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Abstract
Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-
phase flow in a thin heterogeneous fluid domain, we rigorously derive bymathematical
homogenization a new effective mixture model consisting of a coupling of a non-local
(in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We
then analyse the resulting model and prove its well-posedness. A key to the analysis
is the new concept of sigma-convergence in thin heterogeneous domains allowing to
pass to the homogenization limit with respect to the heterogeneities and the domain
thickness simultaneously.

Keywords Non-local Cahn–Hilliard–Stokes system · Sigma-convergence · Thin
domains · Doubly non-local Hele-Shaw–Cahn–Hilliard system · Homogenization

Mathematics Subject Classification 35B40 · 35Q92 · 46J10 · 76D07 · 76D45 · 92C50

Communicated by George Haller.

B Malte A. Peter
malte.peter@math.uni-augsburg.de

Jean Louis Woukeng
jeanlouis.woukeng@univ-dschang.org; jean.woukeng@uni-a.de

1 Institute of Mathematics, University of Augsburg, Universitätsstrasse 12a, 86159 Augsburg,
Germany

2 Centre for Advanced Analytics and Predictive Sciences, University of Augsburg,
Universitätsstrasse 12a, 86159 Augsburg, Germany

3 Present Address: Department of Mathematics and Computer Science, University of Dschang, P.O.
Box 67, Dschang, Cameroon

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-024-10018-6&domain=pdf


   43 Page 2 of 56 Journal of Nonlinear Science            (2024) 34:43 

1 Statement of the Problem and theMain Results

Diffuse interfacemodels based on amultiphase approach associated to the balance and
constitutive laws and on thermodynamic principles are a useful approach to describing
the evolution and interactions of different species or phases. Such models have many
applications, especially in filtering (Kozicki and Kuang 1994), blood flow (Aland et al.
2014) and flow of liquid gases in fuel cells (Bazylak et al. 2008). Many models in the
literature consist of a mixture of two species and are modelled as a two-phase flow
coupled to a reaction–diffusion-type equation, thereby leading to coupled systems
of partial differential equations of Cahn–Hilliard type, see e.g. (Jiang et al. 2015;
Lowengrub et al. 2013; Wise et al. 2008; Wu and Wang 2012). The classical well-
known non-local model in this context is the non-local Cahn–Hilliard–Navier–Stokes
system, which reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− α
Re�u + (u · ∇)u + ∇ p − μ∇ϕ = h in Q = (0, T ) × D,

div u = 0 in Q,
∂ϕ

∂t
+ u · ∇ϕ − �μ = 0 in Q,

μ = aϕ − J ∗ ϕ + F ′(ϕ) in Q,
∂μ

∂ν
= 0 and u = 0 on (0, T ) × ∂D,

u(0, x) = u0(x) and ϕ(0, x) = ϕ0(x) in D.

(1.1)

In (1.1), D is a bounded open smooth domain inR
d (d = 2, 3), u is the velocity, ϕ is

the order parameter (differentiatingbetween the twofluids),μ is the chemical potential,
p is the pressure, α is the viscosity of the fluid, and Re is the Reynolds number. If the
Reynolds number is low, e.g. when the characteristic length is small, the convective
term (u · ∇)u can be neglected, in which case (1.1) can be well approximated by
the Cahn–Hilliard–Stokes system, see for instance (Han et al. 2013, Section 2.2.3),
in which a number of applications are discussed as well, for heterogeneous media in
particular.

In the current work, we are interested in two-phase flow in the special case of a
Hele-Shaw cell of a fluid in between two rigid parallel walls separated by a very small
distance, which naturally implies flow at low Reynolds number. Moreover, the fluid
phases in the Hele-Shaw cell are assumed to be mixed on the same small scale so
that the problem we address is related to the study of a phase-field model for the
evolution of a mixture of two incompressible immiscible fluids modelled by the non-
local Cahn–Hilliard–Stokes system evolving in a highly heterogeneous Hele-Shaw
cell. To be more precise, the model problem of our study is as follows.

1.1 Geometry of the Domain

We assume that the domain in R
d (d = 2, 3) occupies a bounded region in between

two rigid walls. More precisely, let � be a bounded open Lipschitz domain in R
d−1.
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For ε > 0, we define the thin heterogeneous domain �ε in R
d by

�ε = � × (−ε, ε) =
{
(x, xd) ∈ R

d : x ∈ � and − ε < xd < ε
}

.

The heterogeneity of the domain is implicit in the sense that it stems from the two fluids
being mixed at lengthscale ε. This is reflected in a viscosity oscillating at scale ε in a
general deterministic way as well as corresponding initial conditions. The distribution
function of those microstructures is therefore represented by an assumption made on
the fast spatial scale y = x/ε covering a wide range of behaviours such as the uniform
(or periodic) distribution, the almost periodic distribution and some more as described
in detail later.

1.2 Statement of theModel Equations and theMain Results

In the thin layer �ε, the flow of two-phase immiscible fluids at the micro-scale is
assumed to be described by the non-local Stokes–Cahn–Hilliard system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε

∂t
− div

(
ε2Bε∇uε

) + ∇ pε − με∇ϕε = h in Qε,

div uε = 0 in Qε,

∂ϕε

∂t
+ uε · ∇ϕε − �με = 0 in Qε,

με = ε−1 (aεϕε − J ∗ ϕε) + F ′(ϕε) in Qε,

∂με

∂ν
= 0 and uε = 0 on (0, T ) × ∂�ε,

uε(0, x) = uε
0(x) and ϕε(0, x) = ϕε

0(x) in �ε.

(1.2)

In (1.2), Qε = (0, T ) × �ε (we also define Q = (0, T ) × �), where T > 0 is a
given fixed real number, and the functions J , aε (which depends on J ), Bε, F , uε

0, ϕ
ε
0

and h satisfy the following hypotheses:

(H1) J ∈ W 1,1
uloc(R

d) ∩ C([Rd−1\{0}] × R) with J (y) = J (−y), and aε(x) =∫

�ε
J (x − z) dz ≥ 0 (x ∈ �ε) satisfies ε−1aε ∈ L∞(�ε) and there exists

β > 0 such that β−1 ≥ ε−1aε(x) ≥ β for all x ∈ �ε;
(H2) F ∈ C2,1loc (R) and there exists (ci )0≤i≤8 ⊂ R, 1 < r ≤ 2 and q ≥ 1

2 with

c1 > k0
2 ‖J‖L1

uloc(R
d ) (where k0 = k0(d) > 0 is a universal constant given

below in (2.2)), c0, c3, c5, c6 > 0, c4 ≥ 0 such that for all s ∈ R,

(i) F ′′(s) + β ≥ c0
(ii) F(s) ≥ c1s2 − c2
(iii)

∣
∣F ′(s)

∣
∣r ≤ c3 |F(s)| + c4
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(iv) F ′′(s) + β ≥ c5 |s|2q − c6;

(H3) uε
0 ∈ L2(�ε)

d and ϕε
0 ∈ L2(�ε) satisfy

∥
∥uε

0

∥
∥
L2(�ε)d

+ ∥
∥ϕε

0

∥
∥
L2(�ε)

≤ c7ε
1
2 ,

∫

�ε

F(ϕε
0) dx ≤ c8ε, (1.3)

for some positive constants c7 and c8, and further, when ε → 0,

ε− 1
2

∥
∥
∥uε

0 − u0
∥
∥
∥
L2(�ε)d

+ ε− 1
2

∥
∥
∥ϕε

0 − ϕ0
∥
∥
∥
L2(�ε)

→ 0, (1.4)

where u0 ∈ L2(�)d and ϕ0 ∈ L2(�); finally, h has the form

h(t, x) = (h1(t, x), 0) for a.e. (t, x = (x, xd)) ∈ (0, T ) × � × (−1, 1) ≡ Q1,

(1.5)
where h1 ∈ L2(Q)d−1.

(H4) The oscillating viscosity Bε is defined by Bε(x) = B(x, x/ε) (x ∈ �ε) where
B ∈ C(�; L∞(Rd

y)
d×d) is a symmetric matrix satisfying

α |ξ |2 ≤ B(x, y)ξ · ξ ≤ α−1 |ξ |2 for all ξ ∈ R
d , x ∈ � and a.e. y ∈ R

d ,

with α > 0 being a given constant independent of x, y and ξ .

For the homogenization process, we will furthermore require a structural assump-
tion on B, (H5), given at the beginning of Sect. 4.

Choosing h as in (1.5) is common and justified when dealing with thin domains.
Indeed, aswe are interested in the thin-domain limit, the forcing should be independent
of the variable xd . Moreover, we note that, from a modelling point of view, it would be
desirable to allow the viscosity to depend explicity on the order parameter (similar to
Reischmann andPeter 2020, 2022), but this direct couplingwould imply a nonlinearity
beyond the scope of this work.

Here and henceforth, we adopt notation (1.2)i to designate the i th equation of
system (1.2). The same will also apply for any other system encountered in this work.

Remark 1.1 Since F is bounded from below, it is easy to see that (iii) in (H2) implies
that F has polynomial growth of order r ′ where r ′ ∈ [2,∞) is the conjugate index of
r . Namely, there exist c9 > 0 and c10 ≥ 0 such that

|F(s)| ≤ c9 |s|r ′ + c10 for all s ∈ R. (1.6)

Conditions (i) and (iv) in (H2) imply, respectively, that F ′′(s) + ε−1aε(x) ≥ c0 and
F ′′(s) + ε−1aε(x) ≥ c5 |s|2q − c6 for all s ∈ R and all x ∈ �.

Remark 1.2 (1) In Assumptions (H1) and (H2), the spaces L1
uloc(R

d) and W 1,1
uloc(R

d)

are defined in Section 2 together with the universal constant k0, which depends only
on d. (2) Assumption (H1) on J generalizes the previous ones made in the literature.
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The common well-known assumption (see e.g. Colli et al. 2012; Frigeri and Grasselli
2012; Frigeri et al. 2016) on J stipulates that J ∈ W 1,1(Rd). In Bates and Han (2005),
J is constrained as follows:

sup
x∈�

∫

�

(|J (x − y)| + |∇ J (x − y)|) dy < ∞.

Both assumptions above imply that J ∈ W 1,1
uloc(R

d).

Remark 1.3 Typical well-known examples of functions J and F fulfilling assumptions
(H1) and (H2) are the Landau double-well potential defined by F(r) = 1

4 (r
2 − 1)2

and J (x) = β1 |x |−1 (if d = 3) and J (x) = −β2 ln |x | (if d = 2), respectively. Here,
|x | stands for the Euclidean norm of x ∈ R

d and β1, β2 are positive constants.

In (1.2), the Laplace operator acts on uε = (ukε)1≤k≤d in the following manner:
�uε = (�ukε)1≤k≤d , so that

〈�uε,φ〉 =
d∑

k=1

〈
�ukε, φ

k
〉
for φ = (φk)1≤k≤d .

It is worth noticing that in (1.2)4 we use the factor 1/ε in front of (aεϕε − J ∗ ϕε)

to preserve the relative size of the open set �ε = � × (−ε, ε) for small ε. The
above-mentioned term obviously satisfies the equality

ε−1(aεϕε − J ∗ ϕε)(t, x) =
∫

�1

(Jε(x − ξ)(ϕ̃ε(t, x) − ϕ̃ε(t, ξ)) dξ, (1.7)

where Jε(x) = J (x, εxd) for x = (x, xd) ∈ �1 and ϕ̃ε(t, x) = ϕε(t, x, εxd) for
(t; x) ∈ Q1. It is at this level that the assumption J ∈ C((Rd−1\{0}) × R) is essential
as it will be seen in Sect. 4.

Remark 1.4 Assumptions (1.3)–(1.4) on uε
0 and ϕε

0 are relevant from the physical
standpoint for if we choose uε

0 to be the solution of the Stokes system

−�uε
0 + ∇ pε

0 = g in �ε, div uε
0 = 0 in �ε and uε

0 = 0 on ∂�ε,

with g(x) = (g1(x), 0), g1 ∈ L2(�)d−1, then it is a fact that
∥
∥uε

0

∥
∥
H1
0 (�ε)d

≤ Cε1/2.

It comes readily from the two-scale convergence for thin heterogeneous periodic
media (see, e.g. Neuss-Radu and Jäger 2007) that there exists u0 ∈ L2(�)d such

that ε− 1
2
∥
∥uε

0 − u0
∥
∥
L2(�ε)d

→ 0 when ε → 0. The same process applies to ϕε
0 where

we instead consider the equation

−�ϕε
0 = gε in �ε, and ϕε

0 = 0 on ∂�ε,

with gε ∈ L2(�ε) being such that ‖gε‖L2(�ε)
≤ Cε1/2 for some fixed positive

constant C .

123



   43 Page 6 of 56 Journal of Nonlinear Science            (2024) 34:43 

System (1.2) is a non-local Cahn–Hilliard–Stokes system frequently used in
describing the behaviour of multiphase fluids in Hele-Shaw cells (Della Porta et al.
2018; Frigeri and Grasselli 2012). Its local version has been investigated in Cheng
and Feng (2017), see also Gurtin et al. (1996) for the derivation of the local version of
(1.2), and (Han et al. 2013) for the derivation of a Cahn–Hilliard–Stokes–Darcy model
obtained by coupling the Cahn–Hilliard–Stokes system and the Cahn–Hilliard–Darcy
system. It is important to note that, in Gurtin et al. (1996), Han et al. (2013)), the
authors considered the stationary Stokes system.

In (1.2), instead of taking the Laplace operator, we assume a general linear elliptic
operator of order 2 in divergence form with non-constant viscosity B(x, x/ε) depend-
ing on the position x = (x, xd) ∈ �ε. The distribution function of the microstructures
is therefore represented by an assumption made on the fast spatial scale y = x/ε
covering a wide range of behaviours such as the uniform (or periodic) distribution, the
almost periodic distribution and the asymptotic almost periodic one. This assumption
is made on the function y �→ B(x, y) with y = (y, yd).

The scaling in (1.2)1 is the classic one balancing viscosity effects and leading
to memory effects in the homogenized limit, see e.g. (Allaire 1992) in which, with
the same scaling, the author obtained the Darcy law with memory. This suggests to
envisage obtaining in the limit a coupled system consisting of a Darcy-type equation
withmemory effects associated to a non-local convective Cahn–Hilliard equation, thus
obtaining a doubly non-local system. Therefore, to justify the latter assertion, we aim
at investigating the limiting behaviour when ε → 0 of the sequence of solutions of
(1.2). This will be achieved through a two-step process: (1) deriving the homogenized
system by employing the sigma-convergence concept for thin heterogeneous media.
At this level, we shall deal with the non-trivial passage to the limit in the non-local
term; (2) analysing the resulting system in order to address its well-posedness.

The homogenization theory in thin periodic structures is now well known, see
e.g. (Bhattacharya et al. 2022; Gahn et al. 2017, 2021, 2018; Neuss-Radu and Jäger
2007) for some works in this direction. On the other hand, the general deterministic
homogenization theory beyond the periodic setting is in its early stage. To the best of
our knowledge, the only works to date in that direction are Cardone et al. (2022), Jäger
and Woukeng (2022). It is also worth noting that even in fixed or porous media, the
theory of homogenization for multiphase flows is less developed. Nevertheless, we
refer to Auriault et al. (1989), Banas and Mahato (2017), Bunoiu et al. (2020), Daly
and Roose (2015), Hornung (1997), Schmuck et al. (2012), and Sharmin et al. (2022)
in this context.

Highly heterogeneous model problem (1.2) considered in this work is stated in
a thin domain, in which the heterogeneities are distributed in a general deterministic
manner. Therefore, our study falls within the framework of the sigma-convergence the-
ory for thin heterogeneous domains which has recently been introduced in Jäger and
Woukeng (2022) as a generalization of two-scale convergence for thin periodic struc-
tures introduced in Neuss-Radu and Jäger (2007). The use of the sigma-convergence
concept covers several important special cases. The heterogeneities may be uniformly
distributed (leading to the periodic distribution and, hence, to the use of the two-scale
convergence for thin domains). They may also be distributed in an almost periodic
way or in an asymptotic almost periodic manner. This will be further illustrated in
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Sect. 7. The expected upscaled model (corresponding to the 3D ε-model) is, to the
best of our knowledge, new and is stated below as one of the main results of the work.

Theorem 1.1 Assume d = 3. For each ε > 0, let (uε, ϕε, με, pε) be the unique
solution of (1.2). Then, up to a subsequence (not relabelled), (uε, με, pε)ε>0 weakly
�A-converges (as ε → 0) in L2(Qε)

3 × L2(Qε)× L2(Qε) towards (u0, μ0, p0) and
(ϕε)ε>0 strongly �A-converges in L2(Qε) towards ϕ0 with ϕ0 ∈ L∞(0, T ; H1(�)),
u0 ∈ L2(Q;B1,2

A (R2; H1
0 (I ))3), μ0 ∈ L2(0, T ; H1(�)) and p0 ∈ L2(0, T ; L2

0(�)).
Setting

Mεφ(t, x) = 1

2ε

∫ ε

−ε

φ(t, x, x3) dx3 for (t, x) ∈ Q,

and

u(t, x) = 1

2

∫ 1

−1
M(u0(t, x, ·, x3)) dx3 ≡ (u(t, x), u3(t, x)),

one has u3 = 0 and, up to the same subsequence as above, we have, as ε → 0,

Mεuε → (u, 0) in L2(Q)3-weak, Mεϕε → ϕ0 in L2(Q) -strong,
Mεμε → μ0 in L2(Q)-weak and Mε pε → p0 in L2(Q)-weak.

(1.8)

Moreover, it holds that u ∈ C([0, T ]; H), ϕ0 ∈ C([0, T ]; L2(�)) ∩ L2(0, T ; H1(�)),
p0 ∈ L2(0, T ; H1(�)∩ L2

0(�)) and the quadruple (u, ϕ0, μ0, p0) is a weak solution
of the effective 2D problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = Gu0 + G ∗ (h1 + μ0∇xϕ0 − ∇x p0) in Q,

divx u = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ0

∂t
+ u · ∇xϕ0 − �xμ0 = 0 in Q,

μ0 = âϕ0 − Ĵ ∗ ϕ0 + F ′(ϕ0) in Q,

∂μ0

∂n
= 0 on (0, T ) × ∂�,

ϕ0(0) = ϕ0 in �,

(1.9)

where ∗ stands for the convolution operator with respect to time in (1.9)1 and with
respect to space in (1.9)4, and G = (Gi j )1≤i, j≤2 is a symmetric positive definite 2×2

matrix defined by its entries Gi j (t, x) = 1
2

∫ 1
−1 M(ωi (x, t, ·, ζ ))e j dζ for (t, x) ∈ Q.

Here,ω j = (ω
j
i )1≤i≤3 is such that, for any fixed x ∈ �,ω j (x, ·) is the unique solution

in C([0, T ];B2
A(R2; L2(I ))3) ∩ L2(0, T ;B1,2

A (R2; H1
0 (I ))3) of the auxiliary Stokes

system
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ω j (x, ·)
∂t

− divy(B(x, ·)∇ yω
j (x, ·)) + ∇ yπ

j = 0 in (0, T ) × R
2 × I ,

divyω j (x, ·) = 0 in (0, T ) × R
2 × I ,

ω j (x, 0, ·) = e j in R
2 × I and

∫ 1
−1 M(ω

j
3(x, t, ·, xd)) dxd = 0,

e j being the j th vector of the canonical basis in R
3. Furthermore, it holds that

ω j ∈ C(Q;B2
A(R2; L2(I ))3) ∩ L2(Q;B1,2

A (R2; H1
0 (I ))3), such that G ∈ C(Q)2×2.

Moreover, if ϕ0 ∈ L∞(�) and u0 ∈ L4(�)2, then the quadruple (u, ϕ0, μ0, p0) is the
unique solution of (1.9), so that the whole sequence (uε, ϕε, με, pε)ε>0 converges in
the sense of (1.8).

For the details of the notations and concepts used in the statement of Theorem 1.1,
we refer the reader to Sect. 3.

Equation (1.9)1 is a non-local (in time) Hele-Shaw equation. System (1.9) is there-
fore an interesting alternative to the non-local Hele-Shaw–Cahn–Hilliard system as it
requires the initial value for the velocity and it is also non-local in space. Furthermore,
the pressure, the velocity, the order parameter and the chemical potential rely on the
history of the system and there is no non-physical jump in velocity at t = 0. Thus, it
is a doubly non-local Hele-Shaw–Cahn–Hilliard (HSCH) system and it can be used
e.g. to model tumour growth as in Lowengrub et al. (2013), and Wise et al. (2008). To
the best of our knowledge, this is the first time that such a model is obtained.

The mathematical/numerical analysis of the local/non-local version of (1.9) when
the velocity in (1.9)1 has the form u = h1 + μ0∇xϕ0 − ∇x p0 has already been
worked out, see e.g. (Feng and Wise 2012; Jiang et al. 2015; Lowengrub et al. 2013;
Wang and Zhang 2013; Wise 2010; Wise et al. 2008; Wu and Wang 2012) when the
chemical potential μ0 is local, and Cavaterra et al. (2022); Della Porta and Grasselli
(2016); Della Porta et al. (2018) when μ0 is non-local. More precisely, the local
version has been studied numerically inWise (2010) and analytically in Feng andWise
(2012) where existence and uniqueness of weak solutions in two- or three-dimensional
bounded domains were addressed. In Wang and Zhang (2013); Wu and Wang (2012),
the well-posedness and long-time behaviour of strong solutions in the two- or three-
dimensional torus were considered. In Lowengrub et al. (2013), a systematic analysis
of the local version was performed in a 2D rectangle and in a 3D parallelepiped. In
Della Porta and Grasselli (2016), it is proved that weak solutions to the non-local
Cahn–Hilliard–Brinkman system converge to a weak solution of the non-local Cahn–
Hilliard–Hele-Shaw system.

In the light of the results mentioned above, none of them address the case where the
Hele-Shaw equation is non-local in time as it is the case in this work. Therefore, we
present a systematic analysis of (1.9) in Sect. 5 and prove its well-posedness therein. To
the best of our knowledge, this is the first time that this model is derived and analysed.

The second main result of the work corresponds to the 2D ε -model posed in
�ε = (a, b) × (−ε, ε), and it is stated as follows.

Theorem 1.2 Assume d = 2 and u0 = 0. For each ε > 0, let (uε, ϕε, με, pε) be
the solution to (1.2). Then, the sequence (uε, με, pε)ε>0 weakly �A-converges (as

123
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ε → 0) in L2(Qε)
2 × L2(Qε) × L2(Qε) towards (u0, μ0, p0) and the sequence

(ϕε)ε>0 strongly �A-converges in L2(Qε) towards ϕ0 with ϕ0 ∈ L∞(0, T ; H1(�)),
u0 ∈ L2(Q;B1,2

A (R; H1
0 (I ))2), μ0 ∈ L2(0, T ; H1(�)) and p0 ∈ L2(0, T ; L2

0(�)).
Moreover, setting

u(t, x1) = 1

2

∫ 1

−1
M(u0(t, x1, x2)) dx2,

one has u = 0, and the couple (ϕ0, μ0) is the unique solution to the 1D non-local
Cahn–Hilliard equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕ0

∂t
− ∂2μ0

∂x21
= 0 in (0, T ) × (a, b),

μ0 = âϕ0 − Ĵ ∗ ϕ0 + F ′(ϕ0) in (0, T ) × (a, b),

μ′
0(t, a) = μ′

0(t, b) = 0 in (0, T ),

ϕ0(0) = ϕ0 in (a, b).

(1.10)

Furthermore, the pressure p0 is the unique solution of the equation

∂ p0
∂x1

= h1 + μ0
∂ϕ0

∂x1
,

∫ b

a
p0 dx1 = 0. (1.11)

Very fewworks deal with the homogenization of the Cahn–Hilliard–Navier–Stokes
system.We refer e.g. to Banas andMahato (2017); Bunoiu et al. (2020); Schmuck et al.
(2013). InBunoiu et al. (2020), the authors dealwith theCahn–Hilliard–Navier–Stokes
system in fixed domains, while inBanas andMahato (2017), Schmuck et al. (2013), the
authors deal with the Stokes–Cahn–Hilliard equations in periodically porous domains.
It is worth pointing out the following two facts: a) the kernel J in (1.2) is assumed
to be locally uniformly integrable. This widens the scope of the applications of our
results although (as we will see in the next section) this does not change considerably
the proof of the existence result. However, this choice affects the uniform estimates;
b) the domain is thin and of a general deterministic type, so that the expected upscaled
equation in (1.2)1 will be of Darcy type with memory effects. We also note the recent
works on upscaling of the Cahn–Hilliard equation coupled with the equations of linear
elasticity, the so-called Cahn–Larché system (Reischmann and Peter 2020, 2022).

1.3 Outline of the Paper

The well-posedness of (1.2) as well as the proof of the uniform estimates for the
sequence of its solutions is considered in Sect. 2. We gather in Sect. 3 useful tools
about the � -convergence method in thin heterogeneous media. Section4 deals with
the limit passage in (1.2) by relying on the results of the previous two sections. In
Sect. 5, we prove Theorem 1.1 after a careful analysis of the solutions of the upscaled
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limit problem. Section6 is devoted to the proof of Theorem 1.2. Finally, in Sect. 7, we
illustrate our results for specific types of heterogeneities.

Throughout the work,C will denote a generic constant independent of ε > 0 which
may change from line to line.

2 Existence Result and Uniform Estimates

2.1 Existence Result

We begin with the functional-analytic setup. For a Banach space X , we denote by 〈·, ·〉
the duality pairing between X and its topological dual X ′. We set X = X × · · · × X ,
d times, and we equip X with the product topology. In case X is a real Hilbert space
with inner product (·, ·)X , we shall denote by ‖·‖X the induced norm. We therefore
introduce the classical Hilbert spaces for the Navier–Stokes systems with no-slip
boundary condition (see e.g. Temam 2001) Hε and Vε defined as the closure of {u ∈
C

∞
0 (�ε) : div u = 0 in �ε} in L

2(�ε) and in H
1
0(�ε), respectively. We see that

Vε = {u ∈ H
1
0(�ε) : div u = 0 in �ε} and Hε = {u ∈ L

2(�ε) : divu = 0 in
�ε and u · ν = 0 on ∂�ε}, where ν is the outward unit normal to ∂�ε. The space
Hε is endowed with the scalar product denoted by (·, ·) whose the associated norm is
denoted by ‖·‖Hε

. The space Vε is equipped with the scalar product

((u, v)) = (∇u,∇v) (u, v ∈ Vε)

whose associated norm is the norm of the gradient and is denoted by ‖·‖. Owing to
the Poincaré inequality, the norm in Vε is equivalent to the H

1(�ε)-norm. We also
define the space L2

0(�ε) = {v ∈ L2(�ε) : ∫

�ε
v dx = 0}. We denote by V (resp. H)

the space defined as Vε (resp. Hε) when replacing �ε by �.
The Wiener amalgam (L p, �∞)(Rd) (1 ≤ p < ∞)

We recall that theWiener amalgam (L p, �∞)(Rd) (Wiener 1932) (see also Bertran-
dias et al. 1978; Fournier and Stewart 1985) is defined as the subspace of L p

loc(R
d)

consisting of functions u such that

sup
x∈Rd

∫

BR(x)
|u|p dy < ∞ for all 0 < R < ∞,

where BR(x) stands for the open ball centred at x and of radius R. Functions in
(L p, �∞)(Rd) are called locally uniformly L p-integrable, and we therefore use the
notation L p

uloc(R
d) = (L p, �∞)(Rd). We endow L p

uloc(R
d) with the norm

‖u‖p,R = sup
x∈Rd

(∫

BR(x)
|u|p dy

) 1
p

, (2.1)

which makes it a Banach space. It is important to note that all the ‖·‖p,R are equivalent
to ‖·‖p,1, so that the former is independent of the choice of R, and is henceforth denoted
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by ‖·‖L p
uloc(R

d ). The properties of L
p
uloc(R

d) are well-known, see e.g. (Bertrandias et al.
1978, Sections 6–7). Nevertheless, let us recall one of its important properties, which
will be used in what follows (see Bertrandias et al. 1978, Sections 6-7 for the proof):

(P) There exists a positive constant k0 = k0(d, p) such that for any f ∈ L1
uloc(R

d)

and g ∈ L p(Rd) (1 ≤ p < ∞), one has f ∗ g ∈ L p
uloc(R

d) and

‖ f ∗ g‖L p
uloc(R

d ) ≤ k0 ‖ f ‖L1
uloc(R

d ) ‖g‖L p(Rd ) . (2.2)

We define the Sobolev-type space W 1,p
uloc(R

d) accordingly:

W 1,p
uloc(R

d) = {u ∈ L p
uloc(R

d) : ∇u ∈ L p
uloc(R

d)d},

a Banach space with norm ‖u‖
W 1,p

uloc(R
d )

=
[
‖u‖p

L p
uloc(R

d )
+ ‖∇u‖p

L p
uloc(R

d )

]1/p
.

We proceed with the notion of weak solutions considered in this work.

Definition 2.1 Let uε
0 ∈ Hε and ϕε

0 ∈ L2(�ε) with F(ϕε
0) ∈ L1(�ε). A function

(uε, ϕε) is a weak solution to (1.2) if

• (uε, ϕε) and με satisfy

(i) uε ∈ C([0, T ]; Hε) ∩ L2(0, T ; Vε) with ∂uε/∂t ∈ L2(0, T ; V
′
ε),

(ii) ϕε ∈ C([0, T ]; L2(�ε))∩L2(0, T ; H1(�ε))with ∂ϕε/∂t ∈ L2(0, T ; H1(�ε)
′);

• Settingρε(x, ϕε) = ε−1aε(x)ϕε+F ′(ϕε), one has, for everyψ ∈ H1(�ε), v ∈ Vε

and for a.e. t ∈ (0, T ) that

〈
∂uε

∂t
, v

〉

+ ε2
(
Bε∇uε,∇v

) = −
∫

�ε

(v · ∇με)ϕε dx +
∫

�ε

h(t)v dx,

〈
∂ϕε

∂t
, ψ

〉

+ (∇ρε,∇ψ) =
∫

�ε

(uε · ∇ψ)ϕε dx +
∫

�ε

ε−1(∇ J ∗ ϕε) · ∇ψdx;

• uε(0) = uε
0 and ϕε(0) = ϕε

0.

The following result provides us with the existence and uniqueness of the solution
of (1.2) in the sense of Definition 2.1.

Theorem 2.1 Assume that (H1)–(H4) are satisfied. For each ε > 0, there exists a
unique solution (uε, ϕε) to (1.2) in the sense of Definition 2.1. Moreover, a unique
pε ∈ L2(0, T ; L2

0(�ε)) is associated to (uε, ϕε) such that the first equation in (1.2)
is satisfied in the distributional sense.

Proof Let ε > 0 be fixed. For the existence of (uε, ϕε), we observe that wemay follow
exactly the lines of the proof of Colli et al. (2012, Theorem 1). Let us however explain
some steps where we need further developments. Looking carefully at the proof of
Colli et al. (2012, Theorem 1), we notice two important facts:
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(1) In our model equation (1.2), we have replaced the function ν(ϕε) (in Colli et al.
(2012)) by the matrix ε2Bε having coefficients depending only on x . However,
the uniform ellipticity of the operator − div(ε2Bε∇) provides us with suitable
properties yielding the existence of the approximate solutions as in Colli et al.
(2012).

(2) As we assumed low Reynolds number so that the convective term (uε · ∇)uε in
Colli et al. (2012) disappeared in our system (1.2), the estimates of the velocity in
our case do not depend on the dimension d as in Colli et al. (2012). This being so,
checking the validity of the estimates for the approximate solutions in Colli et al.
(2012),wenotice that estimates (4.9) and (4.10) inColli et al. (2012) still hold under
the general assumption J ∈ W 1,1

uloc(R
d) (instead of J ∈ W 1,1(Rd) considered in

Colli et al. (2012)). Indeed, we use the Young inequality for functions in L p
uloc(R

d)

which reads as (see (2.2)): there is k0 = k0(d) > 0 such that

‖ f ∗ g‖L2
uloc(R

d ) ≤ k0 ‖ f ‖L1
uloc(R

d ) ‖g‖L2(�ε)

for all f ∈ L1
uloc(R

d) and all g ∈ L2(�ε), where g is extended by 0 outside of �ε

and where the norm ‖·‖L p
uloc(R

d ) is defined by

‖ f ‖L p
uloc(R

d ) = sup
x∈Rd

(∫

BR0 (x)
| f |p dy

) 1
p

(1 ≤ p < ∞),

BR0(x) being the open ball centred at x and of radius R0 > 0. For convenience,
we choose R0 such that �1 ⊂ BR0 = BR0(0). It readily follows that

‖J ∗ ϕε‖L2(�ε)
≤ k0 ‖J‖L1

uloc(R
d ) ‖ϕε‖L2(�ε)

(2.3)

‖∇ J ∗ ϕε‖L2(�ε)
≤ k0 ‖J‖W 1,1

uloc(R
d )

‖ϕε‖L2(�ε)
. (2.4)

We recall that k0 is the same as in assumption (H2), where we choose c1 > 0
such that c1 > k0

2 ‖J‖L1
uloc(R

d ). We infer from (2.3) that we get the inequality (4.9)
in Colli et al. (2012) with the constant α0 = 2c1 − k0 ‖J‖L1

uloc(R
d ) > 0, and we

obtain inequality (4.10) in Colli et al. (2012) with ‖J‖W 1,1(Rd ) being replaced by
‖J‖W 1,1

uloc(R
d )
(see (2.4) above). The rest of the proof is therefore copied from that

of Colli et al. (2012, Theorem 1).

As for the uniqueness of the solution, Frigeri et al. (2016, Theorem 2) provides us
with the uniqueness in the case when d = 2. For the case d = 3, if we come back to
identity (3.4) in the proof of Frigeri et al. (2016, Theorem 2), we notice that it does not
involve in our situation, the terms arising from the convective term. Now, sticking on
the corresponding equality (3.4) for our case, and using the estimates corresponding
to d = 3 in the proof of Della Porta and Grasselli (2016, Proposition 2.2), we are led
to an estimate similar to estimate (3.8) in the proof of Frigeri et al. (2016, Theorem
2). This also ensures uniqueness in the case d = 3. Finally, the existence of a unique
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pressure pε ∈ L2(0, T ; L2
0(�ε)) follows the same lines of reasoning as in the proof

of Bunoiu et al. (2020, Theorem 1). ��

2.2 Uniform Estimates

We are now concerned with some uniform estimates which will be useful in what
follows. Before proceeding further, let us first notice that

aε(x) =
∫

�1

Jε(x − z) dz with Jε(x) = J (x, εxd) for x ∈ �1.

We also have

ε−1(J ∗ ϕε)(t, x) =
∫

�1

Jε(x − ξ)ϕ̃ε(t, ξ) dξ,

where ϕ̃ε(t, x) = ϕε(t, x, εxd) for (t, x) ∈ Q1. We therefore use the dilatation in
the vertical variable xd : yd = xd/ε, and we define the new functions ũε, μ̃ε and p̃ε

accordingly (see the definition of ϕ̃ε). In particular, one has B̃ε(x) = Bε(x, εxε) =
B(x, x/ε, xd) for x ∈ �1.

Next, we set

∇ε =
(

∇x , ε
−1 ∂

∂xd

)

, divε = divx +ε−1 ∂

∂xd
≡ ∇ε · and �ε = �x + ε−2 ∂2

∂x2d
,

and we denote by H1
ε (�1) the space H1(�1) endowed with the H1-norm, where we

have replaced the usual gradient operator ∇ by ∇ε:

‖u‖H1
ε (�1)

=
(
‖u‖2L2(�1)

+ ‖∇εu‖2L2(�1)

) 1
2
for u ∈ H1(�1).

With all this in mind, system (1.2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ũε

∂t
− divε(ε

2 B̃ε∇ε ũε) + ∇ε p̃ε − μ̃ε∇εϕ̃ε = h in Q1,

divε ũε = 0 in Q1,

∂ϕ̃ε

∂t
+ ũε · ∇εϕ̃ε − �εμ̃ε = 0 in Q1,

μ̃ε = aεϕ̃ε − Jε ∗ ϕ̃ε + F ′(ϕ̃ε) in Q1,

∂μ̃ε

∂ν
≡ ∇εμ̃ε · ν = 0 and ũε = 0 on (0, T ) × ∂�1,

ũε(0, x) = ũε
0(x) and ϕ̃ε(0, x) = ϕ̃ε

0(x) in �1.

(2.5)
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Let us note that, from the equality
∥
∥φ̃

∥
∥
L p(�1)

= ε
− 1

p ‖φ‖L p(�ε)
(1 ≤ p < ∞), we

infer from (1.3) that

∥
∥ũε

0

∥
∥
L2(�1)d

+ ∥
∥ϕ̃ε

0

∥
∥
L2(�1)

≤ c7,
∫

�1

F(ϕ̃ε
0) dx ≤ c8. (2.6)

We shall need the following result whose proof can be found in Marusić and
Marusić-Paloka (2000, Lemmas 8, 10 and Remark 5).

Lemma 2.1 It holds that

‖u‖L2(�ε)
≤ Cε ‖∇u‖L2(�ε)d

(2.7)

and
‖u‖L4(�ε)

≤ Cε
1
2 ‖∇u‖L2(�ε)d

(2.8)

for any u ∈ H1
0 (�ε), where C > 0 is independent of ε.

Remark 2.1 With the notation above, (2.7) and (2.8) are equivalent to

‖ũ‖L2(�1)
≤ Cε ‖∇εũ‖L2(�1)d

(2.9)

and
‖ũ‖L4(�1)

≤ Cε
1
2 ‖∇εũ‖L2(�1)d

(2.10)

for any u ∈ H1
0 (�ε), where C > 0 is independent of ε.

The following result is the starting point of the uniform estimates obtained in this
subsection.

Lemma 2.2 Suppose that (uε, ϕε, με) is a solution of (1.2). Then, the following dissi-
pative energy equality holds:

d

dt
E (̃uε, ϕ̃ε) + ε2

(
B̃ε∇ ũε,∇ ũε

) + ‖∇εμ̃ε‖2L2 = (h, ũε) (2.11)

where

E (̃uε(t), ϕ̃ε(t)) = 1

2
‖ũε‖2L2 + 1

4

∫∫

�1×�1

Jε(x − ξ)(ϕ̃ε(t, x) − ϕ̃ε(t, ξ))2 dx dξ

+
∫

�1

F(ϕ̃ε(t)) dx .

Moreover, the following energy inequality holds for almost all t > 0:

E (̃uε(t), ϕ̃ε(t)) +
∫ t

0

(
αε2 ‖∇ε ũε(s)‖2L2 + ‖∇εμ̃ε(s)‖2L2

)
ds

≤ E (̃uε
0, ϕ̃

ε
0) +

∫ t

0
(h(s), ũε(s)) ds, (2.12)
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where ũε(t) = ũε(t, ·) and h(t) = h(t, ·).
Proof By using ũε as a test function in the first equation in (2.5), we obtain

1

2

d

dt
‖ũε‖2L2 + ε2

(
B̃ε∇ε ũε,∇ε ũε

) +
∫

�1

(̃uε · ∇εμ̃ε)ϕ̃ε dx = (h, ũε) . (2.13)

Setting ρε(·, ϕ̃ε) = aεϕ̃ε + F ′(ϕ̃ε), the third equation of (2.5) becomes

∂ϕ̃ε

∂t
+ ũε · ∇εϕ̃ε = �ερε(·, ϕ̃ε) − �ε(Jε ∗ ϕ̃ε), (2.14)

and, using μ̃ε as test function in (2.14 ), we obtain

〈
∂ϕ̃ε

∂t
, μ̃ε

〉

+(∇ερε(·, ϕ̃ε),∇εμ̃ε) =
∫

�1

(̃uε ·∇εμ̃ε)ϕ̃ε dx+
∫

�1

(∇ε Jε∗ϕ̃ε)·∇εμ̃ε dx,

(2.15)
where we have used the equality ∂μ̃ε

∂ν
= 0 on ∂�1. On the other hand, using the

expression of μ̃ε, we have

〈
∂ϕ̃ε

∂t
, μ̃ε

〉

=
〈
∂ϕ̃ε

∂t
, aεϕ̃ε − Jε ∗ ϕ̃ε + F ′(ϕ̃ε)

〉

= d

dt

(
1

2

∥
∥√

aεϕ̃ε

∥
∥2
L2 +

∫

�1

F(ϕ̃ε) dx − 1

2
(ϕ̃ε, Jε ∗ ϕ̃ε)

)

= d

dt

(
1

4

∫

�1

∫

�1

Jε(x − ξ)(ϕ̃ε(x) − ϕ̃ε(ξ))2 dx dξ +
∫

�1

F(ϕ̃ε) dx

)

,

(2.16)

where ϕ̃ε(ζ ) = ϕ̃ε(t, ζ ) for ζ = x, ξ . Since ρε(·, ϕ̃ε) = μ̃ε + Jε ∗ ϕ̃ε, we get

(∇ερε(·, ϕ̃ε),∇εμ̃ε) = (∇εμ̃ε + ∇ε(Jε ∗ ϕ̃ε),∇εμ̃ε)

= (∇εμ̃ε,∇εμ̃ε) + (∇ε(Jε ∗ ϕ̃ε),∇εμ̃ε)

= ‖∇εμ̃ε‖2L2 + (∇ε(Jε ∗ ϕ̃ε),∇εμ̃ε). (2.17)

Thus, substituting (2.16) and (2.17) in (2.15),

d

dt

(
1

4

∫

�1

∫

�1
Jε(x − ξ)(ϕ̃ε(x) − ϕ̃ε(ξ))2 dx dξ + ∫

�1
F(ϕ̃ε) dx

)

+ ‖∇εμ̃ε‖2L2

+(∇ε(Jε ∗ ϕ̃ε),∇εμ̃ε) = ∫

�1
(̃uε · ∇εμ̃ε)ϕ̃ε dx + ∫

�1
(∇ε Jε ∗ ϕ̃ε) · ∇εμ̃ε dx .

(2.18)
Summing up (2.13) and (2.18) yields

d

dt
E (̃uε, ϕ̃ε) + ε2

(
B̃ε∇ε ũε,∇ε ũε

) + ‖∇εμ̃ε‖2L2 = (h, ũε) , (2.19)
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where we have set

E (̃uε, ϕ̃ε) = 1

2
‖ũε‖2L2 + 1

4

∫

�1

∫

�1

Jε(x − ξ)(ϕ̃ε(t, x) − ϕ̃ε(t, ξ))2 dx dξ

+
∫

�1

F(ϕ̃ε(t)) dx .

Next, appealing to (H4) and integrating (2.19) over (0, t), we obtain the following
energy inequality

E (̃uε(t), ϕ̃ε(t)) +
∫ t

0

(
αε2 ‖∇ε ũε(s)‖2L2 + ‖∇εμ̃ε(s)‖2L2

)
ds

≤ E (̃uε
0, ϕ̃

ε
ε ) +

∫ t

0
(h(s), ũε(s)) ds (2.20)

for all t ∈ [0, T ]. ��

Proposition 2.1 Under assumptions (H1)–(H4), theweak solution (uε, ϕε, με) of (1.2)
in the sense of Definition 2.1 satisfies the following estimates

‖ũε‖L∞(0,T ;L2(�1)d ) ≤ C, (2.21)

ε ‖∇ε ũε‖L2(Q1)d×d ≤ C, (2.22)

‖ϕ̃ε‖L2(0,T ;H1(�1))
≤ C, (2.23)

‖μ̃ε‖L2(0,T ;H1(�1))
≤ C, (2.24)

and ∥
∥F ′(ϕ̃ε)

∥
∥
L∞(0,T ;L1(�1))

≤ C, (2.25)

where the positive constant C is independent of ε.

Proof First, since h(t, x) = (h1(t, x), 0), we have

|(h(t), ũε(t))| =
∣
∣
∣
∣

∫

�1

h(t) · ũε(t) dx

∣
∣
∣
∣ ≤ C ‖h1(t)‖L2(�)d−1 ‖ũε(t)‖L2(�1)d

≤ Cε ‖h1(t)‖L2(�)d−1 ‖∇ε ũε(t)‖L2(�1)d×d (see ( 2.9))

≤ C ‖h1(t)‖2L2(�)d−1 + αε2

2
‖∇ε ũε(t)‖2L2(�1)d×d .
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Thus, going back to (2.12) and using there the series of inequalities above, we get

1

2
‖ũε(t)‖2L2 + 1

4

∫∫

�1×�1

Jε(x − ξ)(ϕ̃ε(t, x) − ϕ̃ε(t, ξ))2 dx dξ +
∫

�1

F(ϕ̃ε(t)) dx

+
∫ t

0

(
αε2

2
‖∇ε ũε(s)‖2L2 + ‖∇εμ̃ε(s)‖2L2

)

ds

≤ 1

2

∥
∥ũε

0

∥
∥2
L2 + 1

4

∫∫

�1×�1

Jε(x − ξ)(ϕ̃ε
0(x) − ϕ̃ε

0(ξ))2 dx dξ +
∫

�1

F(ϕ̃ε
0) dx + C,

(2.26)

where the constant C in (2.26) depends on
∫ T
0 ‖h1(t)‖2L2(�)d−1 dt .

Now, using (H1), it holds that

1

2

∫∫

�1×�1

Jε(x − ξ)(ϕ̃ε(t, x) − ϕ̃ε(t, ξ))2 dx dξ + 2
∫

�1

F(ϕ̃ε(t)) dx

= ∥
∥√

aεϕ̃ε

∥
∥2
L2 + 2

∫

�1

F(ϕ̃ε(t)) dx − (ϕ̃ε, Jε ∗ ϕ̃ε).

Next, in view of (ii) in (H2), which yields F(ϕ̃ε) ≥ c1 |ϕ̃ε|2 − c2, we get

2
∫

�1

F(ϕ̃ε) dx ≥ 2c1

∫

�1

|ϕ̃ε|2 dx − 2c2

∫

�1

dx ≥ 2c1

∫

�1

|ϕ̃ε|2 dx − 2c2 |�1| ,

where |�1| stands for the Lebesgue measure of �1 in R
d . The Young inequality for

convolution in L p
uloc gives

(ϕ̃ε, Jε ∗ ϕ̃ε) ≤ ‖ϕ̃ε‖L2 ‖Jε ∗ ϕ̃ε‖L2 ≤ k0 ‖ϕ̃ε‖2L2(�1)
‖J‖L1

uloc(R
d ) ,

so that

∥
∥√

aεϕ̃ε

∥
∥2
L2 + 2

∫

�1

F(ϕ̃ε(t)) dx − (ϕ̃ε, Jε ∗ ϕ̃ε)

≥
∫

�1

(
aε |ϕ̃ε|2 + 2c1 |ϕ̃ε|2 − k0 ‖J‖L1

uloc(R
d ) |ϕ̃ε|2

)
dx − 2c2 |�1|

=
∫

�

(aε + 2c1 − k0 ‖J‖L1
uloc(R

d )) |ϕ̃ε|2 dx − 2c2 |�1|
≥ α1 ‖ϕ̃ε‖2L2 − 2c2 |�1| ,

where α1 = 2c1 − k0 ‖J‖L1
uloc(R

d ) > 0, the last inequality of the series of inequalities
above stemming from the inequality aε ≥ 0. Inequality (2.26) therefore gives
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‖ũε(t)‖2L2 + α1 ‖ϕ̃ε(t)‖2L2 +
∫ t

0

(
αε2 ‖∇ε ũε(s)‖2L2 + 2 ‖∇εμ̃ε(s)‖2L2

)
ds

≤ ∥
∥ũε

0

∥
∥2
L2 + 1

2

∫∫

�1×�1

Jε(x − ξ)(ϕ̃ε
0(x) − ϕ̃ε

0(ξ))2 dx dξ

+ 2
∫

�1

F(ϕ̃ε
0) dx + C + 2c2 |�1| . (2.27)

Next, in view of the properties of aε and Jε, one has

1

2

∫∫

�1×�1

Jε(x − ξ)(ϕ̃ε
0(x) − ϕ̃ε

0(ξ))2 dx dξ =
∫

�1

(
aε

∣
∣ϕ̃ε

0

∣
∣2 − ϕ̃ε

0(Jε ∗ ϕ̃ε
0)

)
dx

≤ β−1
∥
∥ϕ̃ε

0

∥
∥2
L2 + k0 ‖J‖L1

uloc(R
d )

∥
∥ϕ̃ε

0

∥
∥2
L2

≤ C
∥
∥ϕ̃ε

0

∥
∥2
L2 ,

in such a way that, appealing to (1.3) (in (H3)), we get at once from (2.27) inequalities
(2.21), (2.22) as well as the following ones

‖∇εμ̃ε‖L2(Q1)
+ ‖ϕ̃ε‖L∞(0,T ;L2(�1))

≤ C, (2.28)

‖F(ϕ̃ε)‖L∞(0,T ;L1(�1))
≤ C . (2.29)

From the obvious inequality c3 |F(s)| + c4 ≤ c3(|F(s)| + c4c
−1
3 )r (recall that

r > 1), we infer from (iii) in (H2) that
∣
∣F ′(s)

∣
∣ ≤ C |F(s)|+C for every s ∈ R, so that

we get (2.25) as a consequence of (2.29). Next, we deduce from (2.28) an estimate for
ϕ̃ε ∈ L2(0, T ; H1(�1)). Indeed, we have

(μ̃ε,−�εϕ̃ε) = (∇εμ̃ε,∇εϕ̃ε)

= (∇εϕ̃ε, aε∇εϕ̃ε + ϕ̃ε∇εaε + F ′′(ϕ̃ε)∇εϕ̃ε − ∇ε Jε ∗ ϕ̃ε)

= (∇εϕ̃ε, (aε + F ′′(ϕ̃ε))∇εϕ̃ε) − (∇εϕ̃ε,∇ε Jε ∗ ϕ̃ε − ϕ̃ε∇εaε)

=: I1 − I2,

and

I2 ≤ (1 + k0) ‖∇ J‖L1
uloc(R

d ) ‖ϕ̃ε‖L2 ‖∇εϕ̃ε‖L2 and I1 ≥ c0 ‖∇εϕ̃ε‖2L2 ,

where we have used part (i) [in (H2)], Young inequality (2.4) and the fact that
∇ε Jε(x) = (∇ J )(x, εxd). It follows that (setting k1 = 1 + k0)

(∇εμ̃ε,∇εϕ̃ε) ≥ c0 ‖∇εϕ̃ε‖2L2 − k1 ‖∇ J‖L1
uloc(R

d ) ‖ϕ̃ε‖L2 ‖∇εϕ̃ε‖L2

≥ c0
2

‖∇εϕ̃ε‖2L2 − k21
2c0

‖∇ J‖2
L1
uloc(R

d )
‖ϕ̃ε‖2L2 .

Using

(∇εμ̃ε,∇εϕ̃ε) ≤ c0
4

‖∇εϕ̃ε‖2L2 + 1

c0
‖∇εμ̃ε‖2L2 ,

123



Journal of Nonlinear Science            (2024) 34:43 Page 19 of 56    43 

we get

‖∇εϕ̃ε‖2L2 ≥ c0
4

‖∇εϕ̃ε‖2L2 − k21
2

‖∇ J‖2
L1
uloc(R

d )
‖ϕ̃ε‖2L2 .

It follows from (2.28) that

‖∇εϕ̃ε‖2L2 ≤ C(‖∇εμ̃ε‖2L2 + ‖ϕ̃ε‖2L2) ≤ C . (2.30)

Putting together (2.28) and (2.30) yields

‖ϕ̃ε‖L2(0,T ;H1(�1))
≤ C . (2.31)

We are now concerned with the estimate of μ̃ε in L2(0, T ; H1(�1)). To this end,
we have

∣
∣
∣
∣

∫

�1

μ̃ε dx

∣
∣
∣
∣ = |(μ̃ε, 1)| = ∣

∣(aε(x)ϕ̃ε − Jε ∗ ϕ̃ε + F ′(ϕ̃ε), 1)
∣
∣

≤
∫

�1

∣
∣F ′(ϕ̃ε)

∣
∣ dx + C ≤ C (see (2.25)). (2.32)

Therefore, applying the Poincaré–Wirtinger’s inequality, we obtain

∫

�1

∣
∣
∣
∣μ̃ε − −

∫

�1

μ̃ε dx

∣
∣
∣
∣

2

dx ≤ C
∫

�1

|∇εμ̃ε|2 dx

where −
∫

�1
= |�1|−1 ∫

�1
and C is independent of ε. It follows that

∫

�1

|μ̃ε|2 dx ≤ C

[∫

�1

|∇εμ̃ε|2 dx +
∣
∣
∣
∣

∫

�1

μ̃ε dx

∣
∣
∣
∣

2
]

,

from which (using (2.32) and (2.28)) we get

‖μ̃ε‖L2(Q1)
≤ C . (2.33)

Inequalities (2.33) and (2.28) therefore yield

‖μ̃ε‖L2(0,T ;H1(�1))
≤ C, (2.34)

which completes the proof of the proposition. ��

As a consequence of the previous proposition, we obtain the following a priori
estimates.
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Corollary 2.1 Under assumptions (H1)–(H3), the weak solution (uε, ϕε, με) of (1.2)
in the sense of Definition 2.1 satisfies the following estimates

‖uε‖L∞(0,T ;L2(�ε)d ) ≤ Cε
1
2 , (2.35)

ε ‖∇uε‖L2(Qε)d×d ≤ Cε
1
2 , (2.36)

‖ϕε‖L2(0,T ;H1(�ε))
≤ Cε

1
2 , (2.37)

‖με‖L2(0,T ;H1(�ε))
≤ Cε

1
2 , (2.38)

∥
∥
∥
∥
∂uε

∂t

∥
∥
∥
∥
L2(0,T ;V′

ε)

≤ Cε
3
2 , (2.39)

and ∥
∥F ′(ϕε)

∥
∥
L∞(0,T ;L1(�ε))

≤ Cε, (2.40)

where the positive constant C is independent of ε.

Proof Estimates (2.35), (2.36), (2.37), (2.38) and (2.40) follow promptly from the

obvious equalities
∥
∥φ̃

∥
∥
L2(�1)

= ε− 1
2 ‖φ‖L2(�ε)

,
∥
∥∇εφ̃

∥
∥
L2(�1)

= ε− 1
2 ‖∇φ‖L2(�ε)

and
∥
∥φ̃

∥
∥
L1(�1)

= ε−1 ‖φ‖L1(�ε)
. It remains to check (2.39). To that end, let v ∈ Vε,

then
∣
∣
∣
∣

〈
∂uε

∂t
(t), v

〉∣
∣
∣
∣ ≤ α−1ε2 ‖∇uε(t)‖L2 ‖∇v‖L2 + ‖με(t)‖L4 ‖∇ϕε(t)‖L2 ‖v‖L4

+ ‖h(t)‖L2 ‖v‖L2

≤ α−1ε2 ‖∇uε(t)‖L2 ‖∇v‖L2 + Cε
1
2 ‖με(t)‖H1 ‖∇ϕε(t)‖L2 ‖∇v‖L2

+ Cε
3
2 ‖∇v‖L2 ,

where above we have used the continuous embedding H1(�ε) ↪→ L4(�ε). Indeed for
d = 3, the continuous embedding H1(�ε) ↪→ L4(�ε) follows from both the Sobolev
embedding H1(�ε) ↪→ L2∗

(�ε) (where 2∗ = 2d/(d − 2) = 6) and the embedding
L6(�ε) ↪→ L4(�ε) (recall that �ε ⊂ �1 is bounded) with the embedding constants
depending only on �1; the case d = 2 is a classical result, the embedding constant
being also independent of ε. Thus,

sup
v∈Vε,‖v‖Vε ≤1

∣
∣
∣
∣

〈
∂uε

∂t
(t), v

〉∣
∣
∣
∣ ≤ α−1ε2 ‖∇uε(t)‖L2 + Cε ‖με(t)‖H1 + Cε

3
2 .

We integrate the square of sup||v||Vε ≤1

∣
∣
∣

〈
∂uε

∂t (t), v
〉∣
∣
∣ over (0, T ) and deduce from (2.22),

( 2.31) and (2.34) the uniform bound

∥
∥
∥
∥
∂uε

∂t

∥
∥
∥
∥
L2(0,T ;V′

ε)

≤ Cε
3
2 , (2.41)
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which completes the proof. ��
We need the following lemma for estimating the pressure term in (1.2)1 next.

Lemma 2.3 (Marusić and Marusić-Paloka 2000, Lemma 20) Let f ∈ L2
0(�ε). Then,

a function φ ∈ H1
0 (�ε)

d can be found such that div φ = f in �ε and

‖φ‖L2(�ε)d
≤ C ‖ f ‖L2(�ε)

and ‖∇φ‖L2(�ε)d
≤ C

ε
‖ f ‖L2(�ε)

,

where C > 0 is independent of ε.

Proposition 2.2 Let pε ∈ L2(0, T ; L2
0(�ε)) satisfying (1.2)1. It holds that

‖pε‖L2(Qε)
≤ Cε

1
2 , (2.42)

for a positive constant C independent of ε.

Proof Based onLemma2.3,we considerφε ∈ L2(0, T ; H1
0 (�ε)

d) satisfying div φε =
pε in Qε and such that

‖φ‖L2(Qε)d
≤ C ‖pε‖L2(Qε)

and ‖∇φε‖L2(Qε)d
≤ C

ε
‖pε‖L2(Qε)

. (2.43)

Multiplying (1.2)1 by φε and integrating the resulting equality by parts over �ε, we
get

‖pε‖2L2(Qε)
=

∣
∣
∣
∣

∫

Qε

pε div φε dx dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

〈
∂uε

∂t
, φε

〉∣
∣
∣
∣ + α−1ε2

∣
∣
∣
∣

∫

Qε

∇uε · ∇φε dx dt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

Qε

με∇ϕε · φε dx dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Qε

h · φε dx dt

∣
∣
∣
∣

≤
∥
∥
∥
∥
∂uε

∂t

∥
∥
∥
∥
L2(0,T ;V′

ε)

‖φε‖L2(0,T ;Vε)
+ α−1ε2 ‖∇uε‖L2(Qε)

‖∇φε‖L2(Qε)

+ ‖με‖L4(Qε)
‖∇ϕε‖L2(Qε)

‖φε‖L4(Qε)
+ ‖h‖L2(Qε)

‖φε‖L2(Qε)
.

Taking into account (2.39), (2.43) and noticing that ‖φε‖L2(0,T ;Vε)
= ‖∇φε‖L2(Qε)

,
we obtain ∥

∥
∥
∥
∂uε

∂t

∥
∥
∥
∥
L2(0,T ;V′

ε)

‖φε‖L2(0,T ;Vε)
≤ Cε

1
2 ‖pε‖L2(Qε)

.

Next, using (2.36) and (2.43),

α−1ε2 ‖∇uε‖L2(Qε)
‖∇φε‖L2(Qε)

≤ Cε
1
2 ‖pε‖L2(Qε)

.
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Also, from the definition of h and (2.43), we deduce that

‖h‖L2(Qε)
‖φε‖L2(Qε)

≤ Cε
1
2 ‖pε‖L2(Qε)

.

Making use of (2.8) together with the continuous embedding H1(�ε) ↪→ L4(�ε) and
inequalities (2.37), (2.38) and (2.43), we get

‖με‖L4(Qε)
‖∇ϕε‖L2(Qε)

‖φε‖L4(Qε)
≤ Cε

1
2 ‖pε‖L2(Qε)

.

This yields

‖pε‖L2(Qε)
≤ Cε

1
2 ,

thereby concluding the proof. ��

Now, we define the following partial mean integral of ϕε:

Mεϕε(t, x) = −
∫

ε I
ϕε(t, x, ζ ) dζ, (t, x) ∈ Q. (2.44)

Using the Lebesgue theorem about differentiation under the integral sign, we have

Mε∇xu = ∇x Mεu for all u ∈ H1(�ε). (2.45)

This immediately gives Mεϕε ∈ L2(0, T ; H1(�)), and we can prove the following
estimate.

Proposition 2.3 Let Mεϕε be defined by (2.44). Then, Mεϕε ∈ L2(0, T ; H1(�)) with
∂Mεϕε/∂t ∈ L2(0, T ; H1(�)′), and we further have

sup
ε>0

[

‖Mεϕε‖L2(0,T ;H1(�)) +
∥
∥
∥
∥
∂Mεϕε

∂t

∥
∥
∥
∥
L2(0,T ;H1(�)′)

]

≤ C, (2.46)

where C > 0 is independent of ε.

Proof We recall that (1.2)3 (with the help of (1.2)2) is equivalent to

∂ϕε

∂t
+ div(uεϕε) − �με = 0 in Qε. (2.47)

With this in mind, we set, for any function v defined in Qε, ṽ(t, x) = (Mεv)(t, x)
((t, x) ∈ Q). We have

∂ϕ̃ε

∂t
+ divx (ũεϕε) − �x μ̃ε = 0 in Q. (2.48)
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Indeed, let v ∈ C∞
0 (Q). Then,

〈�x μ̃ε, v〉 = −
∫

Q
∇x μ̃ε · ∇xv dx dt = −

∫

Q
∇̃xμε · ∇xv dx dt

= − 1

2ε

∫

Qε

∇xμε · ∇xv dx dt

= − 1

2ε

∫

Qε

ϕε

∂v

∂t
dx dt − 1

2ε

∫

Qε

uεϕε · ∇xv dx dt

= −
∫

Q
ϕ̃ε

∂v

∂t
dx dt −

∫

Q
ũεϕε · ∇xv dx dt

=
〈
∂ϕ̃ε

∂t
+ divx (ũεϕε), v

〉

,

that is, (2.48).
We obtain from (2.37) and (2.38) that

‖ϕ̃ε‖L2(0,T ;H1(�)) ≤ C and ‖μ̃ε‖L2(0,T ;H1(�)) ≤ C, (2.49)

where C > 0 is independent of ε.
Now, for φ ∈ H1(�), we have

∣
∣
∣
∣

〈
∂ϕ̃ε

∂t
, φ

〉∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

�

ũεϕε · ∇xφ dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

∇x μ̃ε · ∇xφ dx

∣
∣
∣
∣

≤ 1

2ε

∣
∣
∣
∣

∫

�ε

uεϕε · ∇xφ dx

∣
∣
∣
∣ + ‖∇x μ̃ε‖L2(�) ‖∇xφ‖L2(�)

≤ C

ε
‖uε(t)‖L4(�ε)

‖ϕε(t)‖L4(�ε)
‖∇xφ‖L2(�ε)

+
+ ‖∇x μ̃ε‖L2(�) ‖∇xφ‖L2(�) .

Since ‖∇xφ‖L2(�ε)
= √

2ε
1
2 ‖∇xφ‖L2(�) and by (2.7) associated to the embedding

H1(�ε) ↪→ L4(�ε) (with the Sobolev constant being independent of ε), we are led
to

∣
∣
∣
∣

〈
∂ϕ̃ε

∂t
, φ

〉∣
∣
∣
∣ ≤ (

C ‖∇uε(t)‖L2(�ε)
‖ϕε(t)‖H1(�ε)

+ ‖∇x μ̃ε‖L2(�)

) ‖∇xφ‖L2(�) .

Proceeding as for ∂uε/∂t , we integrate the square of supφ∈H1(�),‖φ‖H1(�)
≤1

∣
∣
∣

〈
∂ϕ̃ε

∂t , φ
〉∣
∣
∣

over (0, T ) and take advantage of estimates (2.36) and (2.49) to obtain

∥
∥
∥
∥
∂ϕ̃ε

∂t

∥
∥
∥
∥
L2(0,T ;H1(�)′)

≤ C ,

where C is independent of ε. ��
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3 Sigma-Convergence for Thin Heterogeneous Domains

The concept of sigma-convergence relies on the notion of algebra with mean value.
Before we can state it, let us first and foremost set some prerequisites about algebras
with mean value.

3.1 Fundamentals of Algebras with MeanValue

We begin with the concept of algebra with mean value. Let BUC(RN ) denote the
Banach algebra of bounded uniformly continuous real-valued functions defined on
R

N . For u ∈ BUC(RN ) we set

uR = −
∫

BR

u(y)dy,

with −
∫

BR
= 1

|BR |
∫

BR
, where BR = BR(0) and |BR | denotes the Lebesgue measure

of BR . We say that the function u has a mean value if the limit limR→∞ uR exists in
R. We set

M(u) = lim
R→+∞ −

∫

BR

u(y) dy (3.1)

Let u ∈ BUC(RN ) and assume that M(u) exists. Then

uε → M(u) in L∞(RN ) -weak ∗ as ε → 0, (3.2)

where uε ∈ BUC(RN ) is defined by uε(x) = u(x/ε) for x ∈ R
N . This is an easy

consequence of the fact that the set of finite linear combinations of the characteristic
functions of open balls in R

N is dense in L1(RN ).
This being so, a closed subalgebra A of BUC(RN ) is said to be an algebra with

mean value (Zhikov and Krivenko 1983) (algebra wmv, in short) on R
N if it contains

the constants, is translation invariant (τau = u(·+a) ∈ A for any u ∈ A and a ∈ R
N )

and any of its elements possesses a mean value in the sense of (3.1).
Let A be an algebra wmv on R

N . For any integer m ≥ 0, we set Am =
{ψ ∈ Cm(RN ) : Dα

yψ ∈ A ∀α = (α1, . . . , αN ) ∈ N
N with |α| ≤ m} with

Dα
yψ = ∂ |α|ψ

∂ y
α1
1 ...∂ y

αN
N

. Then, Am is a Banach space if equipped with the norm ‖|u|‖m =
sup|α|≤m

∥
∥
∥Dα

yψ

∥
∥
∥∞, Am . The space A∞ := ∩m≥0Am = {ψ ∈ C∞(RN ) : Dα

yψ ∈ A

∀α = (α1, . . . , αN ) ∈ N
N } is a Fréchet space under the family of norms ‖|·|‖m (see

Nguetseng 2003), and it is dense in any Am .
Throughout this section, we shall need the concept of vector-valued algebra wmv.

To that end, let F be a Banach space. We denote by BUC(RN ;F) the Banach space
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of bounded uniformly continuous functions u : R
N → F, equipped with the norm

‖u‖∞ = sup
y∈RN

‖u(y)‖F ,

where ‖·‖F denotes the norm in F. Let A be an algebra with mean value on R
N . We

denote by A ⊗ F the usual space of functions of the form

∑

finite

ui ⊗ ei with ui ∈ A and ei ∈ F,

where (ui ⊗ ei )(y) = ui (y)ei for y ∈ R
N . We define the vector-valued algebra wmv

A(RN ;F) as the closure of A ⊗ F in BUC(RN ;F).
Now, let f ∈ A(RN ;F) (integer N ≥ 1). Then, defining ‖ f ‖F by ‖ f ‖F (y) =

‖ f (y)‖F (y ∈ R
N ), we have that ‖ f ‖F ∈ A. Similarly, we can define (for 0 <

p < ∞) the function ‖ f ‖p
F , which belongs to ‖ f ‖p

F ∈ A. This allows us to define
the Besicovitch seminorm on A(RN ;F) as follows: for 1 ≤ p < ∞, we define
the Marcinkiewicz-type space Mp(RN ;F) to be the vector space of functions u ∈
L p
loc(R

N ;F) such that

‖u‖p,F =
(

lim sup
R→∞

−
∫

BR

‖u(y)‖p
F dy

) 1
p

< ∞,

where BR is the open ball in R
N centred at the origin and of radius R. Under the

seminorm ‖·‖p,F,M
p(RN ;F) is a complete seminormed space with the property that

A(RN ;F) ⊂ Mp(RN ;F) since ‖u‖p,F < ∞ for any u ∈ A(RN ;F). We therefore
define the generalized Besicovitch space B p

A(RN ;F) as the closure of A(RN ;F) in
Mp(RN ;F). The following hold true (see e.g. Nguetseng et al. 2010; Sango et al.
2011):

(i) The space B p
A(RN ;F) = B p

A(RN ;F)/N (where N = {u ∈ B p
A(RN ;F) :

‖u‖p,F = 0}) is a Banach space under the norm ‖u + N‖p,F = ‖u‖p,F for
u ∈ B p

A(RN ;F).
(ii) The mean value M : A(RN ;F) → F extends by continuity to a continuous linear

mapping (still denoted by M) on B p
A(RN ;F) satisfying

L(M(u)) = M(L(u)) for all L ∈ F′ and u ∈ B p
A(RN ;F).

Moreover, for u ∈ B p
A(RN ;F), we have

‖u‖p,F = (
M(‖u‖p

F)
)1/p ≡

(

lim
R→∞ −

∫

BR

‖u(y)‖p
F dy

) 1
p

and, for u ∈ N , one has M(u) = 0.
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It is to be noted thatB2
A(RN ; H) (when F = H is a Hilbert space) is a Hilbert space

with inner product

(u, v)2 = M
[
(u, v)H

]
for u, v ∈ B2

A(RN ; H), (3.3)

where (·, ·)H stands for the inner product in H and (u, v)H the function y �→
(u(y), v(y))H from R

N to R, which belongs to B1
A(RN ).

In what follows, spaces of Sobolev–Besicovitch type defined as follows are of
special interest:

B1,p
A (Rm;F) = {u ∈ B p

A(Rm;F) : ∇yu ∈ (B p
A(Rm;F))m}.

Equipped with the seminorm

‖u‖1,p =
(
‖u‖p

p + ∥
∥∇yu

∥
∥p
p

) 1
p
,

B1,p
A (Rm;F) is a complete seminormed space. Its Banach counterpart is denoted by

B1,p
A (Rm;F) and is defined by replacing B p

A(Rm;F) by B p
A(Rm;F) and ∂/∂ yi by

∂/∂ yi , where ∂/∂ yi is defined by

∂

∂ yi
(u + N ) := ∂u

∂ yi
+ N for u ∈ B1,p

A (Rm;F). (3.4)

Let us denote by � : B p
A(Rm;F) → B p

A(Rm;F) = B p
A(Rm;F)/N , �(u) = u +N ,

the canonical surjection.Weobserve that ifu ∈ B1,p
A (Rm;F) then�(u) ∈ B1,p

A (Rm;F)

and
∂�(u)

∂ yi
= �

(
∂u

∂ yi

)

,

as seen above in (3.4).
We define a further notion by restricting ourselves to the case F = R. We say that

the algebra A is ergodic if any u ∈ B1
A(Rm; R) that is invariant under (T (y))y∈Rm

is a constant in B1
A(Rm; R): this amounts to, if T (y)u = u in B1

A(Rm; R) for every
y ∈ R

m , then u = c in B1
A(Rm; R) in the sense that ‖u − c‖1 = 0, c being a constant.

The following corrector function spacewill be useful in the sequel. LetG be an open
bounded subset in R

N . We define the corrector function space B1,p
#A (Rm;W 1,p(G))

by

B1,p
#A (Rm;W 1,p(G)) = {u ∈ W 1,p

loc (Rm;W 1,p(G)) : ∇u ∈ B p
A(Rm; L p(G))m+N

and
∫

G M(∇u(·, ζ )) dζ = 0},

where, in this case, ∇ = (∇y,∇ζ ), ∇y (resp. ∇ζ ) being the gradient operator
with respect to the variable y ∈ R

m (resp. ζ ∈ R
N ). We identify two ele-

ments of B1,p
#A (Rm;W 1,p(G)) by their gradients in the sense that u = v in
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B1,p
#A (Rm;W 1,p(G)) iff ∇(u − v) = 0, i.e.

∫

G ‖∇(u(·, ζ ) − v(·, ζ ))‖p
p dζ = 0. The

space B1,p
#A (Rm;W 1,p(G)) is therefore a Banach space under the norm ‖u‖#,p =

(∫

G ‖∇u(·, ζ )‖p
p dζ

)1/p
.

3.2 Sigma-Convergence for Thin Heterogeneous Domains

Let d ≥ 2 be a given integer and let � ⊂ R
d−1 be an open set, which will be

assumed throughout this section to be not necessarily bounded. For ε > 0 a given
small parameter, we define the thin domain by �ε = � × (−ε, ε). When ε → 0,
�ε shrinks to the "interface" �0 = � × {0}. We set Qε = (0, T ) × �ε and Q =
(0, T ) × �0 ≡ (0, T ) × � as well as I = (−1, 1).

The space R
m
ξ is the numerical space R

m of generic variable ξ . In this regard we

set R
d−1 = R

d−1
x or R

d−1
y , where x = (x1, ..., xd−1), so that x ∈ R

d can be written
as (x, xd) or (x, ζ ). We identify �0 with � so that the generic element in �0 is also
denoted by x instead of (x, 0).

Let A be an algebra with mean value on R
d−1. We denote by M the mean

value on A as well as its extension on the associated generalized Besicovitch spaces
B p
A(Rd−1; L p(I )) and B p

A(Rd−1; L p(I )), 1 ≤ p < ∞.

Definition 3.1 A sequence (uε)ε>0 ⊂ L p(Qε) is said to

(i) weakly �-converge in L p(Qε) to u0 ∈ L p(Q;B p
A(Rd−1; L p(I ))) if, as ε → 0,

1

ε

∫

Qε

uε(t, x) f
(
t, x,

x

ε

)
dx dt →

∫

Q

∫

I
M(u0(t, x, ·, yd) f (t, x, ·, yd)) dyd dx dt

for any f ∈ L p′
(Q; A(Rd−1; L p′

(I ))) (1/p′ = 1−1/p); we denote this by“uε →
u0 in L p(Qε) -weak �A”;

(ii) strongly �-converge in L p(Qε) to u0 ∈ L p(Q;B p
A(Rd−1; L p(I ))) if it is weakly

sigma-convergent and

ε
− 1

p ‖uε‖L p(Qε) → ‖u0‖L p(Q;Bp
A(Rd−1;L p(I ))) ; (3.5)

we denote this by “uε → u0 in L p(Qε)-strong �A”.

Remark 3.1 (1) It is easy to see that if u0 ∈ L p(Q; A(Rd−1; L p(I ))) then (3.5) is
equivalent to

ε
− 1

p
∥
∥uε − uε

0

∥
∥
L p(Qε)

→ 0 as ε → 0, (3.6)

where uε
0(t, x) = u0(t, x, x/ε) for (t, x) ∈ Qε.

(2) In Definition 3.1, the test functions in part (i) may also be taken in the space
C(Q; B ′

A(Rd−1; L p′
(I )) ∩ L∞(Rd−1 × I )); see, e.g. Woukeng (2015).

Throughout the work, the letter E will stand for any ordinary sequence (εn)n≥1
with 0 < εn ≤ 1 and εn → 0 when n → ∞. The generic term of E will merely
denote by ε and ε → 0 will mean εn → 0 as n → ∞.
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Theorem 3.1 Any sequence (uε)ε∈E in L p(Qε) (1 < p < ∞) satisfying

sup
ε∈E

ε−1/p ‖uε‖L p(Qε) ≤ C,

where C > 0 is independent of ε, possesses a weakly �A -convergent subsequence.

The proof of the above theorem follows the same way of proceeding as the one in
Jäger and Woukeng (2022).

Remark 3.2 Theorem 3.1 generalizes its periodic counterpart in Neuss-Radu and Jäger
(2007), see for instance Proposition 4.2 in Neuss-Radu and Jäger (2007), which cor-
responds to the special case A = Cper(Y ) (with Y = (0, 1)d−1) of our result here.

We gather below some important results whose proofs can be found in Cardone
et al. (2022) (see also Jäger and Woukeng 2022).

Theorem 3.2 Assume that the algebra with mean value A on R
d−1 is ergodic. Let

(uε)ε∈E be a sequence in L p(0, T ;W 1,p(�ε)) (1 < p < ∞) such that

sup
ε∈E

(
ε−1/p ‖uε‖L p(0,T ;W 1,p(�ε))

)
≤ C, (3.7)

where C > 0 is independent of ε. Then, there exist a subsequence E ′ of E and a couple
(u0, u1)with u0 ∈ L p(0, T ;W 1,p(�0)) andu1 ∈ L p(Q; B1,p

#A (Rd−1;W 1,p(I ))) such
that, as E ′ � ε → 0,

uε → u0 in L p(Qε)-weak �A, (3.8)
∂uε

∂xi
→ ∂u0

∂xi
+ ∂u1

∂ yi
in L p(Qε)-weak �A, 1 ≤ i ≤ d − 1, (3.9)

and
∂uε

∂xd
→ ∂u1

∂ yd
in L p(Qε)-weak �A. (3.10)

Remark 3.3 If we set

∇xu0 =
(

∂u0
∂x1

, ...,
∂u0

∂xd−1
, 0

)

,

then (3.9) and (3.10) are equivalent to

∇uε → ∇xu0 + ∇yu1 in L p(Qε)
d -weak �A. (3.11)

The following result provides us with sufficient conditions for which the conver-
gence result in (3.8) is strong.

Theorem 3.3 The assumptions are those of Theorem 3.2. Moreover, suppose that

sup
ε>0

∥
∥
∥
∥
∂Mεuε

∂t

∥
∥
∥
∥
L p′ (0,T ;(W 1,p(�))′)

≤ C, (3.12)
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where Mε is defined by (2.28). Assume finally that � is regular enough so that the
embedding W 1,p(�) ↪→ L p(�) is compact. Let (u0, u1) and E ′ be as in Theorem
3.2. Then, as E ′ � ε → 0, the conclusions of Theorem 3.2 hold and further

uε → u0 in L p(Qε) -strong �A. (3.13)

The next result and its corollary are proved exactly as their analogues in Sango and
Woukeng (2011, Theorem 6 and Corollary 5) (see also Woukeng 2015).

Theorem 3.4 Let 1 < p, q < ∞ and r ≥ 1 be such that 1/r = 1/p + 1/q ≤ 1.
Assume (uε)ε∈E ⊂ Lq(Qε) is weakly �A-convergent in Lq(Qε) to some u0 ∈
Lq(Q;Bq

A(Rd−1; Lq(I ))), and (vε)ε∈E ⊂ L p(Qε) is strongly �A-convergent in
L p(Qε) to some v0 ∈ L p(Q;B p

A(Rd−1; L p(I ))). Then, the sequence (uεvε)ε∈E is
weakly �A-convergent in Lr (Qε) to u0v0.

Corollary 3.1 Let (uε)ε∈E ⊂ L p(Qε) and (vε)ε∈E ⊂ L p′
(Qε) ∩ L∞(Qε) (1 < p <

∞ and p′ = p/(p − 1)) be two sequences such that:

(i) uε → u0 in L p(Qε) -weak �A;
(ii) vε → v0 in L p′

(Qε)-strong �A;
(iii) (vε)ε∈E is bounded in L∞(Qε).

Then, uεvε → u0v0 in L p(Qε)-weak �A.

The following result will be very helpful in the next section.

Proposition 3.1 Let (uε)ε∈E be a sequence in L p(0, T ;W 1,p(�ε)) such that

sup
ε∈E

(
ε−1/p ‖uε‖L p(Qε) + ε1−1/p ‖∇uε‖L p(Qε)

)
≤ C,

where C > 0 is independent of ε. Then, there exist a subsequence E ′ of E and a
function u0 ∈ L p(Q;B1,p

A (Rd−1;W 1,p(I ))) such that, as E ′ � ε → 0,

uε → u0 in L p(Qε)-weak �A,

and
ε∇uε → ∇ yu0 in L p(Qε)

d-weak �A.

Proof From Theorem 3.1, we can find a subsequence E ′ from E and a couple
(u0, u1) ∈ L p(Q;B p

A(Rd−1; L p(I ))) × L p(Q;B p
A(Rd−1; L p(I )))d such that, as

E ′ � ε → 0,

uε → u0 in L p(Qε) -weak �A,

ε∇uε → u1 in L p(Qε)
d -weak �A.
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Let us show that u1 = ∇ yu0. To that end, let � ∈ (C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I )))d .
Then, we have

ε−1
∫

Qε

ε∇uε · �ε dx dt = −ε−1
∫

Qε

uε

[
ε(divx �)ε + (divy �)ε

]
dx dt .

Letting E ′ � ε → 0, we get

∫

Q

∫

I
M(u1(t, x, ·, ζ ) · �(t, x, ·, ζ )) dζ dx dt

= −
∫

Q

∫

I
M(u0(t, x, ·, ζ ) divy �(t, x, ·, ζ )) dζ dx dt . (3.14)

This shows that u1 = ∇ y,ζu0 ≡ ∇ yu0, so that u0 ∈ L p(Q;B1,p
A (Rd−1;W 1,p(I ))).

��

4 Homogenized System

For the homogenization process to be performed, we assume throughout this section
and, henceforth, that A is an ergodic algebra with mean value on R

d−1 and that the
matrix B satisfies the following structural assumption:

(H5) B(x, ·) ∈ (B2
A(Rd−1; L2(I )))d×d for any x ∈ �,

where B2
A(Rd−1; L2(I )) is the vector-valued generalized Besicovitch space defined

in Sect. 3.1. It is worth noticing that without such an assumption, the passage to the
limit in (1.2)1 is out of reach, as B should be used as test function in the variational
form of (1.2)1. It is worth noting that continuity property of B with respect to x yields
B ∈ C(�; (B2

A(Rd−1; L2(I )))d×d).

4.1 Preliminary Results

The purpose of this subsection is to provide some useful results for the homogenization
process. We start with the following result dealing with the non-local part of (1.2).

Proposition 4.1 Let (vε)ε>0 ⊂ L2(Qε) be a sequence such that vε → v0 in L2(Qε)-
strong �A as ε → 0, where v0 ∈ L2(Q). Then, as ε → 0, one has

ε−1(J ∗ vε) → Ĵ ∗ v0 in L2(Qε)-strong �A,

where Ĵ (x) = J (x, 0) for x ∈ R
d−1.

Proof A simple computation involving a change of variable gives

ε−1(J ∗ vε)(t, x) =
∫

�1

J (x − ξ, ε(xd − ξd))̃vε(t, ξ) dξ for (t, x) ∈ Q1,
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where ṽε(t, ξ) = vε(t, ξ , εξd) in Q1.
Setting Uε = ε−1(J ∗ vε), we have that Uε = Jε ∗ ṽε in Q1, where Jε(x) =

J (x, εxd) in �1, so that

∥
∥Uε − Ĵ ∗ v0

∥
∥
L2(Q1)

≤ ‖Jε ∗ (̃vε − v0)‖L2(Q1)
+ ∥

∥(Jε − Ĵ ) ∗ v0
∥
∥
L2(Q1)

≤ C ‖J‖L1
uloc(R

d ) ‖̃vε − v0‖L2(Q1)
+ C

∥
∥Jε − Ĵ

∥
∥
L1(�1)

‖v0‖L2(Q1)

=: I1 + I2.

Let us look at I2 since I1 obviously tends to zero with ε. First, we know that J is
continuous in (�\{0}) × [−1, 1], so that Jε(x) = J (x, εxd) → J (x, 0) = Ĵ (x) a.e.
in �1 as ε → 0. The Lebesgue dominated convergence theorem gives immediately∥
∥Jε − Ĵ

∥
∥
L1(�1)

→ 0 with ε. Therefore, we get Uε → Ĵ ∗ v0 in L2(Q1)-strong. This
is easily seen to conclude the proof. ��

Now, we consider the following function spaces:

V = {u ∈ (A∞(Rd−1; C10(I )))d : div u = 0},

V = the closure of V in B1,2
A (Rd−1; H1

0 (I ))d and H = the closure of V
in B2

A(Rd−1; L2(I ))d . We recall (see Cardone et al. 2022, Lemma 4.1) that

B1,2
A (Rd−1; H1

0 (I )) is a Hilbert space equipped with the gradient norm
∥
∥∇.

∥
∥
2, where

∇ = ( ∂
∂ y1

, ..., ∂
∂ yd−1

, ∂
∂ yd

). We also recall the definition of the Laplace and divergence

operators for functions in B2
A(Rd−1; L2(I )):

� =
(
d−1∑

i=1

∂
2

∂ y2i

)

+ ∂2

∂ y2d
and div = ∇ · .

Obviously we have V = {u ∈ B1,2
A (Rd−1; H1

0 (I ))d : divu = 0}. We endow V and H
with the relative norm topologies, say

‖u‖V = ∥
∥∇u

∥
∥
2 =

(∫

I
M

(∣
∣∇ ⊗ u(·, yd)

∣
∣2
)
dyd

)1/2

, u ∈ V

and

‖u‖H = ‖u‖2 =
(∫

I
M

(
|u(·, yd)|2

)
dyd

) 1
2

for u ∈ H ,

where ∇ ⊗ u =
(

∂ui
∂ y j

)

1≤i, j≤d
with ∂

∂ yd
= ∂

∂ yd
(the usual partial derivative in the

distributional sense).
Finally, we consider the subspace Vd of V defined as follows

Vd =
{

u = (ui )1≤i≤d ∈ V :
∫

I
M(ud(·, yd)) dyd = 0

}

,
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which is a closed subspace of V with the relative norm.
The following auxiliary result holds.

Proposition 4.2 Assume B satisfies (H4)–(H5). Let (e j )1≤ j≤d be the canonical basis

in R
d . Then, for any fixed x ∈ �, there exists a unique ω j (x, ·) = (ω

j
i (x, ·))1≤i≤d ∈

C([0,∞); H)∩ L2(0,∞; Vd) for 1 ≤ j ≤ d − 1 (resp. C([0,∞); H)∩ L2(0,∞; V )

for j = d) such that the function ω j (x, ·) solves the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω j (x, ·)
∂t

− divy(B(x, ·)∇ yω
j (x, ·)) + ∇ yπ

j = 0 in (0,∞) × R
d−1 × I ,

divyω j (x, ·) = 0 in (0,∞) × R
d−1 × I ,

ω j (x, ·) = 0 on (0,∞) × R
d−1 × {−1, 1},

ω j (x, 0, ·) = e j in R
d−1 × I .

(4.1)
In addition, we haveω j ∈ C(�×[0,∞); H)∩L2(�×(0,∞); Vd) for 1 ≤ j ≤ d−1
(resp. C(� × [0,∞); H) ∩ L2(� × (0,∞); V ) for j = d). Moreover, if we set

Gi j (t, x) = 1

2

∫ 1

−1
M(ωi (x, t, ·, yd))e j dyd for (t, x) ∈ Q and 1 ≤ i, j ≤ d

≡ 1

2

∫ 1

−1
M(ωi

j (x, t, ·, yd)) dyd ,

then Gi j ∈ C(Q) with G jd = Gdj = 0 for all 1 ≤ j ≤ d − 1, and the matrix
G = (Gi j )1≤i, j≤d−1 is symmetric, positive definite and has entries which decrease
exponentially as t increases.

Proof This result has been proved in Cardone et al. (2022, Section 4.1) in the case
where the operator divy(B(x, ·)∇ y) was replaced by α�y . However, since B satisfies
(H4) and (H5), the proof of the same results in Cardone et al. (2022, Section 4.1)
carries over mutatis mutandis to the present setting. We also recall that the fact for
the matrix (Gi j )1≤i, j≤d−1 to be symmetric stems from the symmetric property of the
matrix B. The fact that the coefficients Gi j decrease exponentially in time can be
shown by proceeding like in Cardone et al. (2022, Section 4.1).

It remains to check the continuity of ω j with respect to x , that is, ω j ∈ C(� ×
[0,∞); H). To this end, we fix x0 ∈ �, and we assume for a while that any element
of � is denoted without the bar, say x, x0 ∈ �. With this in mind, we set w(x) =
ω j (x, ·) − ω j (x0, ·). Then w(x) ∈ C([0,∞); H) ∩ L2((0,∞); Vd) and satisfies a.e.
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in t ∈ (0,∞) and in the sense of distributions in R
d−1 × I ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w(x)

∂t
− divy(B(x, ·)∇ yw(x)) + ∇ yπ = divy(B(x, ·) − B(x0, ·))∇ yω

j (x0, ·)),

divyw(x) = 0 in (0,∞) × R
d−1 × I ,

w(x) = 0 on (0,∞) × R
d−1 × {−1, 1},

w(x, 0) = e j in R
d−1 × I ,

(4.2)
where π = π j (x, ·) − π j (x0, ·). Using a classical estimate for linear Stokes system,
we get, using w(x) as test function in (4.2),

∫

I
‖w(x)(t, ·, yd)‖22 dyd + α

∫ t

0

∫

I

∥
∥∇ yw(x)(τ ·, yd)

∥
∥2
2 dyd dτ

≤
∫ t

0

∫

I
‖B(x, ·) − B(x0, ·)‖22

∥
∥
∥∇ yω

j (x0, τ, ·, yd)
∥
∥
∥
2

2
dyd dτ

≤ ‖B(x, ·) − B(x0, ·)‖2L∞

∫ t

0

∫

I

∥
∥
∥∇ yω

j (x0, τ, ·, yd)
∥
∥
∥
2

2
dyd dτ

≤ C ‖B(x, ·) − B(x0, ·)‖2L∞ ,

since ∫ ∞

0

∫

I

∥
∥
∥∇ yω

j (x0, τ, ·, yd)
∥
∥
∥
2

2
dyd dτ ≤ C .

Therefore, the continuity of ω j with respect to x stems from the continuity of x �→
B(x, ·). This concludes the proof. ��

We are now able to move forward in the homogenization process.

4.2 Limit Passage in (1.2)

Owing to Corollary 2.1 and Propositions 2.2 and 2.3, the following uniform estimates
hold for any ε > 0:

‖uε‖L∞(0,T ;L2(�ε)d ) ≤ Cε
1
2 , ε ‖∇uε‖L2(Qε)d×d ≤ Cε

1
2 , ‖ϕε‖L2(0,T ;H1(�ε))

≤ Cε
1
2

with

∥
∥
∥
∥
∂Mεϕε

∂t

∥
∥
∥
∥
L2(0,T ;(H1(�))′)

≤ C, ‖με‖L2(0,T ;H1(�ε))
≤ Cε

1
2 , ‖pε‖L2(Qε)

≤ Cε
1
2

and
∥
∥F ′(ϕε)

∥
∥
L∞(0,T ;L1(�ε))

≤ Cε,

(4.3)
where the positive constant C is independent of the small positive parameter
ε. Thus, in view of Theorems 3.1, 3.2 and 3.3 and Proposition 3.1, any ordi-
nary sequence E contains a subsequence E ′ of E and there exist functions
u0 ∈ L2(Q;B1,2

A (Rd−1; H1
0 (I )))d , (ϕ0, ϕ1), (μ0, μ1) ∈ L2(0, T ; H1(�0)) ×
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L2(Q; B1,2
#A (Rd−1; H1(I ))) and p0 ∈ L2(Q;B2

A(Rd−1; L2(I ))) such that, as E ′ �
ε → 0,

uε → u0 in L2(Qε)
d -weak �A (4.4)

ε∇uε → ∇ yu0 in L2(Qε)
d×d -weak �A (4.5)

pε → p0 in L2(Qε) -weak �A (4.6)

ϕε → ϕ0 in L2(Qε)-strong �A (4.7)

∇ϕε → ∇xϕ0 + ∇yϕ1 in L2(Qε)
d -weak �A (4.8)

με → μ0 in L2(Qε)-weak �A (4.9)

∇με → ∇xμ0 + ∇yμ1 in L2(Qε)
d -weak �A, (4.10)

where ∇xϕ0 = (
∂ϕ0
∂x1

, ...,
∂ϕ0

∂xd−1
, 0) (the same holds for ∇xμ0).

Now, from the equality div uε = 0 in Qε, it emerges that divyu0 = 0 in Q ×
R
d−1 × I . We set

u(t, x) = 1

2

∫ 1

−1
M(u0(t, x, ·, xd)) dxd for (t, x) ∈ Q

= (ui (t, x))1≤i≤d and u = (ui )1≤i≤d−1. (4.11)

Then, u ∈ L2(Q)d . Moreover,

divx u = 0 in Q and u · n = 0 on (0, T ) × ∂�, (4.12)

where n is the outward unit normal to ∂�. Indeed, as in Cardone et al. (2022, Section
4), we may easily show that

ud = 0 in Q, (4.13)

so that u = (u, 0). Therefore, we may easily verify (4.12) for, if ϕ ∈ D(Q), we use
the Stokes formula together with the equality div uε = 0 in Qε to obtain

∫

Qε

uε(t, x) · ∇xϕ(t, x) dx dt = 0.

Passing to the limit after dividing the last equality above by ε and letting E ′ � ε → 0,
we get immediately ∫

Q
u(t, x) · ∇xϕ(t, x) dx dt = 0.

This yields (4.12). We also derive the equality
∫

�0

∫

I M(p0(t, x, ·, ζ )) dζ dx = 0
from the obvious one

∫

�ε
pε dx = 0.

Now we define the function

â(x) = ( Ĵ ∗ 1)(x) =
∫

�

J (x − z, 0) dz for x ∈ �. (4.14)
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We may therefore state the following global homogenized result.

Proposition 4.3 The functions u0, ϕ0, ϕ1, μ0, μ1 and p0 solve system (4.15)–(4.18)
below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2

∫

Q

∫

I M
(
u0(t, x, ·, ζ ) ∂�

∂t (t, x, ·, ζ )
)
dζ dx dt

+1

2

∫

Q

∫

I M(B∇ yu0 · ∇y�) dζ dx dt

−1

2

∫

Q

∫

I M
(
ϕ0

[
(∇xμ0 + ∇yμ1)� + μ0 divx �

])
dζ dx dt

−1

2

∫

Q

∫

I M(p0 divx �) dζ dx dt = 1

2

∫

Q

∫

I M(h�) dζ dx dt,

(4.15)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

2

∫

Q

∫

I M
(
ϕ0

∂φ0
∂t

)
dζ dx dt − 1

2

∫

Q

∫

I M(ϕ0u0(∇xφ0 + ∇yφ1)) dζ dx dt

+1

2

∫

Q

∫

I M
(
(∇xμ0 + ∇yμ1)(∇xφ0 + ∇yφ1)

)
dζ dx dt = 0,

(4.16)

1

2

∫

Q

∫

I
μ0χ0 dx dζ dt = 1

2

∫

Q

∫

I
âϕ0χ0 dx dζ dt − 1

2

∫

Q

∫

I
( Ĵ ∗ ϕ0)χ0 dx dζ dt

+1

2

∫

Q

∫

I
F ′(ϕ0)χ0 dx dζ dt, (4.17)

u0(0, x, y) = u0(x) and ϕ0(0, x) = ϕ0(x) for a.e. x ∈ � and y ∈ R
d−1 × I ,

(4.18)

for all � ∈ (C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I )))d with divy � = 0, (φ0, φ1) ∈ C∞
0 (Q) ×

(C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I ))) and χ0 ∈ C∞
0 (Q).

Proof Let � ∈ (C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I )))d , (φ0, φ1) ∈ C∞
0 (Q) × (C∞

0 (Q) ⊗
A∞(Rd−1; C∞

0 (I ))) and χ0 ∈ C∞
0 (Q). We define, for (t, x) ∈ Qε,

�ε(t, x) = �
(
t, x,

x

ε

)
, φε(t, x) = φ0(t, x) + εφ1

(
t, x,

x

ε

)
.

Taking (�ε, φε, χ0) ∈ C∞
0 (Qε)

d×C∞
0 (Qε)×C∞

0 (Q) as test function in the variational
form of (1.2), we obtain
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∫

Qε
uε

(
∂�

∂t

)ε

dx dt + ε2
∫

Qε
Bε∇uε ·

(

(∇x�)ε + 1

ε
(∇y�)ε

)

dx dt

− ∫

Qε
pε

(

(divx �)ε + 1

ε
(divy �)ε

)

dx dt − ∫

Qε
με∇ϕε�

ε dx dt

= ∫

Qε
h�ε dx dt,

(4.19)

⎧
⎪⎪⎨

⎪⎪⎩

− ∫

Qε
ϕε

∂φε

∂t
dx dt + ∫

Qε
(uε · ∇ϕε)φε dx dt

+ ∫

Qε
∇με · (∇xφ0 + ε(∇xφ1)

ε + (∇yφ1)
ε) dx dt = 0,

(4.20)

∫

Qε

μεχ0 dx dt =
∫

Qε

ε−1aεϕεχ0dxdt −
∫

Qε

ε−1(J ∗ ϕε)χ0 dx dt +
∫

Qε

F ′(ϕε)χ0 dx dt .

(4.21)

We start with (4.19) and let E ′ � ε → 0. Then,

∫

Q

∫

I
M(p0 divy �) dζ dx dt = 0.

This shows that p0 does not depend on y, i.e. p0(t, x, y) = p0(t, x), and thus∫

�0
p0(t, x) dx = 0, so that p0 ∈ L2(0, T ; L2

0(�)).
Now, we consider � such that divy � = 0, and we divide both sides of (4.19) by ε:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

ε

∫

Qε
uε

(
∂�
∂t

)ε
dx dt + 1

ε

∫

Qε
ε2Bε∇uε ·

(

(∇x�)ε + 1

ε
(∇y�)ε

)

dx dt

−1

ε

∫

Qε
pε(divx �)ε dx dt − 1

ε

∫

Qε
με∇ϕε�

ε dx dt = 1

ε

∫

Qε
h�ε dx dt .

(4.22)
We need to pass to the limit in (4.22) as E ′ � ε → 0. First of all, we observe that the
symmetric property of B gives

1

ε

∫

Qε

εBε∇uε · (∇y�)ε dx dt = 1

ε

∫

Qε

ε∇uε · (B∇y�)ε dx dt . (4.23)

Next, we have

1

ε

∫

Qε

με∇ϕε�
ε dx dt = −1

ε

∫

Qε

ϕε(∇με�
ε + με(divx �)ε) dx dt . (4.24)

Now, from assumptions (H4) and (H5), we see that the matrix B belongs to the space
C(�; (B2

A(Rd−1; L2(I )) ∩ L∞(Rd−1 × I ))d×d), so that B∇y� can be taken as test
function in (4.23) while letting E ′ � ε → 0. Bearing this in mind, we pass to the
limit as E ′ � ε → 0 in (4.23) using B∇y� as test function, and in (4.24 ) using
strong �A-convergence (4.7) in conjunction with weak �A-convergence (4.10) (both
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in Corollary 3.1 ) to obtain

1

ε

∫

Qε

εBε∇uε · (∇y�)ε dx dt →
∫

Q

∫

I
M(B∇ yu0 · ∇y�) dyd dx dt

and

1

ε

∫

Qε

με∇ϕε�
ε dx dt →

∫

Q

∫

I
M

(
ϕ0

[
(∇xμ0 + ∇yμ1)� + μ0 divx �

])
dyd dx dt .

Hence, we let E ′ � ε → 0 in (4.22) and divide both members of the resulting limit
by 2 to get (4.15), viz.

−1

2

∫

Q

∫

I M

(

u0(t, x, ·, yd)∂�

∂t
(t, x, ·, yd)

)

dyd dx dt

+1

2

∫

Q

∫

I M(B∇ yu0 · ∇y�) dyd dx dt

−1

2

∫

Q

∫

I M
(
ϕ0

[
(∇xμ0 + ∇yμ1)� + μ0 divx �

])
dyd dx dt

−1

2

∫

Q

∫

I M(p0 divx �) dyd dx dt = 1

2

∫

Q

∫

I M(h�) dyd dx dt .

(4.25)

As for (4.20), we divide both sides by 2ε and, accounting for the equality

∫

Qε

(uε∇ϕε)φε dx dt = −
∫

Qε

ϕεuε∇φε dx dt,

we obtain in the limit when E ′ � ε → 0 (4.16).
Let us now consider (4.21). We start with the term

∫

Qε
F ′(ϕε)χ0 dx dt . We need

to check that

1

ε

∫

Qε

F ′(ϕε)χ0 dx dt →
∫

Q

∫

I
F ′(ϕ0)χ0 dyd dx dt . (4.26)

First of all, since F ∈ C2,1loc (R), F ′ is locally Lipschitz continuous. Next, from (4.7),

we have ε− 1
2 ‖ϕε − ϕ0‖L2(Qε)

→ 0 as E ′ � ε → 0. But

ε−1
∫

Qε

|ϕε(t, x) − ϕ0(t, x)|2 dx dt =
∫

Q1

|ϕε(t, x, εxd) − ϕ0(t, x)|2 dx dt

→ 0 as E ′ � ε → 0.

This shows that the sequence (ϕ̃ε)ε∈E ′ defined by ϕ̃ε(t, x) = ϕε(t, x, εxd) ((t, x) ∈
Q1) converges strongly to ϕ0 in L2(Q1), and, so, ϕ̃ε → ϕ0 a.e.in Q1. The continuity of
F ′ entails F ′(ϕ̃ε) → F ′(ϕ0) a.e. in Q1.Now, the uniformbound

∥
∥F ′(ϕε)

∥
∥
L1(Qε)

≤ Cε
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yields
∥
∥F ′(ϕ̃ε)

∥
∥
L1(Q1)

≤ C for all ε > 0. The Lebesgue dominated convergence
theorem readily gives

F ′(ϕ̃ε) → F ′(ϕ0) in L1(Q1)-strong.

Thus, setting xd = ζ , we have, as E ′ � ε → 0,

1

ε

∫

Qε

F ′(ϕε)χ0 dx dt =
∫

Q1

F ′(ϕε(t, x, ζ ))χ0(t, x) dx dζ dt

=
∫

Q1

F ′(ϕ̃ε)χ0 dx dζ dt

→
∫

Q1

F ′(ϕ0)χ0 dx dζ dt =
∫

Q

∫

I
F ′(ϕ0)χ0 dx dζ dt,

which proves (4.26).
Now, concerning the others terms, we appeal to Proposition 4.1 to obtain, when

E ′ � ε → 0,

1

ε

∫

Qε

ε−1aεϕεχ0 dx dt − 1

ε

∫

Qε

ε−1(J ∗ ϕε)χ0 dx dt

→
∫

Q

∫

I
âϕ0χ0 dx dζ dt −

∫

Q

∫

I
( Ĵ ∗ ϕ0)χ0 dx dζ dt

since none of the terms involved depends on the microscopic variable y = x/ε.
With this in mind, we divide both terms involved in (4.21) by 2ε and we pass to the

limit in the resulting equation to obtain (4.17). Finally, since uε
0 → u0 in L2(�ε)

d -
strong �A and ϕε

0 → ϕ0 in L2(�ε)-strong �A, we conclude by integration by parts
that u0(0) = u0 and ϕ0(0) = ϕ0. We recall that, from (4.13), we have u0 = (u0, 0)
since the last component ud of u0 is zero. ��

4.3 Derivation of the Homogenized System

Our goal in this subsection is to find the equivalent problem that is solved by
(u, ϕ0, μ0, p0). We recall that u is defined by (4.11) and satisfies (4.12). This being
so, we first consider (4.17). Since none of the terms in (4.17) depends on the variable
ζ , we readily get that (4.17) is equivalent to

μ0 = âϕ0 − Ĵ ∗ ϕ0 + F ′(ϕ0) in Q. (4.27)

Next, we consider (4.16) and choose there φ0 = 0 and take φ1 to be of the form
φ1(t, x, y) = φ0

1(t, x)θ(y) with φ0
1 ∈ A∞(Rd−1; C∞

0 (I )). Then, we obtain

{− ∫

I M(ϕ0u0 · ∇yθ) dζ + ∫

I M((∇xμ0 + ∇yμ1) · ∇yθ) dζ = 0
for all θ ∈ A∞(Rd−1; C∞

0 (I )).
(4.28)
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However,

∫

I
M(ϕ0u0 · ∇yθ) dζ =

∫

I
M(ϕ0divy(u0θ)) dζ (since divyu0 = 0)

= 0 because ϕ0 does not depend on y.

Therefore, (4.28) becomes

∫

I
M((∇xμ0 + ∇yμ1) · ∇yθ) dζ = 0 for all θ ∈ A∞(Rd−1; C∞

0 (I )).

Since μ0 is independent of y, we can easily show that μ1 = 0.
Taking into account the equality divx u0 = 0, we see that (4.16) (in which we take

φ1 = 0) is the variational form of

∂ϕ0

∂t
+ u · ∇xϕ0 − �xμ0 = 0 in Q, (4.29)

where once again we recall that u is defined by (4.11).
Let us move on to (4.15). Using Cardone et al. (2022, Proposition 2.1), we derive

the existence of p1 ∈ L2(Q;B2
A(Rd−1; L2(I ))) such that

∂u0
∂t

− divy(B∇ yu0) + ∇ y p1 = h − ∇x p0 + μ0∇xϕ0 in Q × R
d−1 × I . (4.30)

At this level, let ω j = (ω
j
i )1≤i≤d and G = (Gi j )1≤i, j≤d−1 be as in Proposition 4.2.

It is known from that proposition that G is a (d − 1) × (d − 1) symmetric positive
definite matrix. This being so, let us fix (t, x) ∈ Q and take v(τ, y) = u0(t − τ, x, y)
((τ, y) ∈ (0, t) × R

d−1 × I ) as test function in the weak form of (4.1), i.e.

〈
∂ω j

∂τ
(τ ), u0(t − τ)

〉

+ 1

2

∫ 1

−1
M(B∇ω j (τ ) · ∇u0(t − τ)) dζ = 0,

which amounts to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

d

dτ

∫ 1
−1 M(ω j (τ )u0(t − τ)) dζ +

〈
∂u0
∂τ

(t − τ), ω j (τ )

〉

+1

2

∫ 1
−1 M(B∇ω j (τ ) · ∇u0(t − τ)) dζ = 0.

(4.31)
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Integrating (4.31) over (0, t) gives

1

2

∫ 1
−1 M(ω j (t)u0(0)) dζ − 1

2

∫ 1
−1 M(u0(t)e j ) dζ + 1

2

∫ t
0

〈
∂u0
∂τ

(t − τ), ω j (τ )

〉

dτ

+1

2

∫ t
0

∫ 1
−1 M(B∇ω j (τ ) · ∇u0(t − τ)) dζ dτ = 0,

(4.32)

where the brackets 〈·, ·〉 denote the duality pairings between
[
B1,2
A (Rd−1; H1

0 (I ))d
]′

and B1,2
A (Rd−1; H1

0 (I ))d .
Next, we multiply the variational form of (4.30) by the function

�(τ, x, y) = ϕ(x)ω j (x, t − τ, y) with ϕ ∈ C∞
0 (�) being arbitrarily fixed,

and then integrate the resulting equality over (0, t), we obtain the following equality
in the sense of distributions in �:

1

2

∫ t
0

〈
∂u0
∂τ

(τ ), ω j (t − τ)

〉

dτ + 1

2

∫ t
0

∫ 1
−1 M(B∇u0(τ ) · ∇ω j (t − τ)) dζ dτ

−1

2

∫ t
0

∫ 1
−1 μ0(τ )∇xϕ0(τ )M(ω j (t − τ)) dζ dτ

+1

2

∫ t
0

∫ 1
−1 ∇x p0(τ )M(ω j (t − τ)) dζ dτ

= 1

2

∫ t
0

∫ 1
−1 M(ω j (t − τ))h(τ ) dζ dτ.

(4.33)
From the obvious equality

∫ t

0

〈
∂u0
∂τ

(τ ), ω j (t − τ)

〉

dτ =
∫ t

0

〈
∂u0
∂τ

(t − τ), ω j (τ )

〉

dτ,

and comparing (4.32) and (4.33), we get

−1

2

∫ 1
−1 M(ω j (t))u0 dζ + 1

2

∫ 1
−1 M(u0(t))e j dζ

+1

2

∫ t
0

∫ 1
−1 M(ω j (t − τ))∇x p0(τ ) dτ dζ

−1

2

∫ t
0

∫ 1
−1 μ0(τ )∇xϕ0(τ )M(ω j (t − τ)) dζ dτ = 1

2

∫ t
0

∫ 1
−1 M(ω j (t − τ))h(τ ) dζ dτ,

that is,

−G j (t)u0 + u j (t) + (G j ∗ ∇x p0)(t) − (G j ∗ μ0∇xϕ0)(t)

= (G j ∗ h1)(t), 1 ≤ j ≤ d − 1,
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or, equivalently,

u(t) = G(t)u0 + (G ∗ (h1 − ∇x p0 + μ0∇xϕ0))(t) in �, t ∈ [0, T ], (4.34)

where G = (G j )1≤ j≤d−1.
We have just proved the following result.

Theorem 4.1 The quadruple (u, ϕ0, μ0, p0) defined by (4.11), (4.7), (4.9) and (4.6)
solves in the weak sense homogenized system (4.34), (4.29), (4.27) with appropriate
boundary and initial conditions, viz.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = Gu0 + G ∗ (h1 + μ0∇xϕ0 − ∇x p0) in Q,

divx u = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ0

∂t
+ u · ∇xϕ0 − �xμ0 = 0 in Q,

μ0 = âϕ0 − Ĵ ∗ ϕ0 + F ′(ϕ0) in Q,

∂μ0

∂n
= 0 on (0, T ) × ∂�,

ϕ0(0) = ϕ0 in �.

(4.35)

Equation (4.35)1 is a Hele-Shaw equation with memory, that is, a non-local (in
time) Hele-Shaw equation. Thus, system (4.35) is a doubly non-local Hele-Shaw–
Cahn–Hilliard (HSCH) system arising from transient flow through thin domains, and
modelling in particular tumour growth. To the best of our knowledge, this is the first
time that such a system is obtained in the literature. For this reason, a qualitative
analysis of (4.35) is necessary in order to prove some regularity results and its well-
posedness. This is the aim of the next section.

5 Analysis of the 2D Homogenized System and Proof of Theorem1.1

Throughout this section we assume that � is a Lipschitz bounded domain in R
2.

For ψ ∈ (H1(�))′ we set ψ = |�|−1 〈ψ, 1〉. If in particular ψ ∈ L2(�), then
ψ = −

∫

�
ψ . With this in mind, we define the spaces V0 = {v ∈ H1(�) : v = 0}

and V2 = {v ∈ H2(�) : ∂v/∂n = 0 on ∂�}. It is well-known that the unbounded
operator−� : L2(�) → L2(�)with dense domainV2 is self-adjoint andnonnegative,
becoming strictly positive on V0. Further, it maps V0 onto V ′

0 = {ψ ∈ H1(�) : ψ =
0}.

This being so, we set, for every r ∈ R,

∥
∥ψ − ψ

∥
∥
r =

∥
∥
∥(−�)r/2(ψ − ψ)

∥
∥
∥
L2(�)

.

123



   43 Page 42 of 56 Journal of Nonlinear Science            (2024) 34:43 

We observe as in Della Porta and Grasselli (2016) that the norm ‖·‖# defined by

‖ψ‖# =
(∥
∥ψ − ψ

∥
∥2−1 + ∣

∣ψ
∣
∣2
) 1

2
for ψ ∈ (H1(�))′ (5.1)

is equivalent to the usual norm of (H1(�))′.
Bearing this in mind, we recall that in this section we are concerned with 2D doubly

non-local HSCH system (4.35) derived from the upscaling of ε-model (1.2) in 3D.
For the sake of simplicity, we rewrite (4.35) in the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = Gu0 + G ∗ (h + μ∇ϕ − ∇ p) in Q = (0, T ) × �,

div u = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇ϕ − �μ = 0 in Q,

μ = aϕ − J ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �,

(5.2)

where we have omitted all the subscripts and the hat and bar on all the unknown
functions as well as on the given data. We recall that in (5.2 ) the functions a and J
are constrained as follows,

(H1)1 J ∈ W 1,1
uloc(R

2) ∩ C(R2\{0}) and a(x) = ∫

�
J (x − z) dz ≥ 0 (x ∈ �),

the function F satisfies (H2) (see Sect. 1.2) and the initial data u0, ϕ0 and the source
term h are constrained by

(H3)1 u0 ∈ H = {u ∈ L2(�)2 : divu = 0 in � and u · n = 0 on ∂�}, where n is the
outward unit normal to ∂�, ϕ0 ∈ L2(�)with F(ϕ) ∈ L1(�) and h ∈ L2(Q)2.

Under assumptions (H1)1, (H2) and (H3)1, we have proved in Sect. 4 that
problem (5.2) admits at least a solution (u, ϕ, μ, p) in the class L2(0, T ; H) ×
[C([0, T ]; L2(�))∩L2(0, T ; H1(�))]×L2(0, T ; H1(�))×L2(0, T ; L2

0(�)). More-
over, in the light of (5.2)1, one sees that u ∈ C([0, T ]; H).

Finally, when dealing with (5.2), we shall often use the notation ∗t (resp. ∗x ) to
denote the convolution operator with respect to time (resp. space) if there is a danger
of confusion.

5.1 Continuous Dependence of the Solutions on the Data

Our aim in this subsection is to prove the continuous dependence of the solution to
(5.2) on the given data. Before we can do this, we first need an important preliminary
result, which is stated as follows.
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Proposition 5.1 (i) The pressure p lies in the space L2(0, T ; H1(�) ∩ L2
0(�)).

(ii) Assume ϕ0 ∈ L∞(�). Then, the order parameter ϕ belongs to L∞(Q). If further
u0 ∈ Ls(�)2 and h ∈ L∞(0, T ; Ls(�)2) (for a fixed given real number s > 1) then
u ∈ C([0, T ]; Ls(�)2).

Proof (i) First we show that μ∇ϕ ∈ L2(0, T ; H). To this end, we observe that
ϕ ∈ L4(Q) as from the Gagliardo–Nirenberg inequality (in 2D), say ‖ϕ‖2

L4(�)
≤

‖ϕ‖L2(�) ‖∇ϕ‖L2(�), and taking into account ϕ ∈ L∞(0, T ; L2(�)), it follows that

∫ T

0
‖ϕ‖4L4(�)

dt ≤ ‖ϕ‖2L∞(0,T ;L2(�))

∫ T

0
‖ϕ‖2H1(�)

dt ≤ C .

Now, let v ∈ L2(0, T ; H) (we may start with smooth v ∈ Vdivx = {v ∈ C∞
0 (�)2 :

div v = 0} and next use the density ofVdivx inH). From the obvious equality (stemming
from Frigeri et al. 2016, Proof of Theorem 2)

μ∇ϕ = ∇
(

F(ϕ) + a
ϕ2

2

)

− ∇a
ϕ2

2
− (J ∗ ϕ)∇ϕ, (5.3)

we get, for a.e. t ∈ (0, T ),

〈μ∇ϕ, v〉 =
(

−∇a
ϕ2

2
− (J ∗ ϕ)∇ϕ, v

)

= −
(

∇a
ϕ2

2
, v

)

+ ((∇ J ∗ ϕ)ϕ, v) ,

so that using Hölder’s inequality,

|〈μ∇ϕ, v〉| ≤ C ‖ϕ‖2L4(�)
‖v‖L2(�)2 + ‖v‖L2(�)2 ‖(∇ J ∗ ϕ)ϕ‖L2(�)

≤ C ‖ϕ‖2L4(�)
‖v‖L2(�)2 .

We obtain immediately

∣
∣
∣
∣

∫ T

0
〈μ∇ϕ, v〉 dt

∣
∣
∣
∣ ≤ C ‖ϕ‖2L4(Q)

‖v‖L2(0,T ;L2(�)2) ,

amounting to μ∇ϕ ∈ L2(0, T ; H).
Weget readily that h+μ∇ϕ ∈ L2(0, T ; L2(�)2).AlsoG(t)u0 ∈ L2(0, T ; L2(�)2).

We may therefore proceed as inMikelić (1994) by using the Laplace transform, which
is well-defined in D′+((0,∞); L2

0(�)) (see for instance Vladimirov 1984, pp. 158–
170): we apply it to (5.2)1 and (5.2)2 to obtain the following equation

⎧
⎨

⎩

div
(
Ĝ(τ )(̂h(τ ) + μ̂∇ϕ(τ) − ∇ p̂(τ )) + Ĝ(τ )u0

)
= 0 in �,

(
Ĝ(τ )(̂h(τ ) + μ̂∇ϕ(τ) − ∇ p̂(τ )) + Ĝ(τ )u0

)
· n = 0 on ∂�.

(5.4)

In (5.4) the hat̂ · denotes the Laplace transformwhich is a function of variable τ ∈ C

(the complex field). It is worth recalling that Ĝ is an analytic function of τ for Reτ > 0.
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Also, as G is a symmetric positive definite (d −1)× (d −1) matrix, so is Ĝ(τ ). Next,
as for each τ ∈ Cwith Reτ > 0, the functions Ĝ(τ )(̂h+μ̂∇ϕ)(τ) and Ĝ(τ )u0 belong
to L2(�)2, we infer that (5.4) possesses a unique solution p̂(τ ) ∈ H1(�) for such τ .
Therefore, p ∈ L2(0, T ; H1(�) ∩ L2

0(�)).
(ii) Assume ϕ0 ∈ L∞(�). Then, proving that ϕ ∈ L∞(Q) uses Alikakos’ iteration

method Alikakos (1979), which has been applied in Frigeri et al. (2015, Proof of
Theorem 3) to prove a result very similar to the one in this proposition. We recall
that this method, originated from Alikakos (1979, Proof of Theorem 2), relies on a
Moser-type iteration.

Let us now move on to the proof of the last part of (ii). For this to be achieved, we
use an equivalent reformulation of Eq. (5.2)1, where we use equality (5.3) to get

u = G(t)u0 + G ∗t
(

h − ϕ2

2
∇a − (J ∗x ϕ)∇ϕ − ∇ p̃

)

,

where the extra pressure is given by p̃ = p−(F(ϕ)+a ϕ2

2 ). Therefore, for each v ∈ H

and a.e. t ∈ (0, T ),

(u, v) =
(

G(t)u0 + G ∗t (h − ϕ2

2
∇a − (J ∗x ϕ)∇ϕ, v

)

− (G ∗t ∇ p̃, v).

This gives us the following equivalent form of u:

u = G(t)u0 + G ∗t (h − ϕ2

2
∇a + (∇ J ∗x ϕ)ϕ − ∇ p̃). (5.5)

This being so, we set

q̃ = G ∗t p̃ and g = G ∗t (h − ϕ2

2
∇a + (∇ J ∗x ϕ)ϕ.

Then, (5.2)2 amounts to

− �q̃ + div g = 0 in �,
∂q̃

∂n
= 0 on ∂�, (5.6)

with the compatibility condition
∫

�
q̃ = 0. This being so, let 1 < s < ∞ be fixed.

Using the Ls estimate of the gradient of the solutions to (5.6), one gets

‖∇q̃‖Ls (�) ≤ C ‖g‖Ls (�) .

This gives

‖u‖Ls (�) ≤ C
∥
∥
∥u0

∥
∥
∥
Ls (�)

+ ‖g‖Ls (�)

≤ C

(∥
∥
∥u0

∥
∥
∥
Ls (�)

+ ‖h‖Ls (�) + ‖(∇ J ∗x ϕ)ϕ‖Ls (�) +
∥
∥
∥ϕ2∇a

∥
∥
∥
Ls (�)

)

.
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Now, since ϕ ∈ L∞(Q) and ∇ J ∈ L1
uloc(R

2)2, we get readily from the assumptions
u0 ∈ Ls(�)2 and h ∈ L∞(0, T ; Ls(�)2) that u ∈ C([0, T ]; Ls(�)2). This concludes
the proof. ��

We are now able to prove the main result of this subsection.

Theorem 5.1 Assume ϕ0 ∈ L∞(�), u0 ∈ L4(�)2 and h ∈ L∞(0, T ; L4(�)2). Let
(u1, ϕ1) and (u2, ϕ2) be two weak solutions of (5.2) corresponding to initial values
(u01, ϕ

0
1) and (u02, ϕ

0
2), respectively. Then, there exists a positive constant C depending

on the norms of the two solutions such that, for all t ∈ [0, T ],
∫ t
0 ‖u1(τ ) − u2(τ )‖2L2(�)

dτ + ‖ϕ1(t) − ϕ2(t)‖2# + ∫ t
0 ‖ϕ1(τ ) − ϕ2(τ )‖2L2(�)

dτ

≤ C
(∥
∥ϕ0

1 − ϕ0
2

∥
∥2
# + ∥

∥u01 − u02
∥
∥2
L2(�)

+ ∣
∣ϕ0

1 − ϕ0
2

∣
∣
)

.

(5.7)
In particular, the solution of (5.2) is unique.

Proof We proceed as in (5.3) to rewrite (5.2) in the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = G(t)u0 + G ∗t (h − ϕ2

2 ∇a − (J ∗x ϕ)∇ϕ − ∇ p̃) in Q = (0, T ) × �,

div u = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇ϕ − �μ = 0 in Q,

μ = aϕ − J ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �.

(5.8)
With this in mind, let (u1, ϕ1) and (u2, ϕ2) be as in the theorem. We set u = u1 − u2,
ϕ = ϕ1 − ϕ2, μ = μ1 − μ2 and p̃ = p̃1 − p̃2. Then, ϕ(0) = ϕ0

1 − ϕ0
2 ≡ ϕ0 and

u(0) = u01 − u02 ≡ u0. Then, it is a fact that (u, ϕ, μ, p̃) satisfies
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = G(t)u0 − G ∗t [ϕ(ϕ1 + ϕ2)
∇a
2 + (J ∗x ϕ)∇ϕ2 + (J ∗x ϕ1)∇ϕ + ∇ p̃)] in Q,

div u = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇ϕ1 + u2 · ∇ϕ − �μ = 0 in Q,

μ = aϕ − J ∗ ϕ + F ′(ϕ1) − F ′(ϕ2) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �.

(5.9)
The variational form of (5.9) reads, for a.e. t ∈ (0, T ), as

〈
∂ϕ

∂t
, ψ

〉

+ (∇μ,∇ψ) = (uϕ1,∇ψ) + (u2ϕ,∇ψ) ∀ψ ∈ H1(�), (5.10)

(u, v) = (Gu0, v) −
(

G ∗t
(

ϕ(ϕ1 + ϕ2)
∇a

2

)

, v

)

− (G ∗t (J ∗x ϕ)∇ϕ2, v)

+ (G ∗t (J ∗x ϕ1)∇ϕ, v) ∀v ∈ H, (5.11)

where we use the fact that (G ∗t ∇ p̃, v) = −(G ∗t p̃, div v) = 0.
If we take ψ = 1 in (5.10), then we see that ϕ(t) = ϕ0 for all t ∈ [0, T ]. With this

in mind, we take ψ = (−�)−1(ϕ − ϕ) in (5.10) to get

1

2

d

dt
‖ϕ − ϕ‖2−1 + (μ, ϕ − ϕ) = (

uϕ1,∇(−�)−1(ϕ − ϕ)
) + (

u2ϕ, ∇(−�)−1(ϕ − ϕ)
)
,

that is,

1

2

d

dt
‖ϕ − ϕ‖2−1 + (

aϕ + F ′(ϕ1) − F ′(ϕ2), ϕ
) = (J ∗x ϕ, ϕ) + |�| ϕμ

+
(
uϕ1,∇(−�)−1(ϕ − ϕ)

)
+

(
u2ϕ,∇(−�)−1(ϕ − ϕ)

)
. (5.12)

In (5.11), we choose v = u. Then,

‖u‖2L2 = (Gu0, u) −
(

G ∗t
(

ϕ(ϕ1 + ϕ2)
∇a

2

)

, u
)

− (G ∗t (J ∗x ϕ)∇ϕ2, u)

+ (G ∗t (J ∗x ϕ1)∇ϕ, u)

= (Gu0, u) −
(

G ∗t
(

ϕ(ϕ1 + ϕ2)
∇a

2

)

, u
)

+ (G ∗t (∇ J ∗x ϕ), ϕ2u)

+ (G ∗t (∇ J ∗x ϕ1), ϕu)

=: I1 + I2 + I3 + I4. (5.13)
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We first notice that

|I3| = |(G ∗t (∇ J ∗x ϕ), ϕ2u)| ≤ ‖G ∗t (∇ J ∗x ϕ)‖L2 ‖ϕ2u‖L2

≤ ‖ϕ2‖L∞ ‖G ∗t (∇ J ∗x ϕ)‖L2 ‖u‖L2 ,

|I4| ≤ ‖G ∗t (∇ J ∗x ϕ1)‖L∞ ‖ϕ‖L2 ‖u‖L2 ,

|I2| ≤ ‖G ∗t ((ϕ1 + ϕ2)∇a)‖L∞ ‖ϕ‖L2 ‖u‖L2

and
|I1| ≤

∥
∥
∥Gu0

∥
∥
∥
L2

‖u‖L2 .

It follows from (5.13) that

‖u‖L2 ≤ (‖G ∗t ((ϕ1 + ϕ2)∇a)‖L∞ + ‖G ∗t (∇ J ∗x ϕ1)‖L∞) ‖ϕ‖L2

+
∥
∥
∥Gu0

∥
∥
∥
L2

+ ‖ϕ2‖L∞ ‖G ∗t (∇ J ∗x ϕ)‖L2 . (5.14)

But

‖G ∗t (∇ J ∗x ϕ)‖2L2 =
∫

�

∣
∣
∣
∣

∫ t

0
G(t − τ)(∇ J ∗x ϕ)(τ) dτ

∣
∣
∣
∣

2

dx

≤ C
∫ t

0

(∫

�

|∇ J ∗x ϕ|2 (τ )dx

)

dτ

≤ C
∫ t

0
‖∇ J‖2

L1
uloc

‖ϕ(τ)‖2L2 dτ,

so that

‖G ∗t (∇ J ∗x ϕ)‖L2 ≤ C ‖∇ J‖L1
uloc

(∫ t

0
‖ϕ(τ)‖2L2 dτ

) 1
2

. (5.15)

Repeating the same process as to obtain (5.15) for some other terms in (5.14), we get

‖u‖L2 ≤ C
(
(‖ϕ1‖L∞ + ‖ϕ2‖L∞) ‖∇a‖L∞ + ‖∇ J‖L1

uloc
‖ϕ1‖L∞

)
‖ϕ‖L2

+ C
∥
∥
∥u0

∥
∥
∥
L2

+ C ‖∇ J‖L1
uloc

(∫ t

0
‖ϕ(τ)‖2L2 dτ

) 1
2

,

or, equivalently,

‖u‖L2 ≤ C

(
∥
∥
∥u0

∥
∥
∥
L2

+ ‖ϕ‖L2 +
(∫ t

0
‖ϕ(τ)‖2L2 dτ

) 1
2
)

, (5.16)

where the constant C in (5.16) depends on the norms of ϕi , J and a.
Now, coming back to (5.12), we have

∣
∣
∣

(
uϕ1,∇(−�)−1(ϕ − ϕ)

)∣
∣
∣ ≤ C ‖u‖L2 ‖ϕ − ϕ‖# , (5.17)
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and

(
u2ϕ,∇(−�)−1(ϕ − ϕ)

)
≤ c0

8
‖ϕ‖2L2 + ‖u2‖4L4 ‖ϕ − ϕ‖2# + C |ϕ|2

≤ c0
8

‖ϕ‖2L2 + C ‖ϕ − ϕ‖2# . (5.18)

Next, using part (i) [of assumption (H2)], we see that

(
aϕ + F ′(ϕ1) − F ′(ϕ2), ϕ

) ≥ c0 ‖ϕ‖2L2.
(5.19)

For the first term on the right-hand side of (5.12), we have

|(J ∗x ϕ, ϕ)| ≤ |(J ∗x ϕ, ϕ − ϕ)| + |(J ∗x ϕ, ϕ)|
=

∣
∣
∣

(
∇(J ∗x ϕ),∇(−�)−1(ϕ − ϕ)

)∣
∣
∣ + |(J ∗x ϕ, ϕ)|

≤ C ‖∇ J‖L1
uloc

‖ϕ‖L2 ‖ϕ − ϕ‖# + C ‖J‖L1
uloc

‖ϕ‖L2 |ϕ|
≤ c0

8
‖ϕ‖2L2 + C ‖ϕ − ϕ‖2# ,

where we have combined Hölder’s and Young’s inequalities.
Next, as for |�|ϕμ, we know that |�| |μ| = ∣

∣
∫

�
(F ′(ϕ1) − F ′(ϕ2)) dx

∣
∣, so that,

appealing to the inequality
∣
∣F ′(s)

∣
∣ ≤ C(|F(s)| + 1), we find

|�| |μ| ≤
∫

�

(|F(ϕ1)| + |F(ϕ2)|) dx .

Recalling (2.26), we see that

∫

�1

F(ϕ̃ε(t, x)) dx ≤ 1

2

∥
∥ũε

0

∥
∥2
L2(�1)

+ 1

4

∫∫

�1×�1

Jε(x − ξ)
∣
∣ϕ̃ε

0(x) − ϕ̃ε
0(ξ)

∣
∣2 d d dξ

+
∫

�1

∣
∣F(ϕ̃ε

0(x))
∣
∣ dx + C . (5.20)

Owing to (1.4) (which amounts to
∥
∥ũε

0 − u0
∥
∥
L2(�1)d

+ ∥
∥ϕ̃ε

0 − ϕ0
∥
∥
L2(�1)

→ 0 as
ε → 0), we take the lim infE ′�ε→0 in (5.20) to get

∫

�

(|F(ϕ(t))| dx ≤ C(

∥
∥
∥u0

∥
∥
∥
L2(�)d

,

∥
∥
∥ϕ0

∥
∥
∥
L2(�)

) < ∞.

This shows that

|�| |μ| ≤ C = C

(∥
∥
∥u01

∥
∥
∥
L2(�)d

,

∥
∥
∥ϕ0

1

∥
∥
∥
L2(�)

,

∥
∥
∥u02

∥
∥
∥
L2(�)d

,

∥
∥
∥ϕ0

2

∥
∥
∥
L2(�)

)

. (5.21)
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Collecting (5.17)–(5.21) in (5.12) yields

1

2

d

dt
‖ϕ − ϕ‖2−1 + 3c0

4
‖ϕ‖2L2 ≤ C ‖u‖L2 ‖ϕ − ϕ‖# + C ‖ϕ − ϕ‖2# + C |ϕ|2 + C |ϕ|

≤ C
∥
∥
∥u0

∥
∥
∥
L2

‖ϕ − ϕ‖# + C ‖ϕ‖L2 ‖ϕ − ϕ‖#

+ C ‖ϕ − ϕ‖#
(∫ t

0
‖ϕ(τ)‖2L2 dτ

) 1
2

+ C ‖ϕ − ϕ‖2# + C |ϕ|2 + C |ϕ|
≤ C

∥
∥
∥u0

∥
∥
∥
2

L2

+ c0
8

‖ϕ‖2L2 +
∫ t

0
‖ϕ(τ)‖2L2 dτ + C ‖ϕ − ϕ‖2#

+ C |ϕ|2 + C |ϕ| .

It follows promptly

1

2

d

dt
‖ϕ − ϕ‖2# + 5c0

8
‖ϕ‖2L2 ≤ C

∥
∥
∥u0

∥
∥
∥
2

L2
+C ‖ϕ − ϕ‖2# +

∫ t

0
‖ϕ(τ)‖2L2 dτ +C |ϕ| .

(5.22)
Applying Gronwall’s lemma, we get readily

‖ϕ(t) − ϕ‖2# +
∫ t

0
‖ϕ(τ)‖2L2 dτ ≤ C(

∥
∥
∥u0

∥
∥
∥
2

L2
+ |ϕ|) for all t ∈ [0, T ].

The last inequality above gives rise to

‖ϕ(t)‖2# +
∫ t

0
‖ϕ(τ)‖2L2 dτ ≤ C

(

‖ϕ‖2# +
∥
∥
∥u0

∥
∥
∥
2

L2
+ |ϕ|

)

for all t ∈ [0, T ],

that is, for all t ∈ [0, T ],

‖ϕ1(t) − ϕ2(t)‖2# +
∫ t

0
‖ϕ1(τ ) − ϕ2(τ )‖2L2 dτ

≤ C

(∥
∥
∥ϕ0

1 − ϕ0
2

∥
∥
∥
2

#
+

∥
∥
∥u01 − u02

∥
∥
∥
2

L2
+

∣
∣
∣ϕ

0
1 − ϕ0

2

∣
∣
∣

)

. (5.23)

Now, integrating (5.16) over (0, t) for any fixed t ∈ [0, T ] and using (5.23), we get
(5.7), concluding the proof of the theorem. ��

We are now in a position to prove Theorem 1.1.
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5.2 Proof of Theorem 1.1

Proof Given an ordinary sequence E of positive real numbers converging to zero,
we have derived the existence of a subsequence E ′ from E and of a quadruple
(u0, ϕ0, μ0, p0) with u0 ∈ L2(Q;B1,2

A (R2; H1
0 (I ))3), ϕ0 ∈ L∞(0, T ; H1(�)),

μ0 ∈ L2(0, T ; H1(�)) and p0 ∈ L2(0, T ; L2
0(�)) such that, as E ′ � ε → 0,

uε → u0 in L2(Qε)
3-weak �A and ε∇uε → ∇ yu0 in L2(Qε)

3×3-weak �A,

ϕε → ϕ0 in L2(Qε)-strong �A,

με → μ0 in L2(Qε)-weak �A,

and
pε → p0 in L2(Qε) -weak �A.

By setting u(t, x) = 1
2

∫

I M(u0(t, x, ·, ζ )) dζ = (u(t, x), ud(t, x)), we have shown
that ud = 0 and that the quadruple (u, ϕ0, μ0, p0) solves system (1.9). Furthermorewe
have u ∈ C([0, T ]; H), ϕ0 ∈ L4(0, T ; L4(�)) and p0 ∈ L2(0, T ; H1(�) ∩ L2

0(�)).
Next, assuming that ϕ0 ∈ L∞(�), we get that ϕ0 ∈ L∞(Q) so that, if further u0 ∈
L4(�)2, the solution of (5.2) is unique thanks to Theorem 5.1. As a result, the whole
sequence (uε, ϕε, με, pε) converges in the sense of (1.8) towards the unique solution
of (1.9). The theorem is therefore proved. ��

6 Proof of Theorem 1.2

Proof The existence of (u0, ϕ0, μ0, p0) is obtained as at the beginning of the proof of
Theorem 1.1. So we focus on system (4.35), which reads in the special case d −1 = 1
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = G ∗
(

h1 + μ0
∂ϕ0

∂x1
− ∂ p0

∂x1

)

in (0, T ) × (a, b) = Q,

∂u
∂x1

= 0 in Q and u(t, a) = u(t, b) = 0 in (0, T ),

∂ϕ0

∂t
+ u · ∂ϕ0

∂x1
− ∂2μ0

∂x21
= 0 in Q,

μ0 = âϕ0 − Ĵ ∗ ϕ0 + F ′(ϕ0) in Q,

μ′
0(t, a) = μ′

0(t, b) = 0 in (0, T ),

ϕ0(0) = ϕ0 in (a, b).

(6.1)
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We note that we have assumed u0 = 0. From the equality
∂u
∂x1

= 0 in Q, we deduce

that u(t, x1) = u(t) for all t ∈ (0, T ). Now, since u(t, a) = 0 in (0, T ), we infer
u = 0 in Q. Therefore, the first equation in (6.1) becomes

G ∗
(

h1 + μ0
∂ϕ0

∂x1
− ∂ p0

∂x1

)

= 0 in Q, (6.2)

and the third one becomes
∂ϕ0

∂t
− ∂2μ0

∂x21
= 0 in Q. The last four equations in (6.1)

amount in the end to the non-local Cahn–Hilliard equation in one spatial dimension,
which is known to possess a unique solution in the underlying spaces. Now, applying

the Laplace transform to (6.2), we get that h1 + μ0
∂ϕ0

∂x1
− ∂ p0

∂x1
= 0. Taking into

account the fact that p0 ∈ L2
0(a, b), we deduce that p0 solves (1.11). This completes

the proof of Theorem 1.2. ��

7 Some Concrete Illustrations

The goal of this section is to present some concrete situations leading to the use of
sigma-convergence with the underlying algebras with mean value, so that the homog-
enization problem for (1.2) is solvable.

7.1 Equidistribution of Microstructures inÄ

We assume that the heterogeneity is uniformly distributed in �. This means that
the distribution function of the microstructures is periodic, so that the function
y �→ B(x, y, ζ ) is 1-periodic in each of its occurrences. Therefore, the corresponding
algebra with mean value on R

d−1 is the algebra of Y -periodic continuous functions
A = Cper(Y ), Y = (0, 1)d−1. The mean value of a function u ∈ A is given by

M(u) =
∫

Y
u(y) dy.

The corresponding function spaces are defined as follows: B p
A(Rd−1; L p(I )) =

L p
per(Y ; L p(I )) (the space of functions in L p

loc(R
d−1; L p(I )) that are Y -periodic),

B1,p
A (Rd−1;W 1,p(I )) = W 1,p

per (Y ;W 1,p(I )) (the subspace of W 1,p
loc (Y ;W 1,p(I ))

made of periodic Y -periodic functions), and

B1,p
#A (Rd−1;W 1,p(I )) = W 1,p

# (Y ;W 1,p(I ))

=
{

u ∈ W 1,p
per (Y ;W 1,p(I )) :

∫

Z
u(y) dy = 0

}

123



   43 Page 52 of 56 Journal of Nonlinear Science            (2024) 34:43 

(where Z = Y × I with I = (−1, 1)), a Banach space under the norm

‖u‖
W 1,p

#
=

(∫

Z
|∇u|p dy

)1/p

, u ∈ W 1,p
# (Y ;W 1,p(I )).

We notice that, here, B p
A(Rd−1; L p(I )) = B p

A(Rd−1; L p(I )) (L p
per(Y ; L p(I )) is

a Banach space with the corresponding norm) and, so, B1,p
A (Rd−1;W 1,p(I )) =

B1,p
A (Rd−1;W 1,p(I )).
In this case, the suitable concept of convergence is the two-scale conver-

gence for thin heterogeneous domains, which is defined as follows: A sequence
(uε)ε>0 ⊂ L p(Qε) is said to two-scale converge weakly in L p(Qε) to u0 ∈
L p(Q; L p

per(Y ; L p(I ))) if, as ε → 0,

1

ε

∫

Qε

uε(t, x) f
(
t, x,

x

ε

)
dx dt →

∫

Q

∫

Z
u0(t, x, y) f (t, x, y) dy dx dt

for any f ∈ L p′
(Q; Cper(Y ; L p′

(I ))) (1/p′ = 1 − 1/p).
In this case, the homogenization result in Theorem 1.1 reads as follows.

Theorem 7.1 Assume d = 3. For each ε > 0, let (uε, ϕε, με, pε) be the unique
solution of (1.2). Then, up to a subsequence (not relabelled), (uε, με, pε)ε>0
weakly two-scale converges (as ε → 0) in L2(Qε)

3 × L2(Qε) × L2(Qε) towards
(u0, μ0, p0) and (ϕε)ε>0 strongly two-scale converges in L2(Qε) towards ϕ0 with
ϕ0 ∈ L∞(0, T ; H1(�)), u0 ∈ L2(Q;W 1,2

per (Y ; H1
0 (I ))3), μ0 ∈ L2(0, T ; H1(�))

and p0 ∈ L2(0, T ; L2
0(�)). Setting

Mεφ(t, x) = 1

2ε

∫ ε

−ε

φ(t, x, x3) dx3 for (t, x) ∈ Q,

and

u(t, x) = 1

2

∫ 1

−1
M(u0(t, x, ·, x3)) dx3 ≡ (u(t, x), u3(t, x)),

one has u3 = 0 and, up to the same subsequence as above, we have (1.8) as ε → 0.
Moreover, it holds that u ∈ C([0, T ]; H), ϕ0 ∈ C([0, T ]; L2(�)) ∩ L2(0, T ; H1(�)),
p0 ∈ L2(0, T ; H1(�)∩ L2

0(�)) and the quadruple (u, ϕ0, μ0, p0) is a weak solution
to (1.9), where ∗ stands for the convolution operator with respect to time in (1.9)1 and
with respect to space in (1.9)4, and G = (Gi j )1≤i, j≤2 is a symmetric positive definite
2 × 2 matrix defined by its entries Gi j (t, x) = 1

2

∫

Z ωi (x, t, y)e j dy. Here, ω j =
(ω

j
i )1≤i≤3 is the unique solution inC(Q; L2

per(Y ; L2(I ))3)∩L2(Q;W 1,2
per (Y ; H1

0 (I ))3)
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of the auxiliary Stokes system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ω j

∂t
− divy(B(x, ·)∇yω

j ) + ∇yπ
j = 0 in (0, T ) × Z ,

divy ω j = 0 in (0, T ) × Z ,

ω j (0) = e j in Z and
∫

Z ω
j
3(x, t, y) dy = 0,

e j being the j th vector of the canonical basis in R
3. Moreover, if ϕ0 ∈ L∞(�) and

u0 ∈ L4(�)2, then the quadruple (u, ϕ0, μ0, p0) is the unique solution of (1.9), so
that the whole sequence (uε, ϕε, με, pε)ε>0 converges in the sense of (1.8).

Proof The result is obtained just by identifying the mean value of a periodic function:
for u ∈ L2

per(Y ), M(u) = ∫

Y u(y) dy. ��

7.2 Almost Periodic Distribution of theMicrostructures

Now, we assume that the heterogeneity is induced in an almost periodic fashion. This
amounts to the function y �→ B(x, y, ζ ) being almost periodic in the Besicovitch
sense (Besicovitch 1954; Bohr 1947). The corresponding algebra with mean value in
R
d−1 is then the algebra of Bohr continuous almost periodic functions on R

d−1, say
A = AP(Rd−1). We recall that AP(Rd−1) (Besicovitch 1954; Bohr 1947) is defined
as the algebra of functions on R

d−1 that are uniformly approximated by finite linear
combinations of functions in the set {cos(k·), sin(k·) : k ∈ R

d−1}where cos(k·)(y) =
cos(2πk · y) and sin(k·)(y) = sin(2πk · y) (y ∈ R

d−1). It is known that AP(Rd−1) is
an algebra wmv called the almost periodic algebra wmv on R

d−1. The corresponding
generalized Besicovitch space B p

A(Rd−1) is precisely the Besicovitch spaceB p(Rd−1)

defined in Besicovitch (1954), Bohr (1947).
Under the almost periodic distribution of microstructures, the main results in The-

orems 1.1 and 1.2 are satisfied with the corresponding function spaces. We recall that,
in this case, the mean value (Bohr 1947) of a function u ∈ AP(Rd−1) is defined
as the unique constant belonging to the closed convex hull of the set of translates
{u(· + a) : a ∈ R

d−1} of u. It also satisfies property (3.1).

7.3 The Perturbed Periodic/Almost Periodic Setting

Some other examples can be considered, namely the asymptotic periodic distribution
of microstructures in �, which leads to the use of the algebra wmv A = Cper(Y ) +
C0(Rd−1) (Jäger and Woukeng 2021, Section 5.2.3), where C0(Rd−1) is the Banach
algebra of continuous functions that vanish at infinity. In that case, assumption (H5)
holds with A = Cper(Y ) + C0(Rd−1). We may also deal with the asymptotic almost
periodic distribution of heterogeneities, with the corresponding algebra wmv A =
AP(Rd−1) + C0(Rd−1) (Jäger and Woukeng 2021, Section 5.2.3).
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