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Abstract
Weconsider themotion of a compressible viscous fluid containing amoving rigid body
confined to a planar domain � ⊂ R2. The main result states that the influence of the
body on the fluid is negligible if (i) the diameter of the body is small and (ii) the fluid
is nearly incompressible (the low Mach number regime). The specific shape of the
body as well as the boundary conditions on the fluid–body interface are irrelevant and
collisions with the boundary ∂� are allowed. The rigid body motion may be enforced
externally or governed solely by its interaction with the fluid.
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1 Introduction

There is a vast number of recent studies concerning themotionof a rigid body immersed
in/or containing a compressible viscous fluid.We focus on the situation when the body
is “small”; therefore, its influence on the fluid motion is expected to be negligible. By
small, we mean that the body is contained in a ball with a small radius. The problem is
mathematically more challenging in the case of planar (2d) flows, where even small
objects may have large capacity.

The motion of a small object immersed in an inviscid (Euler) incompressible fluid
is studied by Iftimie et al. (2003). Similar problems again in the framework of inviscid
fluids have been considered by Glass et al. (2014), Glass et al. (2016). The asymptotic
behavior of solutions of the incompressible Euler equations in the exterior of a single
smooth obstaclewhen the obstacle becomes very thin tending to curve has been studied
by Lacave (2009a).

In the context of viscous Newtonian fluids, the flow around a small rigid obstacle
was studied by Iftimie et al. (2006). Lacave (2009b) studies the limit of a viscous fluid
flow in the exterior of a thin obstacle shrinking to a curve. In the article (Feireisl et al.
(2023)), we have established that the fluid flow is not influenced by the presence of
the infinitely many bodies in the asymptotic limit.

Finally, let us mention results in planar domains, where the body does not influence
the flow in the asymptotic limit. In Chipot et al. (2020), the authors considered two-
dimensional “punctured periodic domain” with the periodic boundary conditions on
the boundary of the domain and examine the behavior of solutions as the radius of
the obstacle goes to zero. Lacave and Takahashi (2017) consider a single disk moving
under the influence of a viscous fluid. They proved convergence toward the Navier–
Stokes equations as the size of the solid tends to zero, its density is constant and the
initial data small. Finally, He and Iftimie (2019) extend the above result to a general
shape of the body and to the initial velocities not necessarily small.

To the best of our knowledge, the problem of negligibility of a small rigid body
immersed in a planar viscous compressible fluid is completely open. Bravin and
Nečasová (2023) addressed the problem in the 3d setting, where the capacity of the
object in a suitable Sobolev norm is small enough but they need the restriction of
adiabatic exponent γ ≥ 6. Recently, in Feireisl et al. (2023), we can handle physically
realistic adiabatic coefficient γ > 3/2 by proposing a new test function that need not
vanish on the moving body, but only satisfy the rigid body motion constraint.

1.1 Problem Formulation

Neglecting completely the possible thermal effects as well as the external body forces,
we consider the isentropic compressible fluid in the lowMachnumber regimegoverned
by the following system of equations:

∂t� + divx (�u) = 0, (1.1)

∂t (�u) + divx (�u ⊗ u) + 1

ε2m
∇x p = divxS(∇xu), (1.2)
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where the stress tensor is given by:

S(∇xu) = μ
(∇xu + ∇ t

xu − divxuI
) + λdivxuI, μ > 0, λ ≥ 0, (1.3)

and the pressure
p = p(�) = a�γ , γ > 1, a > 0. (1.4)

The fluid is confined to a bounded planar domain � ⊂ R2 and the momentum
equation (1.2) satisfied in

�ε,t = � \ Bε,t , t ∈ (0, T ), (1.5)

where

Bε,t =
{

x ∈ R2
∣∣∣ |x − hε(t)| ≤ ε

}
, (1.6)

hε ∈ W 1,∞([0, T ]; R2), ε|h′
ε(t)| → 0 uniformly for a.a. t ∈ (0, T ) as ε → 0.

(1.7)

The ball Bε,t is the part of the plane containing the rigid object at the time t . Note
carefully that, in general, we do not require Bε,t ⊂ �. Finally, we impose the no-slip
boundary conditions

u|∂� = 0. (1.8)

1.2 Main Results

Below, we formulate themain hypotheses imposed on the fluidmotion. It is convenient
to consider the density � = �ε as well as the velocity u = uε to be defined on the
whole physical space (0, T ) × R2. Accordingly, we set

� = �ε(t, x) = � − a positive constant whenever x ∈ R2 \ �,

u = uε(t, x) = 0 if x ∈ R2 \ �. (1.9)

Throughout the whole text, we assume the following:

(H1)
hε ∈ W 1,∞([0, T ]; R2); (1.10)

(H2) (�ε, uε), �ε ≥ 0 is a weak renormalized solution of the equation of continuity
(1.1), meaning

∫ T

0

∫

R2

[
�ε∂tϕ + �εuε · ∇xϕ

]
dx dt = −

∫

R2
�0,εϕ(0, ·) dx,

∫ T

0

∫

R2

[
b(�ε)∂tϕ + b(�ε)uε · ∇xϕ+ (

b(�ε) − b′(�ε)�ε

)
divxuεϕ

]
dx dt

= −
∫

R2
b(�ε,0)ϕ(0, ·) dx, (1.11)
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for any ϕ ∈ C1
c ([0, T ) × R2) and any b ∈ C1[0,∞), b′ ∈ Cc[0,∞);

(H3) (�ε, uε) is a weak solution of the momentum equation (1.2) in the fluid
domain ∪t∈(0,T )�ε,t , meaning

uε ∈ L2(0, T ; W 1,2
0 (�; R2)), (1.12)

and

∫ T

0

∫

�

[
�εuε · ∂tϕ + �εuε ⊗ uε : ∇xϕ + 1

ε2m
p(�ε)divxϕ

]
dx dt

=
∫ T

0

∫

�

S(∇xuε) : ∇xϕ dx dt −
∫

�

�ε,0uε,0 · ϕ(0, ·) dx (1.13)

for any ϕ ∈ C1
c (∪0≤t<T �ε,t ; R2) ∩ C1

c ([0, T ) × �; R2);
(H4) The energy inequality

∫

�

1

2
�ε|uε|2(τ, ·) dx + 1

ε2m

∫

�ε,τ

(
P(�ε) − P ′(�)(�ε − �) − P(�)

)
(τ, ·) dx

+
∫ τ

0

∫

�

S(∇xuε) : ∇xuε dx dt

≤
∫

�

1

2
�ε,0|uε,0|2 dx + 1

ε2m

∫

�F ,ε,0

(
P(�ε,0) − P ′(�)(�ε,0 − �) − P(�)

)
dx

(1.14)

holds for a.a. τ ∈ (0, T ), for a certain constant �. The pressure potential P(�) is
defined as

P ′(�)� − P(�) = p(�), (1.15)

whence
P(�) = a

γ − 1
�γ . (1.16)

In (1.14), �ε,0 ⊂ �F ,ε,0 and �F ,ε,0 is the fluid domain at the initial time, meaning

�F ,ε,0 = � \ S0, S0 is the initial position of the rigid body and S0 ⊂ Bε,0.

Remark 1.1 Let us mention that the specific form of the energy inequality (1.14)
follows from Feireisl (2003, Lemma 3.2) and (5.18).

Remark 1.2 Observe that from (1.15), we have

P ′′(�) = p′(�)

�
for � > 0.
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Thus, the function P is strictly convex, and consequently by using (1.16), we obtain

(P(�ε) − P ′(�)(�ε − �)) − P(�) ≥ c(�)

{
(�ε − �)2 if �ε ∈ (

�
2 , �),

1 + �
γ
ε otherwise .

(1.17)

In particular, the second integral in (1.14) is non-negative.

Our main result reads as follows:

Theorem 1.3 Let � ⊂ R2 be a bounded domain of class C3. Let (�ε, uε)ε>0 satisfy
the hypotheses (H1)–(H4). In addition, suppose

�ε,0 ≥ 0 a.e. in �,
1

ε2m

∫

�F ,ε,0

(
P(�ε,0) − P ′(�)(�ε,0 − �) − P(�)

)
dx → 0,

(1.18)
where

min

{
m; 2m

γ

}
> 3. (1.19)

uε,0 → u0 weakly in L2(�; R2),

∫

�

�ε,0|uε,0|2 dx →
∫

�

�|u0|2 dx as ε → 0,

where u0 ∈ W 2,∞(�), divxu0 = 0, u0|∂� = 0; (1.20)

ε|h′
ε(t)| → 0 uniformly for a.a. t ∈ (0, T ) as ε → 0. (1.21)

Then,

sup
τ∈[0,T ]

‖�ε(τ, ·) − �‖Lγ (�ε,τ ) → 0 with γ as in (1.4), (1.22)

uε → u in L2(0, T ; W 1,2
0 (�; R2)) (1.23)

as ε → 0, where u is the (unique) classical solution of the incompressible Navier–
Stokes system

divxu = 0,

�∂tu + �divx (u ⊗ u) + ∇x
 = μ�xu,

u|∂� = 0,

u(0, ·) = u0 (1.24)

in (0, T ) × �.

Remark 1.4 Wewant to point out that as observedbyHeand Iftimie (2021), assumption
(1.21) holds for the fluid–structure interaction problem if the condition (5.21) satisfies.
Observe that the condition (5.21) implies inf �Sε → ∞, where �Sε is the density of the
rigid body immersed in the fluid.
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Remark 1.5 The hypotheses (1.18), (1.20) correspond to the well-prepared data in
the low Mach number limit, cf. Masmoudi (2000). Moreover, as u0 belongs to the
class (1.20), the standard maximal regularity theory yields a strong solution of the
Navier–Stokes system (1.24), unique in the class

u ∈ L p(0, T ; W 2,p(�; R2)), ∂tu ∈ L p(0, T ; L p(�; R2)),

∇x
 ∈ L p(0, T ; L p(�; R2)), 1 ≤ p < ∞ (1.25)

see e.g., Gerhardt (1978), von Wahl (1977). The solution is classical in (0, T ) × � as
a consequence of the interior regularity estimates.

The hypotheses of Theorem 1.3 are satisfied if (�ε, uε) is a weak solution of the
fluid–structure interaction problem of a single rigid body immersed in a viscous com-
pressible fluid in the sense of Feireisl (2003) (see also Desjardins and Esteban 2000)
or if the motion of the body is prescribed as in Feireisl et al. (2013). A detailed proof
is given in Appendix 5.

The remaining part of the paper is devoted to the proof of Theorem 1.3. Similarly
to the purely incompressible setting studied by He and Iftimie (2021) (cf. Lacave and
Takahashi 2017), the main problem is the rather weak estimate (1.21) that does not
allow for a precise identification of the limit trajectory of the body. In addition, two
new difficulties appear in the compressible regime:

• Possible fast oscillations of acoustic (gradient) component of the velocity that
cannot be a priori excluded even for thewell-prepared data because of the influence
of the rigid body.

• Possible contacts of the body—intersection of the balls Bε,t—with the outer
boundary ∂�.

To overcome the above-mentioned difficulties, we proceed as follows. In Sects. 2,
3, we identify the system of equations satisfied by the limit velocity u. Due to the lack
of information on ∂tuε, the limit of the convective term as well as the kinetic energy is
described in terms of the corresponding Youngmeasure. The limit u is therefore a gen-
eralized dissipative solution of the incompressible Navier–Stokes system in the sense
of Abbatiello and Feireisl (2020). In particular, we adapt the approximation of the test
functions introduced by He and Iftimie to the geometry of a bounded domain. Finally,
in Sect. 4, apply the weak–strong uniqueness result proved in Abbatiello and Feireisl
(2020) to conclude that the limit is, in fact, a strong solution of the Navier–Stokes
system, whereas the associated Young measure reduces to a parametrized family of
Dirac masses.

2 Identifying the Limit, the Equation of Continuity, Energy Balance

It follows from the hypotheses (1.18), (1.20) that the initial energy on the right-hand
side of the energy inequality (1.14) is bounded uniformly for ε → 0. Applying Korn–
Poincaré inequality, we get, up to a suitable subsequence,

uε → u weakly in L2(0, T ; W 1,2
0 (�; R2)). (2.1)
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Next, �ε satisfies the renormalized equation of continuity (1.11).Moreover, the energy
inequality (1.14), the estimate (1.17) give ‖�ε(τ, ·) − �‖(Lγ +L2)(�ε,τ ) → 0 as ε → 0,
we combine this observation with the fact that �ε,t → � as ε → 0 and these yield

�ε → � in (0, T ) × � in measure as ε → 0.

In particular, we may perform the limit in (1.11) obtaining

b′(�)�divxu = 0,

yielding
divxu = 0. (2.2)

Finally, using the hypotheses (1.20), (1.21) and the property of weak lower semi-
continuity of convex functionals, we perform the limit in the energy inequality
obtaining

∫

�

1

2
�|u|2(τ, ·) dx + E(τ ) + μ

∫ τ

0

∫

�

∇xu : ∇xu dx dt ≤
∫

�

1

2
�|u0|2 dx (2.3)

for a.a. τ ∈ (0, T ). Here, C(τ ) ∈ L∞(0, T ) is the so-called total energy defect defined
as

E(τ ) = lim inf
ε→0

∫

�

1

2
�ε|uε|2(τ, ·) dx −

∫

�

1

2
�|u|2(τ, ·) dx ≥ 0 for a.a. τ ∈ (0, T ).

(2.4)

3 Identifying the Limit, theMomentum Equation

The next and more delicate step is to perform the limit ε → 0 in the momentum
equation (1.2). To eliminate the singular pressure term, we consider the test functions

ϕε ∈ C1
c (∪0≤t<T �ε,t ; R2) ∩ C1

c ([0, T ) × �; R2), divxϕε = 0. (3.1)

Accordingly, the weak formulation (1.13) gives rise to

∫ T

0

∫

�

[
�εuε · ∂tϕε + �εuε ⊗ uε : ∇xϕε

]
dx dt =

∫ T

0

∫

�

S(∇xuε) : ∇xϕε dx dt

−
∫

�

�0,εu0,ε · ϕε(0, ·) dx .

(3.2)

3.1 Some Useful Estimates

Note that (3.2) is relevant only on the fluid part ∪t∈[0,T ]�ε,t , where the energy
inequality (1.14) yields uniform bounds on the density. This motivates the following
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decomposition of any measurable functions v:

v = [v]ess + [v]res,

where

[ v]ess = v1 1
2�≤v≤2�.

Thanks to the energy inequality (1.14), we get

[�ε]essuε bounded in L∞(0, T ; L2(�)) ∩ L2(0, T ; Lq(�)) for any 1 ≤ q < ∞.

(3.3)
Moreover, by the energy inequality,

[�ε]ess → � in measure in ((0, T ) × �), (3.4)

whence we conclude

[�ε]essuε → �u weakly -(*) in L∞(0, T ; L2(�; R2)),

and weakly in L2(0, T ; Lq(�; R2)) for any 1 ≤ q < ∞. (3.5)

In addition, we also have

�εuε = (�ε − �)uε + �uε,

where thanks to the energy inequality (1.14) and estimate (1.17),

∫

�ε,τ

|�ε − �||uε| dx
<∼ ‖�ε(τ, ·) − �‖(Lγ +L2)(�ε,τ )‖uε‖W 1,2

0 (�;R2)

<∼

ε
min{m, 2m

γ
}‖uε(τ, ·)‖W 1,2

0 (�;R2)
(3.6)

for any τ ∈ [0, T ].
Similarly,

[�ε]essuε ⊗ uε is bounded in L1(0, T ; Lq(�; Rd×d)) ∩ L∞(0, T ; L1(�; Rd×d))

for any 1 ≤ q < ∞; (3.7)

whence, by interpolation,

[�ε]essuε ⊗ uε → �u ⊗ u weakly in Lr ((0, T ; L2(�; R2)) for some r > 1. (3.8)

The tensor �u ⊗ u ∈ Rd×d
sym is positively semi-definite and

�u ⊗ u − �u ⊗ u ≥ 0. (3.9)
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Indeed, for any d ∈ Rd :

[
�u ⊗ u − �u ⊗ u

] : (d ⊗ d) = lim
ε→0

|√[�ε]essuε · d|2 − |√�u · d|2.

Thus, the desired conclusion (3.9) follows from (2.1), (3.4) and weak lower semi-
continuity of convex functions. Finally, as

[�ε]ess|uε|2 ≤ �ε|uε|2,

we get

0 ≤
∫

�

trace
[
�u ⊗ u − �u ⊗ u

]
dx ≤ 2E, (3.10)

where E is the total energy defect appearing on the left-hand side of the energy
inequality (2.3).

As for the residual components, we deduce from the energy inequality

∫

�ε,τ

[�ε]γres(τ, ·) dx
<∼ ε2m, 0 ≤ τ ≤ T . (3.11)

Consequently, by Hölder’s inequality,

∫

�ε;τ
[�ε]res|uε| dx

<∼ ε
2m
γ ‖uε(τ, ·)‖Lq (�;Rd ),

1

γ
+ 1

q
= 1, (3.12)

and, similarly,

∫

�ε;τ
[�ε]res|uε ⊗ uε| dx

<∼ ε
2m
γ ‖uε(τ, ·)‖2Lq (�;Rd )

,
1

γ
+ 2

q
= 1 (3.13)

for a.a. τ ∈ (0, T ).

3.2 Constructing a Suitable Class of Test Functions

Our goal is to approximate a test function

ϕ ∈ C∞
c ([0, T ] × �; R2), divxϕ = 0,

by a suitable family of admissible test functions (ϕε)ε>0 in (3.2).
The test function are obtained following the construction of He and Iftimie (2019,

2021), specifically,

ϕ̃ε = ∇⊥
x (ηε(x − hε(t))
ε),

with the potential 
ε,

∇⊥
x 
ε = ϕ normalized as 
ε(t, hε(t)) = 0.
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The cut-off functions ηε near the disk D(hε(t), ε) are smooth and satisfy the following
properties (see He and Iftimie 2019, Lemma 3):

|ηε| ≤ 1, ηε(y) = 0 if |y| ≤ ε, ηε(y) = 1 if |y| ≥ α(ε)ε, (3.14)

|∇xηε(y)| <∼ 1

ε

1

log(α(ε))
, |∇2

x ηε(y)| <∼ 1

ε2
. (3.15)

where α(ε) is chosen in such a way that

α(ε) → ∞, α(ε)ε(1 + |h′
ε(t)|) → 0 as ε → 0. (3.16)

As shown in He and Iftimie (2019, Lemma 5), the functions ϕ̃ε enjoy the following
properties:

ϕ̃ε, ∇x ϕ̃ε ∈ Cc(([0, T ] × Rd) \ ∪t∈[0,T ]Bε,t ), ∂t ϕ̃ε ∈ L∞((0, T ) × R2; R2),

(3.17)

dist[hε(τ ); ∂�] > εα(ε) ⇒ ϕ̃ε(τ, ·)|∂� = 0, (3.18)

ϕ̃ε → ϕ strongly in L∞(0, T ; W 1,2(R2; R2)) as ε → 0. (3.19)

Unfortunately, the functions ϕ̃ε do not vanish on ∂� unless dist[h(t); ∂�] > εα(ε).
To remedy this, we consider a convex combination

ϕε = χε(t)ϕ̃ε + (1 − χε(t))ϕ for suitable 0 ≤ χε(t) ≤ 1, χε ∈ W 1,∞(0, T ).

First observe that similarly to ϕε,

‖χε(t)ϕ̃ε + (1 − χε)ϕ‖L∞(0,T ;W 1,2(�;R2))

<∼ 1,

and

ϕε − ϕ =
(
χε(t)ϕ̃ε + (1 − χε)ϕ

)

−ϕ = χε(ϕ̃ε − ϕ) → 0 in L∞ (
0, T ; W 1,2(�; R2)

)
as ε → 0. (3.20)

Next, we compute the approximation error in the time derivative

∂t

(
χε(t)ϕ̃ε + (1 − χε)ϕ

)
− ∂tϕ = χε(t)(∂t ϕ̃ε − ∂tϕ) + χ ′

ε(t)(ϕ̃ε − ϕ),

where the former error term

χε(t)(∂t ϕ̃ε − ∂tϕ)
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can be controlled in W −1,2 exactly as in He and Iftimie (2021) since χ is independent
of x . As for the latter, we have

χ ′
ε(t)(ϕ̃ε − ϕ) = χ ′

ε(t)∇⊥
x

(
[ηε(x − h(t)) − 1]
ε

)

= ∇⊥
x

[
χ ′

ε(t)
(
[ηε(x − h(t)) − 1]
ε

)]
,

where, in accordance with (3.14),

‖χ ′
ε(t)[ηε(x − h(t)) − 1]
ε‖2L2(�)

<∼ |χ ′
ε(t)|2ε2α2(ε). (3.21)

Thus if
|χ ′

ε(t)| <∼ |h′
ε(t)|, (3.22)

the latter error vanishes in W −1,2 for ε → 0 as a consequence of (3.16).
For δ > 0 fixed, let ϕ ∈ C1([0, T ) × �) be given such that

ϕ(t, x) = 0 whenever dist[x, ∂�] ≤ 2δ. (3.23)

Finally, we choose

χε(t) = Hδ

(
dist[hε(t); ∂�]

)
, 0 ≤ Hδ ≤ 1, Hδ(z)

= 0 for z ≤ δ

2
, Hδ(z) = 1 for z ≥ δ,

where Hδ is a Lipschitz function. We claim that the test functions

ϕε = χε(t)ϕ̃ε + (1 − χε(t))ϕ

vanish both on the boundary ∂� and on the balls Bε,t , t ∈ [0, T ]. First, by construction,
the function

χεϕ̃ε

vanishes on Bε,t for any t ∈ [0, T ]. Moreover, if χε > 0, then, in view of (3.16),

dist[hε(t), ∂�] >
δ

2
> εα(ε) for ε small enough.

It follows from (3.18) that χεϕε|∂� = 0.
Second, obviously (1−χε)ϕ|∂� = 0.Next, ifχε < 1,we have dist[hε(t); ∂�] < δ.

Thus, in view of (3.23), (1 − χε)ϕ(t, ·)|Bε,t = 0 as soon as ε < δ.
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3.3 Asymptotic Limit

The function ϕε constructed in Sect. 3.2 represents a legitimate test function for the
momentum balance (3.2). Our goal is to perform the limit ε → 0.
Step 1: Viscous term. In view of hypothesis (1.20), (2.1), and (2.2), it follows from
(3.20) that

∫ T

0

∫

�

S(∇xuε) : ∇xϕε dx dt −
∫

�

�0,εu0,ε · ϕε(0, ·) dx

→ μ

∫ T

0

∫

�

∇xu : ∇xϕ dx dt −
∫

�

�u0 · ϕ(0, ·) dx

(3.24)

for any ϕ ∈ C∞
c ([0, T ) × �; Rd), divxϕ = 0.

Step 2: Convective term. We can write

∫ T

0

∫

�

�εuε ⊗ uε : ∇xϕε dx dt =
∫ T

0

∫

�

[�ε]essuε ⊗ uε : ∇xϕε dx dt

+
∫ T

0

∫

�

[�ε]resuε ⊗ uε : ∇xϕε dx dt

We use (3.8) to obtain

∫ T

0

∫

�

[�ε]essuε ⊗ uε : ∇xϕε dx dt →
∫ T

0

∫

�

�u ⊗ u : ∇xϕ dx dt

+
∫ T

0

∫

�

(
�u ⊗ u − �u ⊗ u

)
: ∇xϕ dx dt . (3.25)

Step 3: Time derivative. Using the same arguments as in He and Iftimie (2021)
combined with (3.21), we get

∫

�

�uε · ∂tϕε dx
<∼ ‖uε‖W 1,2

0 (�;R2)
‖∂tϕε‖W−1,2(�;R2) → 0 in L2(0, T ). (3.26)

Step 4: Remaining terms. The final step is to show

∫ T

0

∫

�ε,t

(�ε − �)uε · ∂tϕε dx dt → 0,

∫ T

0

∫

�ε,t

[�ε]resuε ⊗ uε : ∇xϕε dx dt → 0. (3.27)

A direct manipulation reveals

‖∇xϕε‖L∞((0,T )×�;R2×2)

<∼ ‖∇2ηε‖L∞(R2) + 1,
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‖∂tϕε‖L∞((0,T )×�;R2×2)

<∼ (1 + |h′
ε(t)|)(‖∇2ηε‖L∞(R2) + 1). (3.28)

Consequently, in view of (3.15) and (3.6), (3.13), the desired conclusion (3.27) follows
as soon as

min

{
m; 2m

γ

}
> 3. (3.29)

4 Proof of theMain Result

Summarizing the results obtained in the preceding section, we may infer that limit
velocity

u ∈ L∞(0, T ; L2(�; R2)) ∩ L2(0, T ; W 1,2
0 (�; R2))

solves the following problem:

divxu = 0, u|∂� = 0;
∫ T

0

∫

�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ dx dt =μ

∫ T

0

∫

�

∇xu : ∇xϕ dx dt

−
∫

�

�u0 · ϕ(0, ·) dx

−
∫ T

0

∫

�

R : ∇xϕ dx dt (4.1)

for any ϕ ∈ C1
c ([0, T ) × �);

∫

�

1

2
�|u|2(τ, ·) dx + E(τ ) + μ

∫ τ

0

∫

�

|∇xu| dx dt ≤
∫

�

1

2
�|u0|2 dx (4.2)

for a.a. τ ∈ (0, T ). Here, the tensorR = �u ⊗ u− �u⊗ u is positively semi-definite
and satisfies (3.10), specifically

0 ≤
∫

�

trace[R] dx ≤ 2E for a.a. τ ∈ (0, T ). (4.3)

Consequently, the limit function u is a dissipative solution of theNavier–Stokes system
(1.24) in the sense of Abbatiello and Feireisl (2020). As the initial velocity is regular,
the same problem admits a strong solution in the class (1.25). Thus, applying theweak–
strong uniqueness result (Abbatiello and Feireisl 2020, Theorem 2.6. and Remark 2.5),
we conclude that u coincides with the strong solution of (1.24).

Finally, as the strong solution satisfies the energy equality, its follows from (4.2)
that E = 0, and

∫ T

0

∫

�

S(∇xuε) : ∇xuε dx dt → μ

∫ T

0

∫

�

|∇xu|2 dx
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yielding the strong convergence claimed in (1.23).
Theorem 1.3 is proved.
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Appendix

Our main result (Theorem 1.3) is valid whenever (�ε, uε)ε>0 satisfy the hypotheses
(H1) – (H4) along with the conditions (1.18)–(1.23). These hypotheses (see (1.10)–
(1.14)) are satisfied if (�ε, uε) is a weak solution of the fluid–structure interaction
problem of a single rigid body immersed in a viscous compressible fluid in the sense
of Feireisl (2003) (see also Desjardins and Esteban 2000) or if the motion of the body
is prescribed as in Feireisl et al. (2013). Let the rigid body Sε(t) be a regular, bounded
domain and moving inside � ⊂ R2. The motion of the rigid body is governed by the
balance equations for linear and angular momentum. We assume that the fluid domain
Fε(t) = �\Sε(t) is filled with a viscous isentropic compressible fluid. Initially, the
domain of the rigid body is given by Sε,0 included in the ball Bε,0, and Fε,0 is the
domain of the fluid. Let hε be the position of the center of mass and βε be the angle
of rotation of the rigid body. The solid domain at time t is given by

Sε(t) = hε(t) + Rβε (t)Sε,0,

where Rβε is the rotation matrix, defined by

Rβε =
(
cosβε − sin βε

sin βε cosβε

)
.

The evolution of this fluid–structure system can be described by the following
equations:

∂�ε
F

∂t
+ div

(
�ε

Fuε
F)

= 0, t ∈ (0, T ), x ∈ Fε(t), (5.1)
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∂

∂t

(
�ε

Fuε
F)

+ div
(
ρF

ε uε
F ⊗ uε

F)
− div S

(
∇xuε

F)
+ 1

ε2m
∇ pF = 0,

t ∈ (0, T ), x ∈ Fε(t), (5.2)

mεh′′
ε (t) = −

∫

∂Sε(t)

(
S(∇xuε

F ) − 1

ε2m
pFε I

)
νε d�, in (0, T ), (5.3)

Jεβ
′′
ε (t) = −

∫

∂Sε(t)

(
S(∇xuε

F ) − 1

ε2m
pFε I

)
νε · (x − hε(t))

⊥ d�, in (0, T ),

(5.4)

the boundary conditions

uε
F = h′

ε(t) + β ′
ε(t)(x − hε(t))

⊥, for t ∈ (0, T ), x ∈ ∂Sε(t), (5.5)

uε
F = 0, on (t, x) ∈ (0, T ) × ∂�, (5.6)

and the initial conditions

�ε
F (0, x) = �F0(x), (�ε

Fuε
F )(0, x) = qF0(x), ∀ x ∈ Fε,0, (5.7)

hε(0) = 0, h′
ε(0) = �0, βε(0) = 0, β ′

ε(0) = ω0. (5.8)

In the above, the outward unit normal to ∂Fε(t) is denoted by νε(t, x). For all x =
(x1, x2) ∈ R2, we denote by x⊥, the vector (−x2, x1). Moreover, the constants mε

and Jε are the mass and the moment of inertia of the rigid body.
We want to state the existence result of the fluid-rigid body interaction system

(5.1)–(5.8). To do so, we extend the density and the velocity in the following way:

�ε(t, x) =

⎧
⎪⎨

⎪⎩

�ε
F (t, x), x ∈ Fε(t),

�ε
S(t, x), x ∈ Sε(t),

�, x ∈ R2 \ �,

uε(t, x) =

⎧
⎪⎨

⎪⎩

uε
F (t, x), x ∈ Fε(t),

h′
ε(t) + β ′

ε(t)(x − hε(t))⊥, x ∈ Sε(t),

0, x ∈ R2 \ �.

(5.9)

�ε,0(x) =

⎧
⎪⎨

⎪⎩

�F0(x), x ∈ Fε,0,

�Sε (0, x), x ∈ Sε,0,

�, x ∈ R2 \ �,

qε,0(x) =

⎧
⎪⎨

⎪⎩

qF0 , x ∈ Fε,0,

�Sε (0, x)(�0 + ω0x⊥), x ∈ Sε,0,

0, x ∈ R2 \ �.

(5.10)

We have the following existence result for system (5.1)–(5.8) following (Feireisl 2003,
Theorem 4.1):

123



94 Page 16 of 18 Journal of Nonlinear Science (2023) 33 :94

Theorem 4.1 Let � ⊂ R2 be a bounded domain, and the pressure pF be given by the
isentropic constitutive law

pF = p(�F ) = a(�F )γ , γ > 1, a > 0.

Let the initial data (�ε,0, qε,0) be defined by (5.10) satisfying

�ε,0 ∈ Lγ (�), �ε,0 ≥ 0 a.e. in �, (5.11)

qF01{ρF0=0} = 0 a.e. in �,
|qF0 |2
ρF0

1{ρF0>0} ∈ L1(�). (5.12)

Then, system (5.1)–(5.8) admit a variational solution (�ε, ) in the following sense:

�ε ≥ 0, �ε ∈ L∞(0, T ; Lγ (�)), uε ∈ L2(0, T ; W 1,2
0 (�; R2)), (5.13)

uε = h′
ε(t) + β ′

ε(t)(x − h(t))⊥ in Sε(t), (5.14)
T∫

0

∫

R2

[
�ε

∂φ

∂t
+ (�εuε) · ∇φ

]
dx dt = 0, (5.15)

T∫

0

∫

R2

[
b(�ε)

∂φ

∂t
+ (b(�ε)uε) · ∇φ + (

b(�ε) − b′(�ε)�ε

)
div uε φ

]
dx dt = 0,

(5.16)

for any φ ∈ C1
c ([0, T ) × R2) and any b ∈ C1[0,∞), b′ ∈ Cc[0,∞);

T∫

0

∫

R2

[
(�εuε) · ∂ϕ

∂t
+ (�εuε ⊗ uε) : ∇xϕ + 1

ε2m
a�ε

γ divϕ

]
dx dt

=
T∫

0

∫

R2

S(∇xuε) : ∇xϕ dx dt, (5.17)

for any ϕ ∈ C∞
c ((0, T ) × �), with D(ϕ) = 0 in a neighborhood of Sε(t) where

Dϕ = 1
2

(∇xϕ + ∇ t
xϕ

)
;

The following energy inequality holds for a.e. t ∈ [0, T ]:
∫

�

1

2
�ε|uε|2(τ, ·) dx +

∫

�

1

ε2m

(
P(�ε) − P ′(�)(�ε − �) − P(�)

)
(τ, ·) dx

+
∫ τ

0

∫

�

S(∇xuε) : ∇xuε dx dt

≤
∫

{�ε,0>0}
1

2

|qε,0|2
�ε,0

dx + 1

ε2m

∫

�

(
P(�ε,0) − P ′(�)(�ε,0 − �) − P(�)

)
dx,

(5.18)
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where P is the pressure potential

P(�) = a

γ − 1
�γ .

We can verify the hypotheses (H1)–(H4) and apply Theorem 1.3 under cer-
tain conditions to obtain the following result in the framework of fluid-rigid body
interaction:

Theorem 4.2 Let � ⊂ R2 be a bounded domain of class C3 and (�0, q0) satisfy
(5.11)–(5.12). Assume that Sε,0 ⊂ Bε,0,

• 1

ε2m

∫

�ε,0

(
P(�ε,0) − P ′(�)(�ε,0 − �) − P(�)

)
dx

→ 0, where min

{
m; 2m

γ

}
> 3. (5.19)

•
∫

{�ε,0>0}
1

2

|qε,0|2
�ε,0

dx →
∫

�

�|u0|2 dx as ε → 0, where u0 ∈ W 2,∞(�),

divxu0 = 0, u0|∂� = 0. (5.20)

• The mass mε verifies that
mε

ε2
→ ∞ as ε → 0. (5.21)

Then,

sup
τ∈[0,T ]

‖�ε(τ, ·) − �‖(L2+Lγ )(�) → 0, (5.22)

uε → u in L2(0, T ; W 1,2
0 (�; R2)) (5.23)

as ε → 0, where u is the (unique) classical solution of the incompressible Navier–
Stokes system

divxu = 0,

�∂tu + �divx (u ⊗ u) + ∇x
 = μ�xu,

u|∂� = 0,

u(0, ·) = u0 (5.24)

in (0, T ) × �.
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