to the cross terms involving G on the right-hand side of (4.25), we recast
them as follows:

− ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,−
∑

� �=i

∇G
(
qi (t) − q�(t)

)〉

= −ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 , a4
∑

� �=i

qi (t) − q�(t)

|qi (t) − q�(t)|β1+1

〉

+ ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,
∑

� �=i

∇G
(
qi (t) − q�(t)

)

+ a4
qi (t) − q�(t)

|qi (t) − q�(t)|β1+1

〉
.
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In view of Lemma A.2, cf. (A.2), we find

− ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 , a4
∑

� �=i

qi (t) − q�(t)

|qi (t) − q�(t)|β1+1

〉

≤ −ε(β1 − 1)a4 · 4

N (N − 1)2
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 .

On the other hand, the condition (2.7) implies

ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,
∑

� �=i

∇G
(
qi (t) − q�(t)

)

+ a4
qi (t) − q�(t)

|qi (t) − q�(t)|β1+1

〉

≤ ε(β1 − 1)
N∑

i=1

〈∑

j �=i

1

|qi (t) − q j (t)|β1 ,
∑

� �=i

(
a5

1

|qi (t) − q�(t)|β2 + a6

)〉

≤ ε3/2C
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 + ε1/2C
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β2 + C,

for some positive constant C independent of t and ε. Since β2 < β1, cf. (2.7), taking
ε small enough produces the bound

− ε(β1 − 1)
N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,−
∑

� �=i

∇G
(
qi (t) − q�(t)

)〉

≤ −ε c
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 . (4.18)

Similarly, regarding the last term on the right-hand side of (4.17), since in Case 1,
β1 > 1, it is clear that ε|qi − q j |−β1−1 can also be subsumed into −ε|qi − q j |−2β1 as
in (4.18). Altogether with the expression (4.17), we arrive at the estimate

d

(
ε γ

∑

1≤i< j≤N

1

|qi (t) − q j (t)|β1−1

)

≤ ε1/2C |q(t)|2dt + ε1/2C |q(t)|λ−1dt + ε1/2C
N∑

i=1

|fi (t)|2dt + Cdt

− ε c
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 dt
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− ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,
√
2γ dWi,0(t)

〉
. (4.19)

Next, from the expression (4.15) of �1 and the estimates (4.16) and (4.19), we obtain
(by taking ε small enough)

d�1(t) ≤ −c|q(t)|2dt − c|q(t)|λ+1dt − c
N∑

i=1

|fi |2

− ε c
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 dt + Cdt

+
N∑

i=1

√
2γ 〈qi (t), dWi,0(t)〉 +

N∑

i=1

ki∑

�=1

√
2αi,�〈 fi,�(t), dWi,�(t)〉

− ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,
√
2γ dWi,0(t)

〉
. (4.20)

We emphasize that in (4.20), c > 0 is independent of ε, whereas C > 0 may still
depend on ε.

Now, to establish (4.13), we aim to employ the well-known exponential Martingale
inequality applied to (4.20). The argument below is similarly to that found in Hairer
and Mattingly (2008, Lemma 5.1). See also Glatt-Holtz et al. (2021, 2022).

For κ ∈ (0, 1) to be chosen later, from (4.20), we observe that

κd�1(t) ≤ −cκ|q(t)|2dt − cκ|q(t)|λ+1dt − cκ
N∑

i=1

|fi |2 + Cκdt

− κε c
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 dt + dM1(t). (4.21)

In the above, the semi-Martingale term M1(t) is defined as

dM1(t) = κ

N∑

i=1

√
2γ 〈qi (t), dWi,0(t)〉 + κ

N∑

i=1

ki∑

�=1

√
2αi,�〈 fi,�(t), dWi,�(t)〉

− κε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1 ,
√
2γ dWi,0(t)

〉
,

whose variation process 〈M1〉(t) is given by

d〈M1〉(t) = 2γ κ2
∣∣∣∣

N∑

i=1

(
qi (t) − ε

∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|β1+1

)∣∣∣∣
2

dt
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+ κ2
N∑

i=1

ki∑

�=1

2αi,�| fi,�(t)|2dt .

Using Cauchy–Schwarz inequality, it is clear that

d〈M1〉(t) ≤ −c̃κ2|q(t)|2dt − c̃κ2
N∑

i=1

|fi |2dt − κ2εc̃
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2β1 dt,

for some positive constant c̃ independent of both κ and ε. It follows from (4.21) that

κd�1(t) ≤ Cκdt − c

κ
〈M1〉(t)dt + dM1(t).

Recalling the exponential Martingale inequality applying to M1(t),

P

(
sup
t≥0

[
M1(t) − c

κ
〈M1〉(t)

]
> r

)
≤ e− 2c

κ
r , r ≥ 0, (4.22)

we deduce that

P

(
sup

t∈[0,T ]

[
κ�1(t) − κ�1(0) − κCt

]
> r

)
≤ e− 2c

κ
r .

In particular, by choosing κ sufficiently small, the above inequality implies

E exp

{
sup

t∈[0,T ]
κ�1(t)

}
≤ C, (4.23)

for some positive constantC = C(T , κ, ε, x(0), z1(0), . . . , zN (0)). Recalling�1 as in
(4.15), the estimate (4.23) produces (4.13). Hence, part (a) is established for β1 > 1.

(b) Considering β1 = 1, in this case, we introduce the function �2 defined as

�2(q, f1, . . . , fN ) = 1

2
γ |q|2 + 1

2

N∑

i=1

ki∑

�=1

1

αi,�
| fi,�|2 − ε γ

∑

1≤i< j≤N

log |qi − q j |.

(4.24)

With regard to the log term on the above right-hand side, the following identity holds

d

(
− εγ

∑

1≤i< j≤N

log |qi (t) − q j (t)|
)

= −ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|2 ,−∇U (qi (t))dt −
∑

� �=i

∇G
(
qi (t) − q�(t)

)
dt
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−
ki∑

i=1

λ2i,�qi (t)dt +
ki∑

�=1

λi,� fi,�(t)dt +√
2γ dWi,0(t)

〉

− ε(d − 2)
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 dt . (4.25)

Similarly to the estimates in Case 1, we readily have

− ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|2 ,−∇U (qi (t)) −
ki∑

i=1

λ2i,�qi (t) +
ki∑

�=1

λi,� fi,�(t)

〉

≤ Cε1/2|q(t)|2 + Cε|q(t)|λ−1 + Cε1/2
N∑

i=1

|fi (t)|2

+ Cε3/2
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 . (4.26)

Concerning the cross terms involving G on the right-hand side of (4.25). We employ
an argument from Case 1 while making use of condition (2.7) and the estimate (A.3)
to arrive at

− ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|2 ,−
∑

� �=i

∇G
(
qi (t) − q�(t)

)〉

≤ −2a4ε
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 + Cε3/2
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 + C̃ . (4.27)

In the above, we emphasize thatC is independent of ε even though C̃ may still depend
on ε. Turning to the last term on the right-hand side of (4.25), i.e.,

−ε(d − 2)
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 dt,

there are two cases to be considered, depending on the dimension d. In dimension
d ≥ 2, it is clear that the above expression is negative and thus is negligible. On the
other hand, in dimension d = 1, it is reduced to

ε
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 dt .

In view of Assumption 2.5, we combine with (4.27) to obtain

− ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|2 ,−
∑

��=i

∇G
(
qi (t) − q�(t)

)〉+ ε
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2
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≤ −(2a4 − 1)ε
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 + Cε3/2
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 + C̃,

whence (by taking ε sufficiently small)

− ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|2 ,−
∑

��=i

∇G
(
qi (t) − q�(t)

)〉+ ε
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2

≤ −cε
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 + C̃,

From (4.25) and (4.26), we find

d

(
−

∑

1≤i< j≤N

log |qi (t) − q j (t)|
)

≤ −cε
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 dt + Cε1/2|q(t)|2dt + Cε|q(t)|λ−1dt

+ Cε1/2
N∑

i=1

|fi (t)|2dt − ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|2 ,
√
2γ dWi,0(t)

〉
+ C̃dt .

(4.28)

Next, we combine estimates (4.16), (4.28) with expression (4.24) of �2 to infer

d�2(t) ≤ −c|q(t)|2dt − c|q(t)|λ+1dt − c
N∑

i=1

|fi |2

− ε c
∑

1≤i< j≤N

1

|qi (t) − q j (t)|2 dt + Cdt

+
N∑

i=1

√
2γ 〈qi (t), dWi,0(t)〉 +

N∑

i=1

ki∑

�=1

√
2αi,�〈 fi,�(t), dWi,�(t)〉

− ε

N∑

i=1

〈∑

j �=i

qi (t) − q j (t)

|qi (t) − q j (t)|2 ,
√
2γ dWi,0(t)

〉
. (4.29)

We may now employ an argument similarly to the exponential Martingale approach
as in Case 1 to deduce the bound for all κ sufficiently small

E exp

{
sup

t∈[0,T ]
κ�2(t)

}
≤ C,

for some positive constant C = C(T , κ, ε, x(0), z1(0), . . . , zN (0)). Recalling �2
defined in (4.24), this produces the estimate (4.14). The proof is thus finished. ��
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4.4 Proof of Theorem 2.10

We are now in a position to conclude Theorem 2.10. The argument follows along
the lines of the proof of Nguyen (2018, Theorem 4) adapted to our setting. See also
Herzog et al. (2016, Theorem 2.4). The key observation is that instead of controlling
the exiting time of the process xm(t) as m → 0, we are able to control q(t) since q(t)
is independent of m.

Proof of Theorem 2.10 Let
(
xm(t), vm(t), z1,m(t),. . . , zN ,m(t)

)
and

(
q(t), f1(t),. . . ,

fN (t)
)
, respectively, solve (1.5) and (1.10). For R, m > 0, define the following

stopping times

σ R = inf
t≥0

{
|q(t)| +

∑

1≤i< j≤N

|qi (t) − q j (t)|−1 ≥ R

}
, (4.30)

and

σ R
m = inf

t≥0

{
|xm(t)| +

∑

1≤i< j≤N

|xi,m(t) − x j,m(t)|−1 ≥ R

}
.

Fixing T , ξ > 0, observe that

P

(
sup

t∈[0,T ]
|xm(t) − q(t)| > ξ

)
≤ P

(
sup

t∈[0,T ]
|xm(t) − q(t)| > ξ, σ R ∧ σ R

m ≥ T

)

+ P
(
σ R ∧ σ R

m < T
)
. (4.31)

To control the first term on the above right-hand side, observe that

P
(
0 ≤ t ≤ σ R ∧ σ R

m , q(t) = qR(t), xm(t) = xRm(t)
) = 1,

where qR(t) and xRm(t) are the first components of the solutions of (4.5) and (4.4),
respectively. As a consequence,

P

(
sup

0≤t≤T
|xm(t) − q(t)| > ξ, σ R ∧ σ R

m ≥ T

)

≤ P

(
sup

0≤t≤T
|xRm(t) − qR(t)| > ξ

)
≤ m

ξ4
· C(T , R). (4.32)

In the last estimate above, we employed Proposition 4.1 while making use ofMarkov’s
inequality.

Turning to P(σ R ∧ σ R
m < T ), we note that

P
(
σ R ∧ σ R

m < T
)
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≤ P

(
sup

t∈[0,T ]
|xRm(t) − qR(t)| ≤ ξ

R
, σ R ∧ σ R

m < T

)

+ P

(
sup

t∈[0,T ]
|xRm(t) − qR(t)| >

ξ

R

)

≤ P

(
sup

t∈[0,T ]
|xRm(t) − qR(t)| ≤ ξ

R
, σ R

m < T ≤ σ R
)

+ P(σ R < T )

+ P

(
sup

t∈[0,T ]
|xRm(t) − qR(t)| >

ξ

R

)

= I1 + I2 + I3. (4.33)

Concerning I3, the same argument as in (4.32) produces the bound

I3 = P

(
sup

0≤t≤T
|xRm(t) − qR(t)| >

ξ

R

)
≤ m

ξ4
· C(T , R). (4.34)

Next, considering I2, from (4.30), observe that for all ε small and R large enough,

{
σ R < T

} =
{

sup
t∈[0,T ]

|q(t)| +
∑

1≤i< j≤N

|qi (t) − q j (t)|−1 ≥ R

}

⊆
{

sup
t∈[0,T ]

|q(t)| ≥ R

N2

} ⋃

1≤i< j≤N

{
− ε log |qi (t) − q j (t)| ≥ ε log

(
R

N2

)}

⊆
{

sup
t∈[0,T ]

|q(t)|2 − ε
∑

1≤i< j≤N

log |qi (t) − q j (t)| ≥ R

N2

}

⋃

1≤i< j≤N

{
sup

t∈[0,T ]
|q(t)|2 − ε

∑

1≤i< j≤N

log |qi (t) − q j (t)| ≥ ε log

(
R

N2

)}
,

whence,

{
σ R < T

} ⊆
{

sup
t∈[0,T ]

|q(t)|2 − ε
∑

1≤i< j≤N

log |qi (t) − q j (t)| ≥ ε log

(
R

N 2

)}
.

We note that Proposition 4.1 implies the estimate

E

[
sup

t∈[0,T ]

(
|q(t)|2 − ε

∑

1≤i< j≤N

log |qi (t) − q j (t)|
)]

≤ C, (4.35)

for some positive constant C = C(T , ε). Together with Markov’s inequality, we infer
the bound for R large enough

I2 = P(σ R < T ) ≤ C(T )

ε log(R/N 2)
≤ C(T )

ε log R
. (4.36)
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Turning to I1 on the right-hand side of (4.33), for R large enough and ξ ∈ (0, 1), a
chain of event implications is derived as follows:

{
sup

t∈[0,T ]
|xRm(t) − qR(t)| ≤ ξ

R
, σ R

m < T ≤ σ R
}

=
{

sup
t∈[0,T ]

|xRm(t) − q(t)| ≤ ξ

R
, sup
t∈[0,T ]

(
|xRm(t)| +

∑

1≤i< j≤N

|x Ri,m(t) − x Rj,m(t)|−1
)

≥ R, σ R
m < T ≤ σ R

}

⊆
{

sup
t∈[0,T ]

|xRm(t) − q(t)| ≤ ξ

R
, sup
t∈[0,T ]

|xRm(t)| ≥ R

N 2

}

⋃

1≤i< j≤N

{
sup

t∈[0,T ]
|xRm(t) − q(t)| ≤ ξ

R
, sup
t∈[0,T ]

|x Ri,m(t) − x Rj,m(t)|−1 ≥ R

N 2

}

=
{

sup
t∈[0,T ]

|xRm(t) − q(t)| ≤ ξ

R
, sup
t∈[0,T ]

|xRm(t)| ≥ R

N 2

}

⋃

1≤i< j≤N

{
sup

t∈[0,T ]
|xRm(t) − q(t)| ≤ ξ

R
, inf
t∈[0,T ] |x

R
i,m(t) − x Rj,m(t)| ≤ N 2

R

}
.

Since ξ and N are fixed, for R large enough, say, R
N2 − ξ

R ≥ √
R, we have

{
sup

t∈[0,T ]
|xRm(t) − q(t)| ≤ ξ

R
, sup
t∈[0,T ]

|xRm(t)| ≥ R

N 2

}

⊆
{

sup
t∈[0,T ]

|q(t)| ≥ R

N 2 − ξ

R

}
⊆
{

sup
t∈[0,T ]

|q(t)| ≥ √
R

}

⊆
{

sup
t∈[0,T ]

|q(t)|2 − ε
∑

1≤i< j≤N

log |qi (t) − q j (t)| ≥ √
R

}
.

On the other hand, by triangle inequality,

inf
t∈[0,T ] |qi (t) − q j (t)| ≤ 2 sup

t∈[0,T ]
|xRm(t) − q(t)| + inf

t∈[0,T ] |x
R
i,m(t) − x Rj,m(t)|,

implying

{
sup

t∈[0,T ]
|xRm(t) − q(t)| ≤ ξ

R
, inf
t∈[0,T ] |x

R
i,m(t) − x Rj,m(t)| ≤ N 2

R

}

⊆
{

inf
t∈[0,T ] |qi (t) − q j (t)| ≤ 2ξ + N 2

R

}
⊆
{

inf
t∈[0,T ] |qi (t) − q j (t)| ≤ 1√

R

}
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=
{

− ε sup
t∈[0,T ]

log |qi (t) − q j (t)| ≥ 1

2
ε log R

}
.

It follows that for ε small and R large enough

{
sup

t∈[0,T ]
|xRm(t) − q(t)| ≤ ξ

R
, inf
t∈[0,T ] |x

R
i,m(t) − x Rj,m(t)| ≤ N 2

R

}

⊆
{

sup
t∈[0,T ]

|q(t)|2 − ε
∑

1≤i< j≤N

log |qi (t) − q j (t)| ≥ 1

2
ε log R

}
.

As a consequence, the following holds

{
sup

t∈[0,T ]
|xRm(t) − qR(t)| ≤ ξ

R
, σ R

m < T ≤ σ R
}

⊆
{

sup
t∈[0,T ]

|q(t)|2 − ε
∑

1≤i< j≤N

log |qi (t) − q j (t)| ≥ 1

2
ε log R

}
.

We employ (4.35) and Markov’s inequality to infer

I1 = P

(
sup

t∈[0,T ]
|xRm(t) − qR(t)| ≤ ξ

R
, σ R

m < T ≤ σ R
)

≤ C(T )

ε log R
. (4.37)

Turning back to (4.33), we collect (4.34), (4.36) and (4.37) to arrive at the bound

P
(
σ R ∧ σ R

m < T
) ≤ m

ξ4
· C(T , R) + C(T )

ε log R
. (4.38)

We emphasize that in the above estimate C(T , R) and C(R) are independent of m.
Now, putting everything together, from (4.31), (4.32) and (4.38), we obtain the

estimate

P

(
sup

t∈[0,T ]
|xm(t) − q(t)| > ξ

)
≤ m

ξ4
· C(T , R) + C(T )

ε log R
,

for all ε small and R large enough. By sending R to infinity and then shrinking m
further to zero, this produces the small-mass limit(2.18), thereby completing the proof.

��
Remark 4.4 For the underdamped Langevin dynamics, it is well known that the small-
mass limit m → 0 and the high-friction limit γ → +∞ (under an appropriate time
(or noise) rescaling) both lead to the same limiting system, which is the overdamped
Langevin dynamics, see, e.g., (Lelièvre et al. 2010, Section 2.2.4) and also (Duong
et al. 2017) for the Vlasov–Fokker–Planck system. Similarly, one can also derive the
underdamped Langevin dynamics from the generalized Langevin dynamics (GLE)
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under the white-noise limit, by rescaling the friction coefficients (λi ) and the strength
of the noises (α)i appropriately, see, e.g., (Ottobre and Pavliotis 2011; Nguyen 2018)
for a rigorous analysis for the non-interacting GLE and (Duong and Pavliotis 2019)
for a formal derivation for the interacting-GLE with regular interactions. This white-
noise limit is different from the small-mass limit studied in this paper. It would be
interesting to study the white-noise limit for the generalized Langevin dynamics with
irregular interactions, which we leave for future work.

Appendix A. Auxiliary Estimates on Singular Potentials

In this section, we collect some useful estimates on singular potentials, cf. Lemma
A.1 and Lemma A.2. In particular, Lemma A.1 was employed to construct Lyapunov
functions in Sect. 3. LemmaA.2 appears in the proof of Lemma 4.3 which was invoked
to prove the small-mass result of Theorem 2.10.

Lemma A.1 For all s ≥ 0 and x = (x1, . . . , xN ) ∈ D, the following holds:

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j |s+1 ,

∑

� �=i

xi − x�

|xi − x�|
〉

≥ 2
∑

1≤i< j≤N

1

|xi − x j |s . (A.1)

Proof The proof is the same as that of (Lu and Mattingly 2019, Lemma 4.2). See also
(Bolley et al. 2018, Inequality (5.1)). ��
Lemma A.2 For all x = (x1, . . . , xN ) ∈ D, the followings hold:

(a) For all s ≥ 0,

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j |s+1 ,

∑

� �=i

xi − x�

|xi − x�|s+1

〉
≥ 4

N (N − 1)2
∑

1≤i< j≤N

1

|xi − x j |2s .

(A.2)

(b) Furthermore, for s ∈ [0, 1],
N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j |s+1 ,

∑

� �=i

xi − x�

|xi − x�|s+1

〉
≥ 2

∑

1≤i< j≤N

1

|xi − x j |2s . (A.3)

Proof (a) With regard to (A.2), we employ Cauchy-Schwarz inequality to infer

∣∣∣∣
N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j |s+1 ,

∑

� �=i

xi − x�

|xi − x�|
〉∣∣∣∣
2

≤
N∑

i=1

∣∣∣∣
∑

j �=i

xi − x j
|xi − x j |s+1

∣∣∣∣
2

·
N∑

i=1

∣∣∣∣
∑

� �=i

xi − x�

|xi − x�|
∣∣∣∣
2
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≤
N∑

i=1

∣∣∣∣
∑

j �=i

xi − x j
|xi − x j |s+1

∣∣∣∣
2

· N (N − 1)2.

In view of Lemma A.1, the following holds

∣∣∣∣
N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j |s+1 ,

∑

� �=i

xi − x�

|xi − x�|
〉∣∣∣∣
2

≥ 4

( ∑

1≤i< j≤N

1

|xi − x j |s
)2

.

Therefore, we obtain

N∑

i=1

∣∣∣∣
∑

j �=i

xi − x j
|xi − x j |s+1

∣∣∣∣
2

≥ 4

N (N − 1)2

( ∑

1≤i< j≤N

1

|xi − x j |s
)2

.

This produces (A.2), thus establishing part (a).
(b) Turning to (A.3), we will follow the proof of (Lu and Mattingly 2019, Lemma

4.2) adapted to our setting. A routine computation gives

N∑

i=1

〈∑

j �=i

xi − x j
|xi − x j |s+1 ,

∑

� �=i

xi − x�

|xi − x�|s+1

〉

= 2
∑

1≤i< j≤N

1

|xi − x j |2s + 2
∑

1≤i< j<�≤N

[ 〈xi − x j , xi − x�〉
|xi − x j |s+1|xi − x�|s+1

+ 〈x j − xi , x j − x�〉
|x j − xi |s+1|x j − x�|s+1 + 〈x� − xi , x� − x j 〉

|x� − xi |s+1|x� − x j |s+1

]
.

It suffices to prove that the second sum on the above right-hand side is nonnegative.
To this end, we claim that for i < j < �,

〈xi −x j , xi −x�〉
|xi − x j |s+1|xi −x�|s+1 + 〈x j − xi , x j − x�〉

|x j −xi |s+1|x j −x�|s+1 + 〈x� − xi , x� − x j 〉
|x� − xi |s+1|x� − x j |s+1 ≥ 0.

Denote θi , θ j , θ� to be the angles formed by these points and whose vertices are
respectively xi , x j , x�. Observe that the above inequality is equivalent to

cos(θi )|x j − x�|s + cos(θ j )|xi − x�|s + cos(θ�)|xi − x j |s ≥ 0. (A.4)

Now, there are two cases to be considered depending on the triangle formed by
xi , x j , x� in Rd .

Case 1: the triangle is an acute or right triangle. In this case, it is clear that
cos(θi ), cos(θ j ) and cos(θ�) are both non negative. This immediately produces (A.4).

Case 2: The triangle is an obtuse triangle. Without loss of generality, suppose that
the angle θ j ∈ (π/2, π ], and thus θi + θ� ∈ [0, π/2). Observe that

min{cos(θi ), cos(θ�)} ≥ cos(θi + θ�) = − cos(θ j ) ≥ 0.
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As a consequence, since s ∈ [0, 1],
cos(θi )|x j − x�|s + cos(θ j )|xi − x�|s + cos(θ�)|xi − x j |s

≥ | cos(θ j )|
(
|x j − x�|s − |xi − x�|s + |xi − x j |s

)
≥ 0.

This establishes (A.4), thereby finishing the proof of part (b). ��
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