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Abstract
Reaction-nonlinear diffusion partial differential equations can exhibit shock-fronted
travelling wave solutions. Prior work by Li et al. (Physica D 423:132916, 2021) has
demonstrated the existence of such waves for two classes of regularizations, including
viscous relaxation (see Li et al. in Physica D 423:132916, 2021). Their analysis uses
geometric singular perturbation theory: for sufficiently small values of a parameter
ε > 0 characterizing the ‘strength’ of the regularization, the waves are constructed as
perturbations of a singular heteroclinic orbit. Herewe show rigorously that thesewaves
are spectrally stable for the case of viscous relaxation. Our approach is to show that
for sufficiently small ε > 0, the ‘full’ eigenvalue problem of the regularized system is
controlled by a reduced slow eigenvalue problem defined for ε = 0. In the course of
our proof, we examine the ways in which this geometric construction complements
and differs from constructions of other reduced eigenvalue problems that are known
in the wave stability literature.
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1 Introduction

Regularized PDEs exhibiting travelling wave solutions can frequently be regarded as
singularly perturbed dynamical systems, since the regularization is modelled by the
inclusion of strictly higher-order partial derivatives multiplied by a small constant.
The singular perturbation in turn has a physical/dynamical interpretation reflecting an
inherent hierarchy of spatiotemporal scales, which we refer to more succinctly as a
fast-slow structure. We consider the following reaction-nonlinear diffusion PDE with
a viscous relaxation term, exhibiting (regularized) shock-fronted travelling waves1:

∂Ū

∂t
= ∂

∂x

(
D(Ū )

∂Ū

∂x

)
+ R(Ū ) + ε

∂3Ū

∂x2∂t
(1)

for (x, t) ∈ R × R and ε ≥ 0 the singular perturbation parameter characterizing the
strength of the regularization. The nonlinear diffusion and reaction terms are given by
the quadratic resp. cubic polynomials D(Ū ) and R(Ū ). We suppose that D(Ū ) < 0
within an interval (a, b) ⊂ (0, 1); the potential function F(Ū ) := ∫ D(Ū )dŪ is hence

1 Throughout the paper, we use bar notation to refer to phase space variables. Later on, we will use
unbarred variables to denote variables defined on the linearized subspaces along the curve, and carets to
denote projectivizations of these variables.
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nonmonotone. Nonlinear diffusion processes with nonmonotone potential functions
serve as prototypical models for the formation of coherent solutions with sharp fronts,
see, e.g.Witelski (1995, 1996). Arguably the canonical system from a physical context
is the Cahn–Hilliard model (Pego and Penrose 1989). The system (1) for ε = 0 is
derived as a particular continuum limit of stochastic agent-based models of invasion
processes (Simpson et al. 2010a, b). The choice of viscous regularization in (1) appears
in the shock regularization literature (Novick-Cohen and Pego 1991; Padrón 2004;
Witelski 1996), but there are other physically motivated high-order regularizing terms
that give rise to (smoothed families of) shock-fronted travelling waves. We refer the
reader to Li et al. (2021) for a comparison of the existence problems under viscous
resp. nonlocal regularizing terms relative to system (1).
In the case of existence, the effectiveness of geometric singular perturbation theory
(GSPT) is nowwell established.When (1) is written in a coordinate frame that follows
the travelling wave, it takes the structure of a closed fast–slow system of ODEs. A one-
parameter family of travelling waves for 0 < ε � 1 is then constructed rigorously as a
perturbation of a singular heteroclinic orbit, composed of segments defined by the slow
flow along a so-called critical manifold, concatenated with fast jumps along the fast
fibres, according to the dynamics of the layer problem. Li et al. follow this approach in
Li et al. (2021), numerically demonstrating the existence of smooth travelling waves
of (1) for small values of ε > 0. These one-parameter families of waves limit to
‘genuine’ (piecewise continuous) shock-fronted waves as ε → 0; furthermore, such
singular limits are nonunique, strongly depending on the regularization chosen. Li
and coauthors have also studied smooth travelling-wave solutions of the unperturbed
problem arising as so-called ‘hole in the wall’ solutions; see Li et al. (2020) and the
footnote on page 9. Generally speaking, one can attempt to construct shock-fronted
limiting solutions directly as weak solutions, but there may be infinitely many, see eg.
Holling (1983).
It is worth re-emphasizing the effect of the singular perturbation in (1), in terms of
coordinate representations of the travelling wave. With respect to a natural Liénard-
type representation, the unperturbed problem can be thought of as modelling the slow
dynamics on the critical manifold itself. The introduction of a regularization term is
then tantamount to embedding this slow flow within a higher-dimensional space and
introducing a rule (i.e. the fast layer flow) for connecting the wavefront smoothly. In
Li et al. (2021), it is explicitly shown that viscous relaxation adds a one-dimensional
layer flow, while a fourth-order nonlocal regularization term adds a two-dimensional
layer flow.
The objective of this paper is to demonstrate the spectral stability of travelling waves
arising in (1). To determine the spectral stability along a wave, we must find the spec-
trum σ(L) of a corresponding linearized operator L . The total spectrum is decomposed
into its continuous and point components as σ(L) = σe(L) ∪ σp(L). Typically, most
of the work involves deducing the point spectrum σp(L), by recasting the eigenvalue
problem (L − λI )v = 0 as a bifurcation problem posed on the underlying linearized
subspaces along the wave. The major point that we want to highlight is that although
the existence problem remains amenable to the usual GSPT techniques, the analysis
of the stability problem (in particular, the computation of the point spectrum) is quite
distinct.
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The literature on geometric and analytic techniques for linearized stability problems is
substantial (see, e.g.Kapitula and Promislow2013; Sandstede 2002 for comprehensive
surveys). In this paper, we follow the geometric framework developed in a series of
seminal papers byAlexander et al. (1990),Gardner and Jones (1991), Jones (1984).The
key point is that L also inherits a slow–fast structure, enabling a reduction via linearized
subsystems defined along either the slow manifold or along the fast fibres. The typical
approach is then to hope that the spectrum of the full system, for ε > 0 sufficiently
small, is close to the ‘fast’ and/or ‘slow’ spectra of these linearized subsystems, which
are defined for ε = 0.
Our principal result is Theorem 2.11. As a consequence of the above-mentioned high
order of the singular perturbation term representing the regularization, the stability
problem for small ε > 0 is now close to a slow eigenvalue problem defined on the
critical manifold. We outline our argument in detail in Sect. 6.2. We show in Sects. 6
and 7 that the eigenvalues for the perturbed problem are the same as the eigenvalues
for the reduced problem, which are calculated in Sect. 8. Together with the fact that
the essential spectrum lies in the left half complex plane as shown in Sect. 5, we can
conclude that there is no spectrum of solutions to (1) in any fixed contour K in the
right half plane.
The principal estimate for constructing these reduced eigenvalue problems is the ele-
phant trunk lemma, which characterizes an attracting set over a fast unstable subbundle
in the linearized space when λ is not a fast eigenvalue; see the construction in the
paper of Gardner and Jones (1991). We highlight that a nondegenerate fast eigenvalue
problem is a requirement to construct linked elephant trunks over the entire wave.
Furthermore, the construction of a slow eigenvalue problem, corresponding to the sin-
gular limit of some slow subbundle, is essentially auxiliary to that of the fast problem,
and many of the key properties of the slow subbundle are indirectly enforced by the
elephant trunk over the fast subbundle.
In order for us to define the promised slow eigenvalue problem, it is essential that
we determine how exactly slow linear data on one branch of the slow manifold are
transported across fast fibres to another branch of the slowmanifold.When an elephant
trunk lemma is available, it enforces certain nice properties, such as continuity of the
slow subbundle across the fast layer in the singular limit. In other words, slow linear
data fromone branch of the slowmanifolds are transported across fast fibres to the other
branch identically, allowing a straightforward definition of slow eigenvalue problems
across disjoint subsets of the slow manifolds.
We will show that our problem does not allow for elephant trunk-type estimates over
the fast layer. The main obstruction is that, relative to a natural set of coordinates for
the linearized system so that setting λ = 0 recovers the usual variational equations
along the flow, the parameter λ enters the equations ‘weakly,’ i.e. only throughO(ελ)

terms. The singular limit of the fast linearized system therefore degenerates such that
there is ‘always a fast eigenvalue,’ i.e. there is a connection made between unstable
and stable directions across the wavefront for all λ ∈ C as ε → 0. In the present
case, the eigenvalue problem is low-dimensional enough that we can partly avoid this
problem by concentrating on the slow problem only, but we return to this issue in the
conclusion when we consider fourth-order regularizations.
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Consequently, it must be the case that the slow linearized dynamics is responsible for
the generation of eigenvalues near the tails of the wave. In this context, we think of
our work as complementing Jones’ early result on the stability of a travelling pulse
in the FitzHugh–Nagumo system, in which the eigenvalue problem of the full system
is strongly controlled by the fast eigenvalue problems along the wave front and back
(Jones 1984), as well as the result of Gardner and Jones on the stability of travelling
waves in predator–prey systems, where both fast and slow eigenvalue problems are
constructed (Gardner and Jones 1991).
While we do not have access to a fast elephant trunk over the entire wave, we never-
theless retain control of the linearized dynamics for small values of ε since λ enters
the equations only weakly. The key observation here is that the eigenvalue problem
can be thought of as a ‘weak’ (O(ε))-perturbation of the standard variational problem.
We will show that the corresponding transport of slow data is not the identity map, but
instead is replaced by a nontrivial jump map that we can write down explicitly in the
limit as ε → 0. The key technical tools that we use are desingularized linearized slow
flows; ε-dependent rescalings along the fast fibres; and a continuous differentiability
criterion that holds across the fold. We remark that this analysis holds also for the
λ = 0 case (corresponding to the regular variational dynamics carried by the wave),
but to our knowledge such a statement about jump compatibility is new in the GSPT
literature.
The exchange lemma, another fundamentalGSPT technique (see, e.g. Jones andKopell
1994; Jones and Tin 2009),2 can also be adapted to our eigenvalue problem, since it
is O(ε)-close to the standard variational problem. Exchange lemma-type estimates
allow us to track solutions of the eigenvalue problem as they leave the fast layer and
enter small neighbourhoods of the slow manifolds, where they enter partial elephant
trunks and remain well-controlled along the tails of the wave. The key result here is
that solutions entering neighbourhoods of the slow manifolds in a generic way will
be aligned closely to a slow subbundle defined on the slow manifold after sufficiently
long times. This subbundle is defined from the eigenvalue problem, and is therefore
not generally equivalent to the tangent bundle of the slow manifold (but it is nearby).
These new techniques cause no extra trouble for the topological arguments that allowus
to calculate the point spectrum of the perturbed problem: the corresponding evaluation
of first Chern numbers of certain augmented unstable bundles (defined in Alexander
et al. 1990) follows, as usual. Following the approach of Gardner and Jones (1991),
we construct a homotopy between the augmented unstable bundle Eε(K ) of the ‘full’
problem with ε > 0 and that of a reduced problem E0(K ), when ε is sufficiently
small. The reduced vector bundle is defined over separate hemispheres using the
slow eigenvalue problem. The jump map now plays an essential role in defining the
appropriate clutching function, which glues these vector bundles together along the
edges of the hemispheres. We also highlight that the translational eigenvalue at λ = 0
is now counted by the slow problem.
In the course of proving stability in our problem, we also demonstrate explicitly the
geometric consequence of eigenvalue crossings in the full system for 0 < ε � 1: the

2 Strictly speaking, in this paper we consider the case of an inclination lemma (see e.g. Brunovsky 1996;
Schecter 2008). We also point out that the adaptation of the standard (k + σ)-exchange lemma to the case
of zero unstable fast directions is straightforward.
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projectivized solutions wind around according to the number of eigenvalues crossed,
and these winds occur entirely within the slow dynamics of the critical manifold.
The propagation of winding in the reduced problem, as well as the generation of new
winds (eigenvalues) can be identified by locating the poles and zeroes, respectively,
of a meromorphic Riccati–Evans function (Harley et al. 2020), defined with respect
to a judiciously chosen section of the projective dynamics. This also gives us another
opportunity to demonstrate the computational utility of the Riccati–Evans function to
count eigenvalues via the argument principle.
Before describing the content of our paper, we wish to highlight some results in the
literature in the context of our present problem. Slow eigenvalues appear in a doubly-
diffusive Fitzhugh–Nagumo system, which is considered as an early application of
the augmented unstable bundle theory in Alexander et al. (1990), but here the extra
fast dynamics is relatively trivial; furthermore, the ‘slow’ problem is in fact fast–slow
relative to another small parameter, with its eigenvalues arising from the corresponding
fast front and back. The occurrence of such a nontrivial slow eigenvalue problem as
described in our current analysis appears to be quite atypical; we highlight the work
of Bose (2000) in this vein as one of the only comparable examples we have found
in the literature. Bose provides similar geometrical results for pulse (meta)stability in
singularly perturbed nonlocal RDEs. The singular perturbation occurs at the second
order, so the resulting nonlocal eigenvalue problem can then be studiedwith traditional
Sturm–Liouville techniques, and an oscillation theorem is proven. Relative to Bose’s
result, we have two additional technical issues to settle: (i) we must first ‘reduce’ our
singularly perturbed third-order eigenvalue problem (see (24)) by showing closeness
to a second-order eigenvalue problem defined on the critical manifold and (ii) we must
also find the corresponding compatibility condition to connect the eigenvalue problem
across disjoint branches of the critical manifold. We also wish to highlight de Rijk
et al.’s recent work on analytical slow–fast factorizations of Evans functions (de Rijk
et al. 2016); the relationship between the geometric obstructions discussed above and
analytic conditions to produce reduced Evans functions in de Rijk et al.’s paper bears
further exploration, but we do not attempt this in our paper.

Remark 1.1 The reaction-nonlinear diffusion PDE (1) also shares some similarities
with the Camassa–Holm equation (Camassa and Holm 1993); notably, the occurrence
of the higher-order mixed derivative term uxxt . The geometric techniques in this paper
can potentially be applied in that context to investigate, e.g. the stability of peakons. In a
suitably chosen travelling wave frame, analogous soliton structures would be found as
homoclinic orbits in ourmodel, but such structures seemdifficult to produce in (1) in the
parameter regime thatwe study. Furthermore,we highlight the importance of a singular
perturbation term in our PDE (1) in order to take advantage of amultiple-scale splitting
in the stability problem—it is unclear whether our PDE remains singularly perturbed
in the parameter regime where other kinds of coherent solutions exist. Integrability is
also another key difference relative to the system that we study. We refer the reader
to Constantin and Strauss (2002) for a stability analysis of Camassa–Holm solitons
using energy functionals. �	

We find it sensible to closely follow the general structure in Gardner and Jones
(1991) in organizing our paper. In Sect. 2, we describe the construction of a one-
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parameter family of travelling waves limiting onto a singular shock-fronted travelling
wave using geometric singular perturbation theory. In Sect. 3, we define the relevant
geometric spaces in which our objects of interest lie and write down some key facts
about them. In Sect. 4, we write down the spatial eigenvalue problem for the asso-
ciated linearized operator of (1), and we write down some leading-order estimates
for the eigenvalues and eigenvectors of the associated asymptotic systems. We also
define the linearized slow and fast subsystems that we will use often to estimate the
linear dynamics of the ‘full’ system. In Sect. 5, we describe some general stability
theory for travelling waves and show that the essential spectrum is bounded away
from the imaginary axis in the left-half complex plane. In Sect. 6, we construct the
augmented unstable vector bundles over a complex contour enclosing the remaining
point spectrum, and we also take the opportunity to outline the proof of the main
stability theorem in the paper. In Sect. 7, the most technical part of the paper, we
prove some uniform closeness estimates of the linearized dynamics in terms of the
singular subsystems. We use these estimates to construct a homotopy between some
augmented unstable bundles. In Sect. 8, we characterize the point spectrum of the
reduced subsystem, finally allowing us to deduce the stability of the wave of the full
system for ε > 0 sufficiently small. We conclude in Sect. 9, and the most technical
lemmas are relegated to the Appendices.

2 Existence of TravellingWaves

Our first task is to construct constant-speed travelling waves for the PDE (1). In this
section, we summarize the setup and analysis in Li et al. (2021). We highlight that the
techniques and terminology used here are entirely standard in the context of GSPT;
we point to the usual references (Jones 2015; Kuehn 2015) for general definitions.

2.1 The TravellingWave Equations

The PDE (1) is expressed in terms of the frame (ζ, t ′) = (x − ct, t) (where c is a
constant parameterizing the wavespeed) is given by:

Ūt ′ = cŪζ + ∂

∂ζ

(
D(Ū )

∂Ū

∂ζ

)
+ R(Ū ) + ε

(
∂3Ū

∂ζ 2∂t ′
− c

∂3Ū

∂ζ 3

)
. (2)

Li et al. (2021) provide the precise conditions necessary on D(Ū ) and R(Ū ) for
the existence of a shock-fronted travelling wave solution. We refer the reader to Li
et al. (2021) for an in-depth discussion about the modelling assumptions and potential
generalizations underlying these definitions. Here we continue with the definitions
used by Li et al. (2021) in their computations for the sake of consistency: we take a
quadratic nonlinear diffusion term

D(Ū ) = 6
(
Ū − 7/12

) (
Ū − 3/4

)
(3)

123



82 Page 8 of 71 Journal of Nonlinear Science (2023) 33 :82

and cubic reaction term

R(Ū ) = 5Ū (1 − Ū )(Ū − 1/5). (4)

We also record the following potential function (i.e. integral) of D(Ū ), which will be
used to define the vector field in the travelling wave frame:

F(Ū ) = 2Ū 3 − 4Ū 2 + 21

8
Ū . (5)

Note that the diffusion term is negative within the range 7/12 < Ū < 3/4, and the
reaction term is pinned at Ū = 0 and Ū = 1.
A travelling wave solution is found as a steady state to the above equation:

−R(Ū ) =
(

cŪ + ∂ F(Ū )

∂ζ
− εc

∂2Ū

∂ζ 2

)
ζ

. (6)

Letting

P̄ = cŪ + ∂ F

∂ζ
− εc

∂2Ū

∂ζ 2

V̄ = F(Ū ) − εcŪζ ,

we arrive at the following slow travelling wave equations (where ˙ := d/dζ )

ε ˙̄U = 1

c

(
F(Ū ) − V̄

)
˙̄P = −R(Ū )

˙̄V = P̄ − cŪ . (7)

We also record the equivalent fast travelling wave equations in terms of the stretched
variable ξ := ζ/ε3:

ū′ = 1

c
(F(ū) − v̄)

p̄′ = −εR(ū)

v̄′ = ε( p̄ − cū), (8)

where ′ := d/dξ . From the definitions of R and F , the systems (7)–(8) evidently
admit three fixed points for ε > 0. Two of them are

z̄− = (ū−, p̄−, v̄−) = (0, 0, 0)

z̄+ = (ū+, p̄+, v̄+) = (1, c, 5/8),
(9)

3 From now on, we use lowercase letters throughout to distinguish the variables and functions defined with
respect to the stretched scaling, following the convention in Gardner and Jones (1991).
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lying on Sa,−
0 and Sa,+

0 , respectively, and the third is the point z̄m = (0.2, 0.2c, 0.381).
Travelling waves of (1) linking the states Ū = 0 and Ū = 1 correspond to heteroclinic
connections between the fixed points z̄− and z̄+.
Since the systems (7)–(8) are odd-dimensional, it is convenient to choose an orientation
that minimizes the dimension of the unstable manifolds W u(z̄−) and W u(z̄+). We
therefore apply the orientation reversal ζ �→ −ζ and ξ �→ −ξ in the subsequent
analysis and work henceforth with the pair of systems

ε ˙̄U = 1

c

(
V̄ − F(Ū )

)
˙̄P = R(Ū )

˙̄V = cŪ − P̄ (10)

and

ū′ = 1

c
(v̄ − F(ū))

p̄′ = εR(ū)

v̄′ = ε(cū − p̄). (11)

Let us now assess the linear stability of the fixed points in (9).

Lemma 2.1 Let c > 0 be fixed. For each sufficiently small ε > 0, the fixed points z̄−
and z̄+ of (11) are both saddle-type equilibria. Furthermore, the three eigenvalues of
the linearization of (11) evaluated at both z̄− and z̄+ are all real, having the hierarchy

μ f � μs,1 < 0 < μs,2. (12)

Specifically, with respect to the scaling in (11)we have μ f = O(1) and μs,i = O(ε)

where i = 1, 2.

Proof We verify the spectral hierarchy for z̄−; the steps for z̄+ are identical. Let
f (ū, p̄, v̄) denote the vector field of (11). The associated Jacobian matrix is

D f (ū, p̄, v̄) =
⎛
⎝− D(ū)

c 0 1
c

εR′(ū) 0 0
εc −ε 0

⎞
⎠ . (13)

At z̄−, we have D(0) = 21/8 and R′(0) = −1. The characteristic polynomial of
D f (z̄−) is

p(μ) = −μ3 − 21

8c
μ2 + εμ + 1

c2
ε2.
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Therefore, the eigenvalue of largest magnitude has the expansion

μ f (ε) = −21

8c
+ O(ε). (14)

Thus,μ f (ε) < 0 and uniformly bounded away from 0 for ε sufficiently small when
c > 0. To estimate the remaining two O(ε) eigenvalues μs,i , i = 1, 2, we consider
the scaling μ = εν. Then,

p(ν) = −ε3ν3 − 21

8c
ε2ν2 + ε2ν + 1

c2
ε2.

Dividing a factor of ε2, regular perturbation theory again gives the solution of
p(ν) = 0 in orders of ε as

ν± = 2

21

(
2 ±

√
4 + 42

c2

)
+ O(ε). (15)

Since the roots limit to distinct real values as ε → 0, the pair must perturb to distinct
real values. Furthermore, μs,1 = εν− < 0 < εν+ = μs,2 for each ε > 0 sufficiently
small. �	
Following standard GSPT, we now define two subproblems which characterize the
slow and fast singular limits of (10) and (11). These are used to define a singular
heteroclinic orbit by concatenating solutions of these subsystems.

2.2 Fast and Slow Singular Limits

We first characterize the fast dynamics by considering the singular limit ε → 0 of
(11).

Definition 2.2 The layer problem of (11) is given by:

ū′ = 1

c
(v̄ − F(ū))

p̄′ = 0

v̄′ = 0. (16)

�	
In this limit, the slow variables p̄, v̄ are constant, parametrizing the fast fibre bundle;

away from the zero set of u′, the layer problem then specifies the one-dimensional fast
dynamics fibrewise.

Definition 2.3 The critical manifold is S0 = {(ū, p̄, v̄) : v̄ = F(ū)}. We decompose
S0 into the pieces

S0 = Sa,−
0 ∪ F− ∪ Sr

0 ∪ F+ ∪ Sa,+
0 ,
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with

Sa,−
0 = S0 ∩ {ū < 7/12}
F− = S0 ∩ {ū = 7/12}
Sr
0 = S0 ∩ {7/12 < ū < 3/4}

F+ = S0 ∩ {ū = 3/4}
Sa,+
0 = S0 ∩ {ū > 3/4}.

Here, F− and F+ denote resp. the left and right folds of the cubic manifold S0,
where D(Ū ) vanishes. We also define the jump-on curve Ja ⊂ Sa,+

0 , which is the
horizontal projection of the fold F− onto Sa,+

0 :

Ja = S0 ∩ {ū = 5/6}.

These sets are drawn in Fig. 1a. �	
The Jacobian matrix of (16) has two trivial zero eigenvalues for each x ∈ S0, corre-
sponding to the locally two-dimensional tangent space at each point. The sign of the
remaining nontrivial eigenvalue determines the dynamics along the fast fibres nearby.

Definition 2.4 We say that S0 is normally hyperbolic at x ∈ S0 if its nontrivial eigen-
value λ does not lie on the imaginary axis. Furthermore, we say that S0 is normally
hyperbolic attracting if λ < 0 and normally hyperbolic repelling if λ > 0. �	

The nontrivial eigenvalue of the linearization of (16) is

λ = − D(ū)

c
,

fromwhich it immediately follows that Sa,−
0 and Sa,+

0 are normally hyperbolic attract-
ing and Sr

0 is normally hyperbolic repelling when c > 0; see Fig. 1b. Well-known
theorems of Fenichel (1979) specify the existence of normally hyperbolic invariant
slow manifolds Sa,±

ε and Sr
ε and fast fibre bundles near to compact normally hyperbolic

subsets of their singular counterparts Sa,±
0 resp. Sr

0.
The critical manifold loses normal hyperbolicity via a simple zero eigenvalue cross-

ing at the folds F±. Slow dynamicsmay be defined on S0 away from F± by considering
the singular limit of (10). Differentiating both sides of V̄ = F(Ū ) with respect to ζ ,
we have

˙̄V = D(Ū ) ˙̄U . (17)

Solutions of the reduced problem blow up as they approach F±, and so we rescale
ζ by the function D(Ū ) to extend solutions of the reduced problem smoothly across
the folds. Altogether, we define the following two systems.
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Fig. 1 a Depiction of the critical manifold S0 from Definition 2.3 in (ū, p̄, v̄)-space. b Dynamics of the
layer problem (11) away from S0, projected onto the (ū, p̄) plane

Definition 2.5 The reduced problem defined on S0 is given by:

D(Ū ) ˙̄U = cŪ − P̄
˙̄P = R(Ū ). (18)

Rescaling ζ by the diffusion D(Ū ), we obtain the (desingularized) slow flow

˙̄U = cŪ − P̄
˙̄P = R(Ū )D(Ū ). (19)

�	
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The slow flow extends the solutions of the reduced problem across the lines of
singularities given by F± in finite time. Note that although topological equivalence of
solutions of (18) and (19) is assured on Sa,±

0 and Sr
0, there is an orientation reversal

on Sr
0 owing to the change in sign of D(Ū ).

The slow flow (19) admits five fixed points corresponding to the zeroes of R(Ū ) and
D(Ū ). A calculation of the eigenvalues of the Jacobian of (19) shows that the fixed
points

Z̄− = (0, 0)

Z̄+ = (1, c) (20)

are saddle-type when c > 0. These correspond to the singular limits of the fixed points
(9) of the full system as ε → 0.

Remark 2.6 The set F− consists mostly of so-called regular (or generic) fold points;
we refer the reader to the precise definition in Kuehn (2015),4 One of the seminal
achievements of GSPT is to rigorously characterize the flow of typical orbits across
folds, where Fenichel theory breaks down. This requires extending the slowmanifolds
(which a priori exist only over compact normally hyperbolic subsets of the critical
manifold) across such folded singularities using geometric blow-up theory; see, e.g.
Krupa and Szmolyan (2001), Szmolyan and Wechselberger (2004), Wechselberger
(2012). �	

We are interested in the existence of a singular heteroclinic orbit that connects Z̄−
to Z̄+ by jumping across a regular fold point on F−. This singular orbit is a hybrid
object defined by concatenating solutions of (16) and (19).

Hypothesis 2.7 There exists a singular heteroclinic orbit 	0 for c = c0 > 0, con-
necting Ū = 0 to Ū = 1. This orbit is formally defined as the concatenation of the
following solution segments:

• the portion of the unstable manifold W u(Z̄−) which connects Z̄− to a regular
fold point (7/12, p̄ f ) on F−, corresponding to a unique trajectory X R(ζ ) of (19)
defined on ζ ∈ (−∞, 0]

• the horizontal fast fibre connecting W u(Z̄−) ∩ F− to a point (5/6, p̄ f , v̄ f ) on
the jump curve Ja , corresponding to a unique trajectory xR(ξ) of (16) defined on
ξ ∈ (−∞,∞), and

• the portion of the stable manifold W s(Z̄+) which connects (5/6, p̄ f ) to Z̄+,
corresponding to a unique trajectory X R(ζ ) of (19) defined on ζ ∈ [0,∞). We
also suppose that the slow flow is transverse to Ja at W s(Z̄+) ∩ Ja .

We furthermore suppose that the heteroclinic connection 	0 is transversal with
respect to variation in c, i.e. extending the reduced systems with the equation c′ = 0,

4 There are also isolated canard points corresponding to folded singularities where trajectories beginning
near an attracting branch of a slow manifold are able to cross over to the repelling branch, tracking it for
O(1) time. In the travelling wave literature, such points are referred to as ‘holes in the wall,’ relating to the
observation that D(Ū ) = 0 defines ‘walls’ of singularities corresponding to the fold lines; see Harley et al.
(2014), Li et al. (2020), and Wechselberger and Pettet (2010).
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Fig. 2 Segments of W u(Z̄−) and W s (Z̄+) arising from the slow flow (19)–(20), as c is varied within the
range [0.19, 0.23]. The stable manifolds are extended slightly past Ja to illustrate the transversality of the
slow flow at Ja . The singular homoclinic orbit 	0 is depicted by the red curve for c0 ≈ 0.199362. The blue
arrows indicate how the (un)stable manifolds vary as c is increased. The magenta dashed line denotes the
Ū -nullcline for c = c0

we have 	0 = W u(Z̄−, c) −� W s(Z̄+, c), where W u(Z̄−, c) = ∪cW u(Z̄−(c))
and W s(Z̄+, c) = ∪cW s(Z̄+(c)) denote, respectively, the extended two-dimensional
centre-unstable (resp. three-dimensional centre-stable) manifolds, continued across
the fast jump in the usual way.

Hypothesis 2.7 can be readily verified numerically; this was done already in Li
et al. (2021). Here we report a singular heteroclinic connection for c0 ≈ 0.199362
which is clearly transversal with respect to variation in c; see Fig. 2. Based on the
relative location of 	0 with respect to the Ū -nullcline, we also record the following
monotonicity hypothesis.

Hypothesis 2.8 The portions of 	0 (from Hypothesis 2.7) lying in Sa,±
0 are strictly

monotone in Ū , i.e. ˙̄U (ζ ) > 0 (equivalently, ˙̄V (ζ ) > 0) for all ζ < 0 on Sa,−
0 and for

all ζ > 0 on Sa,+
0 .

This monotonicity condition turns out to be useful when analysing the reduced
eigenvalue problem introduced in Sect. 8: it is equivalent to the statement that the
projectivized dynamics of the slow coordinates lives entirely on one chart of CP
specified by S = (P/V ), V �= 0, when the temporal eigenvalue parameter λ = 0.
Here, P and V denote, respectively, the linearizations of P̄ and V̄ .5

5 Our notation is equivalent to the “δ” convention to denote linearized variables, i.e. V = δV̄ .

123



Journal of Nonlinear Science (2023) 33 :82 Page 15 of 71 82

Fig. 3 Numerical approximation of a heteroclinic orbit (black solid curve) connecting the saddle equilibria
(0, 0, 0) and (1, c, F(1)) for (ε, c) = (0.001, 0.20637), together with the singular heteroclinic orbit 	0 (red
dashed curve) from Hypothesis 2.7

2.3 TravellingWaves for 0 < " � 1

We now use hypothesis 2.7, to show the existence of a one-parameter family of trav-
elling waves {	ε} for sufficiently small values of ε > 0; we write it in such a way as
to make clear the uniform convergence onto the singular wave 	0.

Lemma 2.9 For any δ > 0, there exists ε̄ > 0 such that for each ε ∈ (0, ε̄), there
exists a wavespeed c(ε) and a heteroclinic orbit 	ε(ξ) for (11) connecting z̄− to z̄+
with dH (	ε, 	0) < δ and |c(ε) − c0| < δ.

Shock-fronted travelling waves for small fixed values of ε > 0 are numerically
approximated in Li et al. (2021); see also Fig. 3. We sketch a geometrical proof, show-
ing that Hypothesis 2.7 implies that Lemma 2.9 holds. Our sketch follows standard
arguments for constructing heteroclinic orbits by estimating the relative orientations
of slow manifolds and their fast fibre bundles for ε > 0 small, see e.g. Szmolyan
(1991). Here we also address the issue that the jump occurs across a regular fold,
necessitating a slightly different estimate.

Proof Fix α > 0 small enough that 	0 is the unique transverse singular heteroclinic
orbit for c ∈ Bα := (c0 − α, c0 + α). We also fix a section which intersects 	0 in its
interior in the middle of the jump, say � = {ū = 0.7}. For ε > 0 sufficiently small,
Fenichel theory provides the existence of slow manifolds Sa,−

ε and Sa,+
ε , which are

O(ε)-close in Hausdorff distance to compact normally hyperbolic subsets of Sa,−
0 and

Sa,+
0 .

The slow manifold Sa,−
ε can be continuously extended across a regular fold of a two-

dimensional critical manifold in R
3 using blow-up theory; after crossing the fold,

Sa,−
ε lies O(ε2/3) close to the singular fast fibre subbundle J extending from the

fold F− to the jump-on curve Ja , at the section � (see Theorem 1 in Szmolyan and
Wechselberger 2004 for details). The slow manifold Sa,− then flows along the fast
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fibre bundle, reaching� inO(1) time with respect to the scaling (11) (this intersection
must exist for ε > 0 sufficiently small since 	0 intersects � by construction). Thus,
Sa,−
ε remains O(ε2/3)-close to J at the point of intersection on �.
On the other hand, consider a ball V inside W = ∪c∈Bα W s(z̄−(c))which straddles

Ja . Fenichel theory implies that the (nonlinear) fast fibre bundle over the basepoint set
V perturbs to an O(ε)-close fast fibre bundle over the corresponding basepoints now
given on Sa,+

ε (Fenichel 1979). Extend this fibre bundle backwards to �. Therefore at
�, the transverse intersection of the projection of F with the stable fast fibre bundle
over Sa,+

0 persists over a small range in ε, and for each such ε the intersection occurs at
a correspondingwavespeed c(ε). Evaluated at�, the perturbed intersection isO(ε2/3)-
close to the original intersection in the extended (ū, p̄, v̄, c)-space, i.e. c(ε) → c0 as
ε → 0. �	
Remark 2.10 We highlight a high-dimensional generalization of this construction,
due to Lin and Wechselberger (2014). They prove a generalization of Theorem 1 in
Szmolyan and Wechselberger (2004), and they also require exchange/lambda lemma-
type estimates to pick out unique waves from two-parameter families. In our case, the
transversal intersection 	ε for each corresponding wavespeed c(ε) must be unique,
which can be verified directly with dimension counting. �	

We are now able to state the main theorem proved in this paper.

Theorem 2.11 Suppose Hypotheses 2.7 and 2.8 hold. Fix a contour K in the right half
of the complex plane. Then, there exists ε̄ > 0 so that for each 0 < ε ≤ ε̄, the wave
	ε does not have spectrum inside of K .

The proof of this theorem is developed mostly in the second half of the paper;
see Sect. 6.2 for a general outline of the strategy. A characterization of the spectral
stability of a travelling wave must first be developed. This is accomplished by the end
of Sect. 6.
We finish this section with a preliminary estimate, showing that we have strong control
over the dynamics of the wave via the reduced subsystems away from the transition
sets F− and Ja ; c.f. Corollary 2.2 in Gardner and Jones (1991).

Corollary 2.12 Given ε > 0 sufficiently small, let X(ζ, ε) = x(ξ, ε) parametrize
the travelling wave solution from Hypothesis 2.9 corresponding to the wavespeed
c = c(ε). The following are true for each fixed a > 0:

lim
ε→0

x(ξ, ε) = xR(ξ) uniformly for |ξ | ≤ a

lim
ε→0

x(ζ, ε) = X R(ζ ) uniformly for |ζ | ≥ a.

In the second limit, we take X R to mean the embedding of the correspond-
ing parametrized solutions of 	0|Sa,−

0 ∪Sa,+
0

into R
3 via the map (Ū , P̄) �→

(Ū , P̄, F(Ū )) ∈ S0.

Proof Wesketch the argument for the first uniform limit. Fix an a > 0. Then, |x(ξ, ε)−
xR(ξ)| can be uniformly bounded through a combination of Gronwall’s inequality and
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the distance estimate in Hypothesis 2.9. The argument for the second uniform limit is
similar. �	

3 Geometric Preliminaries

Ahead of our analysis in the remaining sections, we explicitly describe the geometric
spaces in which our objects of interest live. We will track the dynamics of fibres of
complex vector bundles, corresponding to points in Gr(k, n), the Grassmannian of
complex k-planes in C

n . The general set-up is standard: we will study dynamics on
the Grassmannian indirectly via embedded systems on complex projective space.
We first introduce some essential notation for complex projective space. The space
CP

n is the quotient space (Cn+1 − {0})/ ∼ subject to the equivalence relation that
identifies complex rays, i.e. y1, y2 ∈ C

n+1 − {0} are identified if y1 = αy2 for some
α ∈ C. We denote the projection map by π : Cn+1−{0} → CP

n , and for each y ∈ C
n

we use the notation [y] or ŷ for the image π(y) ∈ CP
n (this notation also holds for

sets S ⊂ C
n − {0}).

Later, in Sect. 7.2 we will use the following elementary lemma to interpret metric
neighbourhoods on CP2 in terms of those on C

3.

Lemma 3.1 Let ρ be any metric on CP
n. Then, there is a constant K > 0, depending

only on ρ, such that the following is true for each δ > 0:
If y ∈ C

n+1 is a complex vector with unit modulus and if P ⊂ C
n+1 is a complex

n-plane passing through the origin with ŷ /∈ Nδ(P̂), then

|w| ≥ K δ,

where w is the component of y lying orthogonal to P, and Nδ(P̂) denotes the δ-
neighbourhood of P̂ with respect to ρ, i.e. Nδ(P̂) = {x̂ ∈ CP

n : ρ(x̂, p̂) <

δ for some p̂ ∈ P̂}.
Remark 3.2 The norm |x | := √

x̄ T x in Lemma 3.1 is the usual Euclidean norm, and
the orthogonal component is defined using the Hermitian inner product x ·C y :=∑n

i=1 xi ȳi . Essentially the lemma says that if a vector is inclined far away from a
plane, then the component of the vector lying orthogonal to the plane cannot be too
small, up to a scaling factor that depends on the details of how this inclination is
measured. This lemma was implicitly used in Lemma 5.4 in Gardner and Jones (1991)
for the case n = 3, so we provide an explicit proof for arbitrary n. �	
Proof of Lemma 3.1 Suppose that there is no such uniform constant for some fixed
choice of δ > 0. Then, we can find a sequence {yk} lying on the unit sphere in
C

n+1 such that for each k, we have ŷk /∈ Nδ(P̂) and |wk | < δ/k, where wk denotes
the orthogonal projection of yk with respect to P . Choose a convergent subsequence
yk → y∗, relabeling k if necessary. Then y∗ clearly has zero component in the direction
orthogonal to P , implying that y∗ ∈ P and hence that ŷ∗ ∈ Nδ(P̂). On the other hand,
we have ŷk → ŷ∗ /∈ Nδ(P̂) since the quotient map is continuous and the complement
of Nδ(P̂) is closed, giving a contradiction. �	
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Let v1, . . . , vk ∈ C
n denote a spanning set of vectors for the k-plane W . The

well-known Plücker embedding

Gr(k, n)
ψ

↪−→ P

(
k∧
C

n

)
∼= CP

(n
k)−1

ψ(W ) := [v1 ∧ · · · ∧ vk]

provides homogeneous coordinates for the Grassmannian, called Plücker coordinates.
The imageψ(W ) can be coordinatized by writing down the maximal minors/cofactors
of the (n × k) matrix MW = [v1 · · · vk].

Example. Consider a complex 2-plane W ∈ Gr(2, 3) with spanning complex
vectors v1 = (a1, b1, c1)T and v2 = (a2, b2, c2)T . A coordinate representation of
[v1 ∧ v2] ∈ CP

2 is given by the list of 2 × 2 cofactors of the 3 × 2 matrix [v1 v2],
namely

NW :=
⎛
⎝b1c2 − c1b2

a2c1 − a1c2
a1b2 − a2b1

⎞
⎠ .

Observe that the Plücker coordinate representation NW can be interpreted as a
parametrization of the plane W by a (nontrivial) normal vector.

Remark 3.3 The Plücker coordinates are generally redundant: we have
(n

k

)
of them,

whereas the dimension ofGr(k, n) is k(n − k). In this paper our analysis is restricted
to the cases Gr(1, 3) and Gr(2, 3), since we will be occupied with tracking complex
line (resp. plane) bundles. In the caseGr(1, 3), the redundancy arises from nonunique
scalings of the complex ray. In the caseGr(2, 3), an analogous scaling nonuniqueness
arises when choosing a normal vector to represent a complex plane (see the example
above). �	

The Grassmannian spaces are metrizable. Here we construct an explicit metric,
because we will need a way to measure ‘angles’ between lines and planes. Using a
complex version of the construction given in Jones and Tin (2009), we take advantage
of the Plücker embedding to equip Gr(k, n) with the Fubini–Study metric. Complex
projective space can be embedded into the space of Hermitian (n + 1) × (n + 1)
matrices H via the following isometric immersion:

CP
n ϕ

↪−→ H

ϕ([x]) := x x̄T

|x |2 ,

where x ∈ C
n+1 − {0} represents the ray Cx . The space of Hermitian matrices is in

turn endowed with an inner product given by

d(P, Q) = 1

2
Tr(P Q),
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which allows us to define a norm ‖P‖ = d(P, P)1/2, and hence, a metric induced by
the norm given by dist(P, Q) := ‖P − Q‖. We can pull back this metric onH to one
on CPn , and hence on the Grassmannian:

dist([x], [y]) :=
∥∥∥∥ x x̄T

|x |2 − y ȳT

|y|2
∥∥∥∥

=
√√√√1

2
Tr

[(
x x̄

|x |2 − y ȳT

|y|2
)2]

=
√
1 − |(x ·C y)|2

|x |2|y|2 .

We observe that dist([x], [y]) recovers the sine of the so-called Hermitian angle
(Scharnhorst 2001) between a corresponding pair of nontrivial complex vectors repre-
senting [x], [y]. For example, this metric on Gr(2, 3) measures the Hermitian angle
between a pair of normal vectors parametrizing a corresponding pair of complex 2-
planes.
We will use the Plücker embedding to study (linear) dynamics which describe the
evolution of k-planes in the Grassmannian. Concretely, let y′ = b(ξ)y denote a nonau-
tonomous linear system onCn+1. This linear system induces a nonlinear flow onCPn

and hence on the corresponding Grassmannian, which we denote by

ŷ′ = b̂(ŷ, ξ). (21)

We mention two elementary facts about these induced flows. The first is that y is
an eigenvector of b(ξ) if and only if ŷ is a critical point of b̂(ŷ, ξ). The second is
that if {λi } denotes the eigenvalues of the linearization of a (constant) matrix b and
if yi is an eigenvector corresponding to the eigenvalue λi , then the eigenvalues of the
linearization of b̂ near the corresponding critical point ŷi are λ j − λi for j �= i . As a
consequence of these facts, if the largest eigenvalue of a linear system is simple, then
the corresponding eigendirection in the projectivized system is a stable fixed point.
We will find it useful to study the system (21) in its own right as a nonlinear flow
on appropriate charts on CP

n , but it is also convenient to treat the natural system
y′ = b(ξ)y as the Plücker coordinate representation of the system on projective
space. To clarify this, we introduce the notion of induced variational fields. We repeat
the general treatment of Jones and Tin (2009, Sect. 3.2). Let V be a vector space of
dimension n and let 1 ≤ σ ≤ n. Given a linear map A : V → V , an induced derivation
of order σ is the multilinear map Aσ :∧σ V →∧σ V defined by

v1 ∧ · · · ∧ vσ �→
σ∑

i=1

v1 ∧ · · · ∧ Avi ∧ · · · ∧ vσ . (22)

We have
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Lemma 3.4 Let {λi }n
i=1 denote the set of eigenvalues of A(1) = A. Then the set of

eigenvalues of A(2) is given by {λi + λ j }i=n
i< j,i=1.

Proof Choose an ordered basis for V consisting of eigenvectors of A and use it to
construct an ordered basis for

∧2 V . The conclusion follows from a straightforward
calculation using the definition (22). �	
If x ′ = Ax is a linear vector field, then P ′ = A(σ ) P defines a linear vector field on the
σ th exterior power space. By using the Plücker embedding, the latter induced vector
field can be interpreted as evolving points in Gr(σ, n) (see Sect. 3.2 in Jones and Tin
2009 for a complete description of this construction in the real setting; the extension
to complex k-planes is direct).

4 Spatial Eigenvalue Problems

We now assume that Hypotheses 2.7, 2.8, and 2.9 hold, and we proceed to define
the spatial eigenvalue problem associated with the one-parameter family of waves
(	ε, c(ε)). Let us fix ε > 0 sufficiently small and represent 	ε by the solution
X̄(ζ, ε) = (Ū (ζ, ε), P̄(ζ, ε), V̄ (ζ, ε)). We consider perturbations of the form

Ũ (ζ, t) = Ū (ζ, ε) + δeλtU (ζ ) + O(δ2). (23)

Assuming that Ũ (ζ, t) solves (1) and applying the fact that Ū (ζ, ε) is a stationary
solution of (2), we arrive at the eigenvalue problem by collecting O(δ) terms:

cUζ + (D(Ū )U )ζζ + R′(Ū )U + ε(λUζ ζ − cUζ ζ ζ ) = λU . (24)

Collecting derivatives and defining

V = D(Ū )U + ε(λU − cUζ )

P = cU + Vζ ,

we obtain the following closed three-dimensional system:

εU̇ = 1

c

(
(ελ + D(Ū ))U − V

)
Ṗ = (λ − R′(Ū ))U

V̇ = P − cU . (25)

In the stretched scaling ξ = ζ/ε, we obtain

u′ = 1

c
(−v + (ελ + D(ū))u)

p′ = ε(λ − R′(ū))u

v′ = ε(p − cu). (26)
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In view of the orientation reversal giving the pair of wave Eqs. (10)–(11), we will
instead work with the following pair of linearized systems throughout the paper:

εU̇ = 1

c
(V − (ελ + D(Ū ))U )

Ṗ = (R′(Ū ) − λ)U

V̇ = cU − P. (27)

and

u′ = 1

c
(v − (ελ + D(ū))u)

p′ = ε(R′(ū) − λ)u

v′ = ε(cu − p). (28)

Remark 4.1 Setting λ = 0 in (27)–(28) gives the standard variational equations of
(10)–(11) along the wave (	ε, c(ε)) for each ε > 0. In particular, we can account for
the existence of the translational eigenvalue; the variational equations are satisfied by
a nontrivial uniformly bounded solution, namely the derivative of the wave (i.e. the
vector field). �	

Collecting y = (u, p, v) andY = (U , P, V ), wewrite the pair of systems (27)–(28)
more compactly in terms of the matrices A, a:

Ẏ = A(Ū , λ, ε)Y (29)

y′ = a(ū, λ, ε)y. (30)

We end this section by recording the fast projectivized eigenvalue problem ŷ =
â(ū, λ, ε) corresponding to the linear eigenvalue problem (28). This system is defined
on the space CP

2; with respect to the chart (β1, β2) = (p/u, v/u) with u �= 0, we
have

β ′
1 = 1

c
(D(ū)β1 − β1β2) + ε(R′(ū) + λ(β1/c − 1))

β ′
2 = 1

c
(D(ū)β2 − β2

2 ) + ε

(
c − β1 + λ

c
β2

)
. (31)

Slow projectivized eigenvalue problems can be similarly defined using (27). We
record for future convenience the following system defined with respect to the chart
(β1, β2) = (U/V , P/V ) with V �= 0:

εβ̇1 = 1

c

(
1 − D(Ū )β1

)+ ε(β1β2 − cβ2
1 − (λ/c)β1)

β̇2 = β2
2 − cβ1β2 + (R′(Ū ) − λ)β1. (32)
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4.1 Asymptotic and Far-Field Hyperbolicity

We turn to the asymptotic systems associated with (29)–(30). Broadly speaking, these
systems encode ‘far-field’ information about the wave; for instance, they are useful
in determining the boundaries of the essential spectrum (see Kapitula and Promis-
low 2013). The matrices a(ξ, λ, ε) and A(ζ(ξ), λ, ε) tend to the limits a±(λ, ε) and
A±(λ, ε) as ξ → ±∞. Here the minus (resp. plus) superscript corresponds to an
evaluation at z̄− (resp. z̄+). We have

a±(λ, ε) =
⎛
⎝− 1

c (D(u±) + ελ) 0 1
c

ε(R′(u±) − λ) 0 0
εc −ε 0

⎞
⎠ ,

A±(λ, ε) = (1/ε)a±(λ, ε). (33)

Note from (4) that R′(1) < R′(0) < 0. Let β be some fixed real number with
R′(0) < β < 0 and define

� = {λ ∈ C : Re λ > β}. (34)

We will show in Sect. 5 that the essential spectrum lies entirely in the left-half
complex plane, and bounded away from �. We now record some estimates for the
eigenvalues and eigenvectors of the asymptotic matrices (33) for any λ ∈ �, which
will be important in determining the point spectrum.

Lemma 4.2 Let λ ∈ �. Then for ε > 0 sufficiently small, the asymptotic matrices (33)
have three distinct eigenvalues μ±

j (λ, ε) for a±(λ, ε) (resp. �±
j (λ, ε) for A±(λ, ε)),

which satisfy

Re μ±
f � Re μ±

s,1 < 0 < Re μ±
s,2

�±
j = (1/ε)μ±

j . (35)

In particular, we have μ±
f = O(1) and μ±

s, j = O(ε), j = 1, 2. Furthermore,

let e±
f (λ, ε) and e±

s, j (λ, ε) denote the eigenvectors associated with μ±
f and μ±

s, j ,

respectively, where j = 1, 2. Then, each e±(λ, ε) limits to a ‘reduced’ eigenvector
r±(λ) as ε → 0. These reduced eigenvectors are given explicitly by:

r±
f = (1, 0, 0)�

r±
s,1 = (1/D(ū±), νp,±, 1)�

r±
s,2 = (1/D(ū±), νm,±, 1)�, (36)
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where

νp,± =
c0 +

√
c20 + 4D(ū±)(λ − R′(ū±))

2D(ū±)

νm,± =
c0 −

√
c20 + 4D(ū±)(λ − R′(ū±))

2D(ū±)
. (37)

Remark 4.3 The smallness of ε required for Lemma 4.2 is dependent on λ, but a
uniform bound ε ≤ ε̄ over closed, bounded contours in C can be extracted using
compactness. �	
Proof of Lemma 4.2 We outline the proof as it is similar to the proof of Lemma 2.1.
The characteristic polynomial of a±(λ, ε) is

p±(μ) = −μ3 − μ2
(

D(u±) + ελ

c

)
+ με + ε2

λ − R′(u±)

c
, (38)

fromwhichwe obtain the expansionμ±
f = −D(ū±)/c0+O(ε). Leading-order expan-

sions of the O(ε) eigenvalues are obtained by using the scaling μ = εν as before.
Their leading order terms are given by νp,± and νm,±; this can be checked by direct
calculation. The remaining small eigenvalues therefore fall into the hierarchy stated
by the lemma at both u− and u+, provided that Re λ > R′(0). The expressions for the
singular limits of the eigenvectors can also be checked with algebra. �	
For fixed a > 0, there exists ε̄ > 0 sufficiently small so that the wave x(ξ, ε) lies
near Sa,−

0 ∪ Sa,+
0 for |ξ | ≥ a/ε for all 0 < ε ≤ ε̄. The corresponding coefficient

matrix a(ξ, λ, ε) has three eigenvalues μi satisfying the hierarchy μ f � μs,1 <

0 < μs,2, inherited from the asymptotic hyperbolicity described in Lemma 4.2. Let
f1(ξ, λ, ε), f2(ξ, λ, ε), f f (ξ, λ, ε) denote a choice of eigenvectors corresponding to
the eigenvaluesμs,1, μs,2, μ f (note: ifμs,1 andμs,2 coalesce,we let f1, f2 denote the
generalized eigenvectors instead). We furthermore suppose that the fi are normalized
so that | fi |∞ = 1 for all (ξ, λ, ε).

Definition 4.4 The slow subbundle σs of the linearized system is

σs(ξ, λ, ε) =
⋃

|ξ |≥a/ε

span{ f1(ξ, λ, ε), f2(ξ, λ, ε)} (39)

where the base space is |ξ | ≥ a/ε and λ ∈ �. We denote the slow subbundle with
respect to the timescale ζ = ξ/ε by �s , i.e.

�s(ζ, λ, ε) = σs(ξ/ε, λ, ε). (40)

�	
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4.2 Complex 2-Plane Dynamics Induced by the Eigenvalue Problem

We now write down a concrete representation of the evolution equations of complex
2-planes that are induced by the eigenvalue problem (28), and recording some essential
properties about this induced system using the formulation described in Sect. 3. We
have

⎛
⎝u ∧ p

p ∧ v

v ∧ u

⎞
⎠

′
=
⎛
⎝− 1

c (ελ + D(ū)) − 1
c 0

−εc 0 −ε(R′(ū) − λ)

ε 0 − 1
c (ελ + D(ū))

⎞
⎠
⎛
⎝u ∧ p

p ∧ v

v ∧ u

⎞
⎠ . (41)

The coupled system (11)–(41) acts on the complexified tangent bundle TCU ∼=
∪p∈U Tp(U ) ⊗R C, where U ⊂ R

3. In view of Corollary (2.12) and Lemmas 4.2
and 3.4, there exists ε̄ > 0 and a > 0 so that for each ε ∈ (0, ε̄) and |ξ | > a/ε, the
eigenvalues μ

(2)
1 (ξ), μ

(2)
2 (ξ), μ

(2)
3 (ξ) of the linearization of (41) can be ordered so

that

Re(μ(2)
1 ) = O(1) < 0

Re(μ(2)
2 ) = O(1) < 0

Re(μ(2)
3 ) = O(ε).

Let us provide some geometric intuition to clarify these estimates. When the wave
lies near the slow manifolds, the eigenvalue problem (28) provides an eigenvector
lying near the direction of strong contraction onto the slow manifolds, and a pair of
eigenvectors lying near to the tangent space of the slow manifold. These eigenvectors
can be chosen pairwise to construct an eigenbasis for the linearization of system (41),
consisting of three complex 2-planes. Two of the constructed 2-planes have an axis
lying near the fast fibres of the slow manifolds, so they strongly contract in forward
time under the flow; these are the eigenvectors corresponding to the two eigenvalues of
O(1) negative real part. The remaining 2-plane lies near the tangent space of the slow
manifold. Depending on the relative magnitudes of the singular eigenvalues along the
wave, this eigenvector provides a weakly (un)stable direction.
We can further clarify the local dynamics near the tails of the wave, in view of the ele-
mentary facts about projectivized systems discussed just after (21). The projectivized
system induced by (41) on CP

2, written in terms of the coordinate representation

(β1, β2) =
(

p∧v
u∧p , v∧u

u∧p

)
, u ∧ p �= 0, is given by

β ′
1 = −εc + (ελ + D(ū))

c
β1 − ε(R′(ū) − λ)β2 + 1

c
β2
1

β ′
2 = ε + 1

c
β1β2, (42)

where we remind the reader of the nonautonomous nature of the flow due to the inclu-
sion of the phase space variable ū = ū(ξ). associated with the system (42) is a family
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of frozen systems, defined for each fixed ε by replacing the nonautonomous system
by a one-parameter family of autonomous ODEs where the variable ξ is formally
replaced by an independent parameter γ on the right-hand side (see Sect. 7.1.1 for the
explicit construction). A straightforward perturbation argument shows that for ε > 0
sufficiently small with a > 0 defined as above and for each fixed γ with |γ | > a/ε,
there is an (isolated) attracting fixed point of the frozen family for each such γ , denoted
β0(γ, ε), which isO(ε)-close to (β1, β2) = (−D(ū(γ )), 0). For fixed ε > 0, the func-
tion β0(γ, ε) defines curves of attracting critical points on the left and right branches
of the slow manifold as γ is varied, corresponding precisely to the family of eigen-
vector 2-planes near the slow manifolds whose construction was just described. This
is exactly the slow subbundle in Def. 4.4.
These curves of attracting critical points serve as the organizing centres for so-called
relatively invariant sets (see Gardner and Jones 1991), which we construct over the
wave tails in Sect. 7.1.1.

4.3 Reduced Eigenvalue Problems

The dynamics of the linearized systems (25) and (26) are equivalent when ε > 0, but
they limit to distinguished problems as ε → 0. In analogy to the definitions of the
layer and reduced problems for the wave, we now define two linearized subsystems
using (27)–(28). The desingularized slow eigenvalue problem will be used in Sect. 6.3
to define a slow eigenvalue. This will require the derivation of a jump condition for
two disjoint solution segments, defined separately on Sa,−

0 and Sa,+
0 .

Definition 4.5 The fast eigenvalue problem is the linear subsystem defined by the
singular limit of (28), along the fast fibre bundle:

u′ = −1

c
D(ū)u (43)

with p = v = 0. �	
Remark 4.6 The limiting system (43) is the variational equation of (11) and thus is
degenerate as an eigenvalue problem. There is always a nontrivial, uniformly bounded
solution to (43). �	
Definition 4.7 The slow eigenvalue problem is the linear subsystem on Sa,−

ε ∪ Sa,+
ε

defined by the singular limit of (27), subject to the constraint V = D(Ū )U :

Ṗ = (R′(Ū ) − λ)
V

D(Ū )

V̇ = cV

D(Ū )
− P, (44)

or more compactly as

Ẇ = A0(Ū , λ, c)W . (45)
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It is convenient to record here the projectivized slow eigenvalue problem on the
chart S = P/V with V �= 0:

Ṡ = 1

D(Ū )

(
R′(Ū ) − λ − cS + D(Ū )S2

)
. (46)

We also record here a desingularized slow eigenvalue problem, which is defined
by first appending (44) to (18) and then rescaling the frame variable of the resulting
autonomous system by D(Ū ):

Ṗ = (R′(Ū ) − λ)V

V̇ = cV − D(Ū )P. (47)

�	
Projectivizations of the desingularized problem (47) will be written down and used in
Sect. 8 to identify the slow eigenvalues.

5 Essential and Absolute Spectrum

Our goal is to determine spectral stability of eachmember of the one-parameter family
of waves {	ε}ε∈(0,ε̄] for some sufficiently small value of ε̄ > 0. Following the standard
approach, we will compute the essential and point spectra, defined as in Kapitula and
Promislow (2013), and compute them separately. It is more convenient to write the
eigenvalue problem (24) as a first-order system. Following Sandstede (2002), we
consider the (equivalent) family L of linear operators from (27) and (28)

L(λ) := d

dζ
− A(Ū , λ, ε) = d

dζ
−
⎛
⎝− 1

cε (D(Ū ) + ελ) 0 1
cε

(R′(Ū ) − λ) 0 0
c −1 0

⎞
⎠ (48)

where L(λ) : H1(R,C3) → L2(R,C3).
The essential spectrum σe(L) of the family of linear operators L(λ) defined in (48) is
the set of λ ∈ C such that either L(λ) is not Fredholm, or L(λ) is Fredholm but the
(Fredholm) index is not 0. The point spectrum σp(L) is the set of values λ ∈ C where
L(λ) is not invertible, but does have index 0. We will denote by σ(	) or σ(L), the
union σp ∪ σe of the spectrum of the family L associated with the travelling wave 	.

Definition 5.1 (Definition 4.1.7 in Kapitula and Promislow 2013) A wave 	 corre-
sponding to a stationary solution of Eq. (2) is called spectrally stable if σ(	) ∩ {λ ∈
C : Re(λ) ≥ 0} = ∅, except possibly at λ = 0. �	

For nonzero ε, because Ū approaches its end states exponentially in ζ (equivalently
ξ ), determining the essential spectrum amounts to determining when the matrices
A±(λ, ε) from (33) have different signatures (this is the content of Weyl’s essential
spectrum theorem, Theorem 2.2.6 from Kapitula and Promislow (2013) as well as
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and Lemma 3.1.10, also from Kapitula and Promislow 2013). The edges of the essen-
tial spectrum are called dispersion relations or the Fredholm borders as well as the
continuous spectrum. To find the dispersion relations, we look for values where A±
has a purely imaginary (spatial) eigenvalue ik, and solve for the temporal eigenvalue
parameter λ. This gives a pair of curves λ±(k; ε) in the complex plane, parametrized
by the spatial modes, where the asymptotic matrices fail to be hyperbolic. Working
with (27), and denoting limζ→±∞ Ū by Ū±, we have that the dispersion relations are:

λ±(k; ε) = −ick + R′(Ū±) − D(Ū±)k2

1 + k2ε
(49)

We have a pair of curves partitioning C into five disjoint sections: the set to the right
of both curves (where we’re going to look for point spectrum) which we denote �,
together with four more regions which we denote byA j for j = 1, 2, 3, 4 (see Fig. 4).

Since the characteristic polynomials of A± are both cubics:

PA±(μ) = −μ3 − 1

c

(
λ + D(Ū±)

ε

)
μ2 + μ

ε
+ 1

cε

(
λ − R′(Ū±)

)
, (50)

everything can be checked explicitly. We are working in the slow variables, but every-
thing that follows in this section can be computed for the (equivalent) fast systems,
since

PA±(μ) = 1

ε3
p±(εμ)

from (38). Defining the transformation

η := μ − 1

3

(
λ + D(Ū±)

cε

)
,

we have

PA±(η) = −η3 + H±η + K±,

where

H± := λ2

3c2
+ λ

2D(Ū±)

3c2ε
+ D(Ū±)2 + 3c2ε

3c2ε2
,

and

K± := − 2

27c3
λ3 − 2D(Ū±)

9c3ε
λ2 + 18c2ε2 − 6εD(Ū±)2

27c3ε3
λ

− 9c2εD(Ū±) + D(Ū±)3 + 27c2ε2R′(Ū±)

27c3ε3
.
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Wenote that the discriminants�H± of H± are polynomials inλ that are independent
of Ū±:

�H± = − 4

3c2ε
< 0

which means that for λ ∈ R, we have H± > 0. Hence for each λ ∈ R,

H3±
27

+ K 2±
4

≥ 0.

We thus infer that for λ ∈ R, PA±(μ) has three real roots (countingmultiplicity in edge
cases).We can then use Descartes’ rule of signs to see that for λ = 0 (and subsequently
for all λ ∈ �), we have that the signature of both A+ and A− is (−,−,+). That is A±
has two eigenvalues with negative real part and one with positive real part. Checking
the signatures in the rest of the regions A j similarly produces the following table:
Thus, we find that the essential spectrum is the union of regions A2,3,4 together

Region sgn(A−) sgn(A+)

� (−, −,+) (−, −,+)

A1 (−, +,+) (−, −,+)

A2 (−, −,+) (−, +,+)

A3 (−, −,+) (−, +,+)

A4 (−, +,+) (−, +,+)

with their boundaries. This set in the complex plane with a bounded real part and an
unbounded imaginary component (see Fig. 4).
The dispersion relations are symmetric about k, and they cross the real axis at R′(Ū±)

when k = 0. The dispersion relations are vertical lines when ε = ε±∗ := − D(Ū±)

R′(Ū±)
and

are parabolic in k near k = 0, opening to the left when ε < ε±∗ and to the right when
ε > ε±∗ before ‘flaring’ up to asymptote towards vertical lines.
It is worthwhile to investigate whether the family L is sectorial when ε > 0, since
the property of sectoriality allows us to strengthen spectral stability to linear stability
(see e.g. Henry 1981). When ε = 0, the dispersion relations define a pair of parabolas
opening leftward, and as such the linearized operator associated with the unperturbed
problem is sectorial. On the other hand, for any fixed ε > 0, the following asymptotics
characterize the behaviour of the Fredholm bolders as k → ±∞:

λ± ∼ − D(Ū±)

ε
+ −ick. (51)

Hence, the essential spectrum is contained in the left half plane, but the family L is
not sectorial since the borders are vertically asymptotic; see Fig. 4.
We note that as ε → 0, the continuous spectrum (Fredholm borders) of the perturbed
problemwill converge to the continuous spectrum (Fredholmborders) of the linearized
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Fig. 4 Left: a plot of the essential spectrum (shaded regions) of the family L illustrating its qualitative
features, and noting the regions � and the Ai partitioning the complex plane via the Fredholm borders
(continuous spectrum). The asymptotics of the essential spectrum for large spatial modes means that the
family of operators L, for nonzero ε is not sectorial. Right: a plot comparing the Fredholm border of
A−(λ, ε) (solid line—blue online) to the Fredholm border of the reduced problem linearized about the
constant solution Ū− = 0 with ε = 0 (dashed line—red online). As ε → 0, the solid line follows the
dashed line for a longer region in the left half plane, before eventually ‘flaring’ up. For the figures, ε = 0.1
(where it is present) and c = 1, with D and R as in (3) and (4)

unperturbed problem, linearized about the steady-state solutions Ū±. That is we set
ε = 0 in (2) and consider the dispersion relations of the steady-state solutions Ū±.
We see that these are given by

λ±(k; 0) = −k2D(Ū±) + R′(Ū±) + ick,

which corresponds to setting ε = 0.
We highlight the subtlety underlying the asymptotic convergence of the essential spec-
trum of the linearized operator as ε → 0: for any large bounded set intersecting the
essential spectrum of the operator for ε > 0 and for any fixed δ > 0, there exists
a sufficiently small uniform bound ε̄ > 0 so that for each ε ∈ (0, ε̄), the Fredholm
borders for the operator when ε > 0 can be made δ-close to the (parabolic) borders
of the reduced operator within this bounded set; on the other hand, the uniform bound
ε̄ must be made smaller and smaller as we take larger and larger bounded sets and
demand δ-closeness. See Fig. 4.

Remark 5.2 In view of the nonsectoriality of the family L, spectral stability does not
immediately imply linear exponential stability, i.e. it is unknown whether nearby
translates of the spectrally stable wave decay exponentially onto the wave in forward
time. �	
Remark 5.3 Lastly, we note that as the essential spectrum is entirely contained in the
left half plane, any absolute spectrum will also be contained in the left half plane, and
so will play no role in destabilizing the underlying wave. �	
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6 Augmented Unstable Bundles

Having shown that the essential spectrum lies to the left of � in the left-half complex
plane, we now focus on finding the point spectrum σp(L) consisting of isolated eigen-
values of finite multiplicity. To that end, we fix a simple, closed curve K ⊂ �, such
that σp ∩ K is empty. In view of the hyperbolicity of the asymptotic systems a±(λ, ε),
we henceforth refer to the values in the point spectrum as eigenvalues. Specifically,
we rely on the following geometric characterization of the eigenvalues of (24).

Definition 6.1 The number λ ∈ � is an eigenvalue of L(λ) if there exists a nontrivial
uniformly bounded solution y(ξ) of (27) (equivalently, if the bounded solution y(ξ)

decays to zero as ξ → ±∞; see Alexander et al. 1990). �	
In this section, we construct two augmented unstable bundles Eε(K ) and E0(K ),

over a cylindrical base space formed by extending K along a compactified time vari-
able. As we will outline in Sect. 6.2, our goal is to use a particular correspondence
theorem that relates a certain topological invariant of these complex vector bundles to
the eigenvalue count of L(λ) inside K .

6.1 Construction of the Augmented Unstable Bundle E"(K) for " > 0

Following Gardner and Jones (1991), we now use general facts in Alexander et al.
(1990) together with Lemma 4.2 to construct (un)stable complex vector bundles of
solutions along the wave for each sufficiently small ε > 0.

Definition 6.2 Let λ ∈ �. For ε > 0 sufficiently small, the unstable bundle and stable
bundle ϕ−(ξ, λ, ε) resp. ϕ+(ξ, λ, ε) are the linear subspaces of solutions along the
wave 	ε defined by the conditions

ϕ−(ξ, λ, ε) → span{e−
s,2(λ, ε)} as ξ → −∞

ϕ+(ξ, λ, ε) → span{e+
s,1(λ, ε), e+

f (λ, ε)} as ξ → +∞. (52)

The asymptotic convergence to the corresponding (un)stable subspaces of a±(λ, ε)

is defined with respect to the topologies of the appropriate Grassmannians G1,3 and
G2,3. �	

The linear subspace ϕ− (resp. ϕ+) can be viewed as a complex line bundle (resp.
2-plane bundle) over the base space (ξ, λ) ∈ R×�. In view of Definitions 6.1 and 6.2,
λ ∈ � is an eigenvalue if and only if ϕ−(ξ, λ, ε) and ϕ+(ξ, λ, ε) intersect nontrivially
for some (and hence all) ξ ∈ R.
We now describe a general construction for obtaining an augmented unstable bundle
Eε(K ) over the real 2-sphere S2, using ϕ−; we refer to Alexander et al. (1990) for
details. The approach is to first compactify ξ using the change of variable ξ → τ ,
where

τ ′ = εκ(1 − τ 2),

τ (0) = 0,
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for κ > 0 chosen such that τ(ξ) → ±1 as ξ → ±∞.With respect to this compactified
‘timescale’,ϕ−(τ, λ, ε) then specifies a line bundle over (−1, 1)×�; a bundle can then
be defined over the restricted base space (−1, 1)×K . This base space is homeomorphic
to an infinite cylinder (equivalently, a finite cylinder with its caps removed). Our first
goal is to continuously extend the line bundle over the closure of the cylinder (i.e. over
the base space [−1, 1] × K ). After this, we fill in the caps, altogether producing a
complex vector bundle over the closed cylinder, i.e. over S2.
Let us explain this continuous extension. First recall that every complex vector bundle
can be realized as a pullback of the universal bundle over a Grassmannian, as follows.
Given a (complex) vector bundle E : E ⊂ B × C

n → B with projection map π ,
there is a natural map ê : B → Gk,n , which assigns to each b ∈ B the complex
k-dimensional linear fibre π−1(b), considered as a k-plane in Gk,n . On the other hand,
the universal bundle 	k(C

n) → Gk,n is a trivial (tautological) construction: the fibre
above each element in Gk,n is defined to be the corresponding k-plane. Then, E can
be realized as ê∗	k(C

n):

E 	k(C
n)

B Gn,k

π

ê

Thus, we say that ϕ−|(−1,1)×K continuously extends to a bundle over [−1, 1]× K if
the natural map ê : (−1, 1) × K → G1,3 extends continuously to ẽ : [−1, 1] × K →
G1,3. The extension to τ = −1 is clear: for each λ ∈ K , ϕ− continuously extends
to e−

s,2(λ, ε) as τ → −1 by definition. On the other end, we need to specify that
λ ∈ K is not an eigenvalue of (27). General considerations about ω-limit sets relative
to hyperbolic fixed points (see Alexander et al. 1990) then imply that ϕ−(τ, λ, ε)

continuously extends to the corresponding unstable eigenvector e+
s,2(λ, ε) as τ → +1.

We note that this limit can be made uniform in λ over the closed contour K .
It remains to fill in the interiors of the caps C− = {τ = −1} × K 0 and C+ = {τ =
+1} × K 0 at either end of the cylinder. For each λ ∈ K 0, this is achieved for both
caps by gluing the corresponding unstable eigenvector e±

s,2(λ, ε).

Definition 6.3 The augmented unstable bundle Eε(K ) is the complex line bundle over
the cylindrical base space C− ∪ [−1, 1] × K ∪ C+, constructed from ϕ− as described
above. �	
This base space is homeomorphic to S2. Our goal will be to relate the eigenvalue count
to a particular characteristic class defined for complex vector bundles.

6.2 An Outline of the Proof of the Stability Theorem

We make use of the main theorem proved in Alexander et al. (1990): the total number
of eigenvalues (counted with algebraic multiplicity) inside K is equal to the first
Chern number, c1(Eε(K )), of the complex vector bundle constructed above. The main
advantage of this topological characterization lies in the homotopy invariance of c1.
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We can now outline the steps of the proof of Theorem 2.11:

1. Construct a reduced augmented unstable vector bundle E0(K ) using a complex two-
dimensional reduced (or slow) eigenvalue problem defined on the critical manifold
S0. This is accomplished in Sect. 6.4.

2. Show that for sufficiently small ε > 0, we can continue Eε(K ) to E0(K ), i.e. we
can construct a homotopy between them. By homotopy invariance, c1(Eε(K )) =
c1(E0(K )). This homotopy is constructed at the end of Sect. 7 only after several
key estimates are proven; see Theorem 7.1.

3. Use the correspondence theorem in Alexander et al. (1990) in the ‘other direction,’
i.e. compute c1(E0(K ))byfinding the sloweigenvalues usingSturm–Liouville tech-
niques. We will verify that the reduced problem admits only a simple translational
eigenvalue λ0 = 0, and another simple eigenvalue λ1 with R′(0) < Re λ1 < 0.
The slow eigenvalues are computed in Sect. 8.

Steps 1 and 3 turn out to be relatively straightforward; most of the technical issues
lie in proving the uniform estimates required to construct the homotopy in step 2. To
summarize, we will show that for any fixed contour K ⊂ C to the right of the essential
spectrum, there exists ε̄ > 0 so that for each ε ∈ (0, ε̄], the following statements hold:

{# of eigenvalues of L inside K } = c1(Eε(K )) = c1(E0(K )) ≤ 2,

where the first equality follows from the general theory in Alexander et al. (1990);
the second follows from the Step 2 above; and the third follows from Steps 1 and 3.
By choosing smaller contours K0 and K1 surrounding only λ0 resp. λ1 (and shrinking
ε̄ finitely many times if necessary so that the corresponding homotopies can be con-
structed for all three contours K , K0, and K1 simultaneously), we obtain linearized
stability of the one-parameter family of waves 	ε for 0 < ε < ε̄.

6.3 Slow Eigenvalues and the JumpMap

We now proceed with step 1 of the stability proof. In order to construct the reduced
bundle, we must first define the appropriate geometric criteria for a slow eigenvalue
λ ∈ C for (25). Let (Ū (ζ ), P̄(ζ )) parametrize the segments of the singular heteroclinic
orbit 	0 from Hypothesis 2.7 on Sa,−

0 ∪ Sa,+
0 , so that the fast jump occurs at ζ = 0.

Definition 6.4 The complex number λ ∈ � is called a slow eigenvalue of (25) if there
exists a pair of nontrivial, uniformly bounded solutions on Sa,−

0 ∪ F− resp. Sa,+
0 ,

denoted

YL(λ, ζ ) for ζ ≤ 0 and

YR(λ, ζ ) for ζ ≥ 0 (53)

of the desingularized slow eigenvalue problem (47), such that

YR(λ, 0) = Jλ (YL(λ, 0)) , (54)
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where Jλ : C2 → C
2 is the (linear) jump map defined by

Jλ(P, V ) =
⎛
⎝1 R(ŪJ )−R(ŪF )−λ(ŪJ −ŪF )

cŪF −P̄F

0 cŪJ −P̄F
cŪF −P̄F

⎞
⎠
(

P
V

)
. (55)

�	
The jump map will be derived rigorously as a singular limit in Sect. 7.3.

Remark 6.5 Suppose thatλ is a sloweigenvalue.Owing to the asymptotic hyperbolicity
of (47) as ζ → ±∞, the pair of nontrivial, uniformly bounded solutions (53) must
decay to zero in forward (resp. reverse) time. Given two nontrivial, uniformly bounded
‘half-solutions’ YL(λ, ζ ) and YR(λ, ζ ) as given in (53), any nontrivial complex scalar
multiple of these solutions ỸL(λ, ζ ) = K YL(λ, ζ ) and ỸR(λ, ζ ) = K YR(λ, ζ ) also
satisfy the jump condition (54) owing to the linearity of the jump map (55).
It is instructive to consider the case λ = 0, corresponding to a reduction of the
translational eigenvalue. The reduced vector field provides (complex scalar multiples
of) nontrivial, uniformly bounded linear solutions on Sa,−

0 ∪ F− and Sa,+
0 as required

in (53). Indeed, any such solution pair YL , YR , separately defined along the segments
of the wave lying in Sa,−

0 ∪ F− and Sa,+
0 , must satisfy

YL(λ, 0) = (PF , VF ) = K1(R(ŪF ), cŪF − P̄F )

YR(λ, 0) = (PJ , VJ ) = K2(R(ŪJ ), cŪJ − P̄F ),

where K1, K2 �= 0 denote complex scalars. On the other hand,

J0(PF , VF ) = K1

(
R(ŪF ) + (R(ŪJ ) − R(ŪF ))

(cŪJ − P̄F )

)

= K1

(
R(ŪJ )

cŪJ − P̄F

)

= (K1/K2)(PJ , VJ ).

The jump condition 54 is therefore satisfied by rescaling one of the solutions if
necessary, and hence, 0 is a slow eigenvalue. Observe that the reduced vector field
provides a natural scaling K1 = K2 = 1 such that the jump condition is automatically
satisfied, but this is a special constraint that arises from the relationship between the
reduced vector field along the singular limit of the wave and the variational equations,
i.e. the linearized problem when λ = 0. We do not generally expect (or need) to find
such a natural scaling when λ �= 0.
We end this remark by comparing our definition of a slow eigenvalue to that in Gardner
and Jones (1991). Motivated by the behaviour of their slow line subbundle in the
fast inner layer as ε → 0, their slow eigenvalue problem is defined by asking for
continuous solutions across the jump. Hence, 0 is necessarily not a slow eigenvalue
in their construction, since the tangent vector of a continuous solution at the end of
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the jump is transverse to the reduced vector field at the jump-on point on Sa,+
0 . The

translational eigenvalue is instead counted by their fast eigenvalue problem. �	

6.4 The Construction of E0(K)

We work with the projectivization of (47) on CP:

˙̂Z = Ŵ0(Ẑ , ζ, λ). (56)

Let Ẑ L(ζ, λ) denote the (unique) solution of (56) on Sa,−
0 , which tends to the image

of the unstable eigenvector of the (projective) asymptotic reduced system Ŵ −
0 (Ẑ , λ)

as ζ → −∞. We write ZL(ζ, λ) = (PL(ζ, λ), VL(ζ, λ)) ∈ π−1(Ẑ L). Let us denote
by Z R(ζ, λ) = (PR(ζ, λ), VR(ζ, λ)) the corresponding solution on Sa,+

0 for ζ ≥ 0
which satisfies the jump condition (54) (note that this gives a concrete initial condition
for the solution on Sa,+

0 ). We find the corresponding embedded solutions in R3 using

EL(ζ, λ) = ι0(ζ, λ)ZL(ζ, λ)

ER(ζ, λ) = ι0(ζ, λ)Z R(ζ, λ),

where ι0 denotes the inclusion map into T S0.
Finally, we consider the projectivizations ÊL,R(ζ, λ) ∈ CP

2. In analogy to the con-
struction of Eε(K ), we compactify the time variable and work instead with T (ζ ),
where

T ′ = κ(1 − τ 2) (57)

T (0) = 0, (58)

with −1 ≤ T ≤ 1. When there are no slow eigenvalues within λ ∈ K , we can then
continuously extend each of ÊL,R to the appropriate cap of the compactified cylinder
by taking

ÊL(−1, λ) = ê−
2,0(λ)

ÊR(+1, λ) = ê+
2,0(λ)

for each λ ∈ K ∪ K 0.
We construct E0(K ) by gluing together vector bundles over two hemispheres, defined
separately over the singular wave on Sa,±

0 . In particular, let

i±0 (λ) = lim
ζ→0± i0(ζ, λ) (59)
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and take

B− = B ∩ {τ ≤ 0}
B+ = B ∩ {τ ≥ 0},

denoting the two sets splitting the base space over left and right hemispheres. By
pulling back ÊL and ÊR with respect to these restricted base sets, we can obtain two
bundles E±

R . It remains to glue these bundles together over the hemisphere B− ∩ B+.
The fibres over B− ∩ B+ of each bundle E±

0 is specified by

E−
0 |(B− ∩ B+) = span{i−0 (λ)ZL,0(λ)}

E+
0 |(B− ∩ B+) = span{i+0 (λ)Z R,0} = span{i+0 (λ)Jλ(ZL,0)(λ)},

where ZL,0 ∈ π−1 Ẑ L(0, λ) and Z R,0 ∈ π−1 Ẑ R(0, λ). Then, there is a bundle
isomorphism

ϕH : E−
0 |{0} × K → E+

0 |{0} × K (60)

defined by (the linear extension of)

ϕH (λ)i−0 (λ)ZL,0 = i+R (λ)Z R,0 = i+R (λ)JλZL,0. (61)

The basic properties of bundle isomorphism can be checked by using the linearity of
the embeddings and the jump map.

Definition 6.6 The reduced augmented unstable bundleE0(K ) is defined by the clutch-
ing operation

E0 = E−
0 ∪ϕH E+

0 , (62)

i.e. it is the bundle over the closed cylinder (∼= S2) obtained by gluing together the
hemispheric bundles along their common boundary via the equivalence relation

y− ∼ ϕH (λ)y−.

using the clutching map (60). �	
Remark 6.7 We refer the reader to the standard treatments in differential topology for
a general overview of clutching operations (see e.g. Atiyah 1967; Hatcher 2017). We
will find it useful to work instead with an equivalent bundle Ẽ0(K ) ∼= E0(K ) obtained
by projecting the fibre at each point over the base set onto the corresponding two
components. It is straightforward to show that these two bundles are indeed homotopy
equivalent by constructing the explicit homotopy that continuously bends each fibre as
a homotopy parameter goes from 0 to 1; see the remark below Lemma 6.2 of Gardner
and Jones (1991) for details. �	
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7 Comparison of the Bundles E"(K) and E0(K)

With the reduced objects from Sect. 6.4 in hand, let Ê(ζ, λ, ε) denote the (unique)
projective solution of the ε-dependent family of solutions tending to the unstable
subspace as ζ → −∞. By general arguments in Alexander et al. (1990), we have that
λ /∈ σp(L) if and only if Ê(ζ, λ, ε) → ê+

f (λ, ε) (defined in Lemma 4.2) as ζ → +∞.
Wewant to show that particular solutions of the projectivization of the slow eigenvalue
problem (47) uniformly approximate Ê(ζ, λ, ε) when ε > 0 is sufficiently small.
Let � : C3 → C

2 denote projection onto the slow coordinates, i.e.

�(u, p, v) = (p, v). (63)

We can also define the inclusionmaps ι, ιR in the obviousway. IfY , YR are solutions
to the full system (in the slow timescale, with ε �= 0) and the linearized slow system
(i.e. with ε = 0), respectively, then we use the variables Z , Z0 ∈ C

2 to denote the
projections:

Z = �(Y ) (64)

Z0 = �(Y0). (65)

Owing to the linearity of the eigenvalue problem, we can also induce a dynamical
system for Ẑ on projective space:

˙̂Z = B̂0(Ẑ , ζ, λ). (66)

The goal now is to compare two solutions, denoted Ẑ∗ and Ẑ0, defined via a singular
limit of a solution of the full system and a solution of the reduced linear system,
respectively (strictly speaking, we compare their embeddings in CP

3). The solution
Ẑ0 is the unique solution of the projectivized linearized slow system (56). On the
other hand, the solution Ẑ∗ is defined as the projection of the full solution E(ζ, λ, ε)

onto the slow manifolds in the singular limit ε → 0, i.e. take Z = �E and choose a
subsequence εn → 0 so that the limits

Ẑ(±1, λ, εn) = Ẑ±

both exist and then define two solutions Ẑ±(ζ, λ) of the reduced problem (56) on
ζ < 0 and ζ > 0 with initial conditions Ẑ±, setting

ζ̂∗(ζ, λ) =
{

ζ̂−(ζ, λ) if ζ < 0

ζ̂+(ζ, λ) if ζ > 0.

Finally, define the following two inclusions:

E0(ζ, λ) = ι0(ζ, λ)Z0(ζ, λ)

E∗(ζ, λ) = ι0(ζ, λ)Z∗(ζ, λ).
(67)
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We re-emphasize that the starred data are obtained from approximation of the full
solution, whereas data denoted by ‘0’ is obtained only from solutions of the reduced
problem on Sa,−

0 ∪ F and Sa,+
0 , concatenated by an algebraic jump condition.

An approximation theorem can now be stated.

Theorem 7.1 There exists ε̄ > 0 such that for 0 < ε < ε̄ the following are true:

(a) limε→0 Ê(ζ, λ, ε) = Ê∗(ζ, λ) uniformly in a ≤ |ζ | ≤ A, for each 0 < a < 1 <

A.
(b) Let Z0−∗ (λ) := limζ→0− Z∗(ζ, λ). Then,

Jλ(Z0−∗ (λ)) = Z∗(0, λ) = lim
ζ→0+ Z∗(ζ, λ). (68)

(c) Suppose that λ is not a slow eigenvalue. Then,

Ẑ∗(ζ, λ) = Ẑ0(ζ, λ),

where

Ẑ0(ζ, λ) =
{

Ẑ L(ζ, λ) for ζ < 0

Ẑ R(ζ, λ) for ζ ≥ 0
(69)

is defined by projectivizations of a pair of solutions defined on Sa,−
0 ∪ F resp. Sa,+

0
that tends to the projectivization of the unstable eigenvector in either direction.
The pair also satisfies the projectivized jump condition from (90):

Ẑ R(0, λ) = s(ū J , λ).

Furthermore, Ê(ζ, λ, ε) → ê+
f (ζ, λ, ε) as ζ → +∞.

Remark 7.2 This theorem should be directly compared to the analogous convergence
theorem 5.3 in Gardner and Jones (1991). Observe that the continuity condition in
part (b) is replaced by a jump condition. In general, we no longer expect the projected
limiting solution Z∗ to be continuous at ζ = 0 (however, it is still right-continuous).
�	

Sections 7.2, 7.3 and 7.4 are devoted to proving Theorem 7.1 (a), (b) and (c),
respectively. In the final subsection 7.5, we use this theorem to construct a homotopy
between the bundles Eε(K ) and E0(K ).

7.1 Preliminary Estimates

Before proving Theorem 7.1, we need some preliminary estimates that will allow
us to control the dynamics of the eigenvalue problem within the slow manifolds,
and as they connect from the fast layers to the slow manifolds. The key points are
that although we do not have access to an elephant trunk lemma, (i) we may still
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define partial relatively invariant sets over the attracting branches Sa,±
ε of the critical

manifold Sε for sufficiently small values of ε > 0, and (ii) the way in which the
eigenvalue parameter λ enters the equations suggests that we can retain control of the
dynamics using exchange lemma-type estimates. Let us highlight that the exchange
lemma estimates are apparently new relative to the techniques introduced in Gardner
and Jones (1991). Furthermore, the use of relatively invariant set theory applied to the
case of two-plane dynamics (i.e. the construction of a so-called slow elephant trunk
over a slow subbundle) also appears to be new.

7.1.1 Fast and Slow Elephant Trunks Over Sa,±"

In this section, we construct relatively invariant attracting sets for (28) defined within
compact neighbourhoods of Sa,±

ε . Here we closely follow the treatment of Sect. IV in
Gardner and Jones (1991). Let

� = ∪ξ∈I �(ξ) × {ξ}

denote a subset of C2 × R such that I is an open interval in R and �(ξ) is a neigh-
bourhood in C

2 for each ξ , such that ∂� ∩ C
2 × I is a smooth manifold (with �(ξ)

varying smoothly in ξ ). Furthermore, consider a sufficiently smooth nonautonomous
system on C2 of the form

β ′ = G(β, ξ, ε). (70)

Definition 7.3 The set � is (positively) invariant relative to I if for any solution β(ξ)

of (70) with β(ξ0) ∈ �(ξ0) for some ξ0 ∈ I , we have β(ξ) ∈ �(ζ) for all ζ ≥ ζ0 for
which ζ ∈ I . �	

We will define two distinct collections of relatively invariant sets over the disjoint
branches Sa,±

ε , referring to one type as fast elephant trunks, denoted �
f
±, and to the

other as slow elephant trunks, denoted �s±.
The starting point is to consider the auxiliary autonomous family of frozen systems
associated with (70):

dβ

dξ
= G(β, γ, ε) (71)

and to assume that (71) admits a smooth curve of critical points β0(γ, ε) (i.e. for
each ε > 0, β0 depends smoothly on γ ). Thinking of (71) as the frozen family
corresponding to a projectivization of a linearized system over a reference chart, such
curves arise naturally by continuing the eigenvectors of the linear system along the
travelling wave, which is parametrized by γ . We will consider subsets of the following
form as candidates for elephant trunks:

�(d, η, ε) = {(β, η) : |β − β0(γ, ε)|γ < η, γ ∈ I (d)}, (72)
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(a) (b)

Fig. 5 Sketches of the a fast resp. b Slow elephant trunks constructed in Lemmas 7.4–7.5

where the real parameter d parametrizes a nested family of subintervals I (d) (i.e.
I (d1) ⊂ I (d2) whenever d1 < d2), and the metric | · |γ is defined according to the
construction in Sect. IV. B. in Gardner and Jones (1991). As noted there, the parameter
d can be thought of as characterizing the slowly varying character of (70) (with respect
to ξ when ε > 0 is sufficiently small), while η characterizes the width of the tube. See
Fig. 5 for a sketch of the elephant trunks we construct.

We begin with the construction of the fast elephant trunks, which are defined for
(26), i.e. (28) with the frame variable having reversed orientation ξ �→ −ξ . Strictly
speaking, we work with the (orientation-reversed) projectivized system (31).

Lemma 7.4 For each λ ∈ � (see (34)), there exist ε0 > 0 and d0 > 0 such that for each
ε ∈ (0, ε0]and d ∈ (0, d0], there is a pair of fast elephant trunks�

f
− := �

f
−(d, η, λ, ε)

(over Sa,−
ε ) and �

f
+ := �

f
+(d, η, λ, ε) (over Sa,+

ε ); namely �
f
− (resp. � f

+) is positively
invariant relative to the nested families of sub-intervals I−(d) (resp. I+(d)), where

I−(d) = {ξ : ξ ≤ ξ−(δ(d)) < 0}

and

I+(d) = {ξ : ξ ≥ ξ+(δ(d)) > 0},

where δ : [0, d0) → [0,∞) varies smoothly in d with δ(0) = 0, and ξ±(δ(d)) are
defined so that:

• the travelling wave x̄(ξ, ε) lies δ-close to the singular limit of the travelling wave
for all ξ ≤ ξ−(δ) ≤ −ξ̄ and for all ξ ≥ ξ+(δ) ≥ ξ̄ , where ξ̄ is defined so that:

• the matrix A(ξ, λ, ε) := Gβ(β0(ξ, λ, ε), ξ, λ, ε) has eigenvalues μ2 − μ1 and
μ3 − μ1 uniformly negative and bounded away from 0 for all |ξ | ≥ ξ̄ , where G
denotes the orientation reversal of the projectivized system (31).

Proof See Appendix A.
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Lemma 7.4 provides elephant trunks about the fast unstable directions near the slow
manifolds in reverse time. In fact, we will only require the fast elephant trunk near the
fixed point at ū = 0 (i.e. over the branch Sa,−

ε ), in order to verify one part of a uniform
closeness estimate of the unique solution E(ξ, λ, ε) of (28) with |E(0, λ, ε)| = 1 and
E(ξ, λ, ε) → u− as ξ → −∞. As we track E(ξ, λ, ε) for ξ sufficiently large, we
will also require a slow elephant trunk over Sa,+

ε which guarantees uniform closeness
of E near the slow subbundle. We work with the projectivized system (42).

Lemma 7.5 For each λ ∈ � (see (34)), there exist ε0 > 0 and d0 > 0 such that
for each ε ∈ (0, ε0] and d ∈ (0, d0], there is a pair of slow elephant trunks �s− :=
�s−(d, η, λ, ε) (over Sa,−

ε ) and �s+ := �s+(d, η, λ, ε) (over Sa,+
ε ) for system (42);

namely, �s− (resp. �s+) is positively invariant relative to the nested families of sub-
intervals I−(d) (resp. I+(d)), where

I−(d) = {ξ : ξ ≤ ξ−(δ(d)) < 0}

and

I+(d) = {ξ : ξ ≥ ξ+(δ(d)) > 0},

where δ : [0, d0) → [0,∞) varies smoothly in d with δ(0) = 0, and ξ±(δ(d)) are
defined so that:

• the travelling wave x̄(ξ, ε) lies δ-close to the singular limit of the travelling wave
for all ξ ≤ ξ−(δ) ≤ −ξ̄ and for all ξ ≥ ξ+(δ) ≥ ξ̄ , where ξ̄ is defined so that:

• the matrix A(ξ, λ, ε) := Gβ(β0(ξ, λ, ε), ξ, λ, ε) has eigenvalues uniformly neg-
ative and bounded away from 0 for all |ξ | ≥ ξ̄ .

Proof The steps are essentially identical to those shown in Appendix A for Lemma
(7.4). We point out that the corresponding family of frozen systems for (42) admits
a curve of attracting critical points, as described in the paragraph below (42). The
remaining conditions are checked with direct calculation. �	
Remark 7.6 The slow elephant trunks in Lemma 7.5 define attracting invariant
neighbourhoods relative to a metric defined in Gr(2, 3). Switching instead to the
Fubini–Study metric (which gives equivalent estimates up to a constant factor depend-
ing only on the metrics), it is a rather lengthy calculation to show that these planar
neighbourhoods can be in turn expressed as neighbourhoods of complex lines relative
to the slow subbundle. �	

7.1.2 Exchange Lemma-Type Estimates

Per Fenichel’s original setup (Fenichel 1979), we consider a singularly perturbed sys-
tem of differential equations in Rn , which admits a family of k-dimensional normally
hyperbolic invariant manifolds Sε, with 0 < k < n, for ε ∈ (0, ε̄], arising from a
critical manifold S0 when ε = 0. We remind the reader that n = 3 and k = 2 in our
model, and we restrict our interest to the case of attracting slow invariant manifolds.
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Fig. 6 Setup of the exchange lemma-type estimate using system (76). Here the projection π− × π−
λ refers

to the projection onto the invariant manifold {b = 0}, extended by the corresponding invariant manifold
given by the eigenvalue problem (76)

We use freely a Fenichel normal form defined over a common neighbourhood U of
Sε, appended with its variational equations:

b′ = 	(b, y, ε)b

y′ = ε f (y, ε)

db′ = 	db + Dz	(dz ⊗ b)

dy′ = εDy f dy, (73)

where z := (b, y) and dz := (db, dy). In terms of the geometric objects introduced in
Sect. 3, the system (73) may be regarded as an induced derivation on the tangent bun-
dle, with the dynamics on the tangent vectors coordinatized according to the Plücker
embedding. We highlight a few properties of Fenichel theory and the Fenichel normal
form. The slow manifolds are given by Sε = {b = 0}, so that y ∈ R

k may be viewed
as the slow variables. The stable manifold W s

ε is foliated by invariant fibres, with
associated projection map π− : W s

ε → Sε.
With respect to the straightened dynamics of the normal form, this stable fibration is
given by (b, y) �→ y. Each function in (73) is regarded as ‘sufficiently’ smooth for
every succeeding statement to hold, andwe further assume that the spectra of thematrix
functions 	 and εDy f satisfy the necessary conditions for Fenichel’s Lyapunov-type
numbers. Specifically, for each y ∈ U we list the spectrum

spec	(0, y, 0) := {γ1(y), . . . , γn−k(y)}

in ascending order of their real parts, i.e.

Re (γ1(y)) ≤ · · · ≤ Re (γn−k(y)),
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and we assume a spectral gap Re γn−k(y) < 0 uniformly for y ∈ Ū . Define

γ0 = supy∈U γn−k(y). (74)

Let us summarize the geometric ideas underlying the exchange lemma. We con-
sider families of manifolds that enter neighbourhoods of normally hyperbolic slow
invariant manifolds in a generic way. The primary goal is to track both the position
and orientation (i.e. the corresponding evolution of tangent spaces according to the
variational equations) as trajectories enter near the stable foliation and spend suffi-
ciently long times near the slow manifold. If the entry manifolds intersect the stable
foliation transversally, this generic entry is ‘exchanged’ for exponential closeness, in
both position and orientation, to the unstable foliation (or in our case, to the tangent
space of the slow manifold) at exit.
This geometric result can be expressed explicitly in terms of the rectified variables in
(73).We follow the treatment by Jones andTin in Jones andTin (2009). Fix a parameter
� > 0 and consider a one-parameter family of entry manifolds {Mε} intersecting the
stable manifold transversally at some section {|b| = �}.We focus on initial conditions
within the entry manifolds that remain within the box specified by

B� := {|y| ≤ �, |b| ≤ �}, (75)

leaving B� through {|y| = �} only after a sufficiently long time, say Tε = 1/εs for
some 0 < s < 1. Let z(t) parametrize an incoming trajectory γ corresponding to such
an initial condition lying on Mε. The exchange lemma assures us that for κ ∈ (0, |γ0|)
(see (74)), z(t) is C1-O(e−κT )-close to Sε at t = Tε, i.e.

dist(z(Tε), Sε) = O(e−κTε )

dist(Tz(Tε)γ, Tπ−(z(Tε))Sε) = O(e−κTε ),

where the dist(·, ·) map is defined in the usual way, after specifying some appropriate
metrics. In view of the rectified coordinate system for (73), Tx Sε = {db = 0} (the
tangent space of Sε at x) for each x ∈ Sε. Complete details about the formulation
of the problem and a statement of the Exchange Lemma are given in Jones and Tin
(2009). This general formulation is referred to as the (k +σ)-Exchange Lemma, where
k denotes the dimension of the local unstable manifolds of the critical manifold. In
the present case k = 0, the Exchange Lemma is referred to as an inclination lemma
(Brunovsky 1996).
The first step is to write down the ‘straightened’ eigenvalue problem. Although the
coordinate change—i.e. the composition of straightening diffeomorphisms—which
defines the Fenichel normal form is usually highly nonlinear and difficult to write
down, we highlight that the linearization of this composition acts linearly on the
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dynamical system defined on the tangent spaces.6 Hence, we obtain

b′ = 	(b, y, ε)b

y′ = ε( f (y, ε) + H(b, y, ε)b)

d̃b
′ = 	d̃b + Dz	(d̃z ⊗ b) + ελG1(b, y, ε) · d̃z

d̃y
′ = ε(Dy f d̃y + Dz H(d̃z ⊗ b) + Hd̃b) + ελG2(b, y, ε) · d̃z. (76)

Here, d̃z := (d̃b, d̃y) and G1, G2 are smooth functions that are defined from the
ε-family of diffeomorphisms used to derive the Fenichel coordinates, and so are inde-
pendent of λ. Let us write the transformed eigenvalue problem in (76) in the more
compact form

d̃z
′ = A(z, ε)d̃z + ελM̃(z, ε)d̃z, (77)

with M̃�,ε0 := maxz∈B�,0≤ε≤ε0 M̃(z, ε). We drop the tilde notation for the remainder
of the section for ease of reading. For T > 0, let QT denote the set of initial conditions
within the box of width of � > 0 so that for each q := z(0) = (b0, y0) ∈ QT , we
have that z(t) remains within the �-box for each t ∈ [0, T ].
Lemma 7.7 Assume the hypotheses of the (k +σ) Exchange Lemma in the singularly-
perturbed case (Theorem 6.7 in Jones and Tin 2009) with k = 0 (i.e. the normally
hyperbolic critical manifold does not admit fast unstable directions). Furthermore,
let (γ (t, ε), dz(t, ε)) be a one-parameter family of trajectories of (76) (where the
components of the tangent vector are given by dz(t, ε) = (db(t, ε), dy(t, ε)), so that
γ (t, ε) satisfies the hypotheses for the invariant manifolds Mε in Jones and Tin (2009).
Furthermore, let dz(0, ε) =: (db0(ε), dy0(ε)) satisfy the estimate

|dy0| ≥ Mε

for some M > 0 independent of ε, when ε > 0 is sufficiently small, and fix β with
0 < β < 1. Then, there exists ε̄ > 0 so that for 0 < ε ≤ ε̄,

dist(dz(Tε), Tγ (Tε)Sε) ≤ K2ε
β

K2 depending only on ε̄ and �.

Proof See Appendix C.

Remark 7.8 Let us highlight a few points about Lemma 7.7 relative to the (k + σ)

Exchange Lemma in the singularly-perturbed case. The first obvious difference is that
the estimate is weaker, being only linear in order of ε. This is because we compare
a generic incoming trajectory to the tangent space of the slow manifold (i.e. the set

6 Indeed, if the eigenvalue problem in the original coordinates is written as dx ′ = A(x, ε)dx + ελM · dx ,
where A(x, ε, λ)dx denotes the original variational equations and M is a constant square matrix, and
z = ϕ(x, ε) is the diffeomorphism giving rise to the Fenichel normal form, then d̃z′ = B(z, ε)d̃z+ελM̃ ·d̃z,
where B d̃z is the transformed variational equation and M̃ = Dϕ ◦ M ◦ Dϕ−1.
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{b = 0, db = 0}) instead of the slow subbundle, where the computation becomes
more difficult. For our present purposes, this weaker estimate is sufficient, since it
is immediate that the slow subbundle is O(ε)-close to the tangent space of the slow
manifold relative to the Fubini–Studymetric (note: it is crucial here that the eigenvalue
problem depends ‘weakly’ on λ, i.e. through terms of O(ελ) only).
However, we highlight that the system (76) is singularly-perturbed, with the identical
normally hyperbolic critical manifold {b = 0, db = 0} as that of the variational
equations. By standard Fenichel theory, there exists a one-parameter family of (real)
six-dimensional locally invariant attracting slow manifoldsMε for sufficiently small
values of ε > 0, which lie O(ε)-close in Hausdorff distance to the critical manifold;
two of the dimensions come from the slow directions in the phase space and the
remaining four come from the slow complex directions of the eigenvalue problem.
We therefore expect that the tangent spaces of incoming trajectories under the flow
of the eigenvalue problem align exponentially closely to that of Mε, i.e. there is
an analogue to the standard Exchange Lemma estimate for the eigenvalue problem.
Furthermore, the slow subbundle should provide the O(ε) correction of the tangent
bundle of the slow manifold (i.e. it is O(ε2)-close with respect to the Fubini–Study
metric), in analogy to the standard computations using Fenichel theory. We illustrate
this in Appendix D with a toy problem. �	

7.2 Estimates Near the Slow Subbundle

In this subsection, we prove Theorem 7.1 (a). Our aim is to prove a similar result to
Corollary 5.6 in Gardner and Jones (1991), namely that the projectivization Ê(ζ, λ, ε)

of any nontrivial solution E(ζ, λ, ε) lies uniformly close to the slow subbundle when
the wave is near to the slow manifolds. A new technical issue here is that we do
not have an elephant trunk estimate over the fast layer. We will instead combine our
existing ‘partial’ fast and slow elephant trunkswith our exchange lemma-type estimate
to achieve this uniform closeness.
In the coming analysis, we will work with projectivizations of the slow subbundle,
denoted σ̂s and �̂s as usual. Now fix any metric ρ on CP

3.

Definition 7.9 For any set Ŝ ⊂ CP
3 and δ > 0, a δ-neighbourhood of Ŝ is the set

Nδ(Ŝ) = {ŷ ∈ CP
3 : ρ(ŝ, ŷ) < δ for some ŝ ∈ Ŝ}. (78)

�	
We begin by estimating the closeness of E(ζ, λ, ε) to �s(ζ, λ, ε) near Sa,±

0 . To do
so, we consider the following family of autonomous frozen systems (and their projec-
tivizations) corresponding to the linearized problem:

y′ = a(γ, λ, ε)y

ŷ′ = â(ŷ, γ, λ, ε).
(79)

We refer the reader to a series of technical lemmas in Appendix B, which are used
in the following proof.
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Proof of Theorem 7.1(a) Fix two constants a and A with 0 < a < 1 < A and sup-
pose ζ ∈ [a, A]. We select a representative solution E ∈ π−1 Ê scaled so that slow
components |Z | ≤ 1 on a ≤ ζ ≤ A for each ε ∈ (0, ε̄). It quickly follows that for
ζ = 1 fixed, we have Z → Z+ as ε → 0. Our primary task is to compare a solution
Z representing Ẑ to a solution Z∗ representing the corresponding projectivization of
the reduced problem, i.e. we show that |Z − Z∗| → 0 uniformly on a ≤ ζ ≤ A as
ε → 0.
Away from the jump, the projection onto the slow components Z = (P, V ) and
Z R = (PR, VR) of the full and reduced systems, respectively, may be written as:

Ż = B(ζ, λ, ε)Z + G	

Ż R = BR(ζ, λ)Z R,

where (suppressing the dependence of the phase space coordinate Ū on ζ and ε ≥ 0):

B(ζ, λ, ε) =
(

0 R′(Ū )−λ

D(Ū )

−1 c
D(Ū )

)

G(ζ, λ, ε) = R′(Ū ) − λ

	(ζ, λ, ε) = U − V

D(Ū )

and

BR(ζ, λ) =
(

0 R′(Ū )−λ

D(Ū )

−1 c
D(Ū )

)
.

Here the term G	 can be thought of as a forcing term that is ‘turned on’ when
ε > 0; specifically, 	 measures how far (the slow projection of) the solution Y is from
solving the reduced eigenvalue problem. Evidently B(ζ, λ, ε) → BR(ζ, λ) as ε → 0,
uniformly in the interval a ≤ ζ ≤ A. It remains to estimate the forcing term G	

uniformly within this ζ -interval. The term G has a uniform singular limit for ε → 0,
so we concern ourselves with the singular limit for 	. For δ > 0 arbitrarily chosen,
Corollary B.4 provides a sufficiently small ε̄ > 0 such that

Ê(ζ, λ, ε) ∈ Nδ(�s(ζ, λ, ε))

for each ε ∈ (0, ε̄] and ζ ≥ a. A fixed representative E(ζ, λ, ε) of the projectivized
solution of the full linearized system can thus be made arbitrarily close to a linear
combination of the basis vectors F1, F2 by varying δ (see the definitions of f1, f2 in
(39); we use capital letters to denote the appropriate timescale). Each of these basis
vectors in turn has a singular limit. Indeed, we have

E(ζ, λ, ε) → α1(ζ, λ)Rs,1(ζ, λ) + α2(ζ, λ)Rs,2(ζ, λ) (80)
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as ε → 0, where Rs,1(ζ, λ) and Rs,2(ζ, λ) are the eigenvectors spanning the reduced
slow subbundle. These are the required singular limits of the basis vectors F1, F2, and
they admit explicit formulas:

F1 → Rs,1 = (1/D(Ū ), Vp, 1)
�

F2 → Rs,2 = (1/D(Ū ), Vm, 1)�,
(81)

and α1(ζ, λ) and α2(ζ, λ) are uniformly bounded coefficients. Note that the basis
vectors Rs,i , i = 1, 2 are derived similarly to the asymptotic case in (36), and the
auxiliary quantities Vp,m are defined analogously to ν j,± in (37). Finally, we write 	

in a convenient form by including and rearranging terms:

	(ζ, λ, ε) = U (ζ, ε) − V

D(Ū (ζ, 0))
+
(

1

D(Ū (ζ, ε))
− 1

D(Ū (ζ, 0))

)
V . (82)

The term in parentheses converges uniformly to 0 and |V | ≤ 1 by construction, and
the first to terms also converge uniformly to zero by 81; hence, |	| → 0 uniformly on
the required ζ -interval, and thus, Z → Z∗ uniformly on this interval by Gronwall’s
inequality. Finally, the U -components of E also converge uniformly to those of E∗
by (80), (82), and Corollary B.4. Altogether, the uniform convergence of E to E∗ on
a ≤ ζ ≤ A follows from Gronwall’s inequality. The case ζ < 0 proceeds identically,
so we omit the proof. �	

7.3 The JumpMap as a Singular Limit

We now construct the jump map used to define the slow eigenvalue problem in
Def. 6.4. Our goal is to determine the fate of the slow components ys(ξ, λ, ε) :=
(p(ξ, λ, ε), v(ξ, λ, ε)) of y(ξ, λ, ε) across the fast layer. The difficulty in tracking the
slow data in this inner layer is that ys(ξ, λ, ε) remains O(ε), while u(ξ, λ, ε) grows
to O(1) for a time interval that is O(1/ε); in other words, the linearized solution can
be made to align arbitrarily closely to the fast fibres after crossing the fold, and they
remain close throughout most of the jump. The directional information carried by the
slow variables is not annihilated as ε → 0, however. The natural approach from the
point of view of GSPT is to perform an ε-dependent rescaling of the fast linearized
equations: for ε > 0, let

εβ1 = p

εβ2 = v. (83)

Then, we have

u′ = 1

c
(εβ2 − (ελ + D(ū))u)

β ′
1 = (R′(ū) − λ)u

β ′
2 = cu − εβ1, (84)
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where a factor of ε has been cancelled from the latter two equations. The resulting
equations limit to the following linear system as ε → 0:

u′ = −1

c
D(ū)u

β ′
1 = (R′(ū) − λ)u

β ′
2 = cu. (85)

The first equation in (85) is the variational equation of the linearized layer problem
(43) and thus has a family of nontrivial bounded solutions u(ξ) = K (v̄0− F(ū(ξ))) =
K (dū/dξ), where v̄0 is the v̄-component of F−. It is then possible to calculate β1(ξ)

and β2(ξ) explicitly. We find it more convenient to perform the intermediate calcula-
tions in the projective space CP2. This allows us to fix a free parameter by applying
a smoothness condition across the fold.
We consider the projection of the linear system (85) on a copy of CP2, choosing the
chart (s, g) = (β1/β2, u/β2), β2 �= 0:

s′ = (R′(ū) − λ)g − csg

g′ = − D(ū)

c
g − (R′(ū − λ))g2. (86)

The g-equation decouples, so we solve it directly to find

g(ξ) = v̄F − F(ū(ξ))

cū(ξ) + C
,

where C ∈ C is a constant. The s equation is then given by:

s′ = ((R′(ū) − λ) − cs)
v̄F − F(ū(ξ))

cū(ξ) + C
. (87)

Equation (87) is now a one-dimensional nonautonomous problem and can be solved
explicitly, but we must first fix the constant C to define an unambiguous jump condi-
tion. Such an ambiguity arises even at the projective level. For each ε > 0, the scale
of the linearized solution along the wave is set by one free parameter, whereas in
the singular limit, we split the linearized dynamics into subsystems defined along the
singular heteroclinic orbit. We are able to choose freely the scale of each correspond-
ing linearized solution segment. It follows that these free parameters of the reduced
systems may be constrained so that they are compatible with the scalings of the ‘full’
linearized solutions as ε → 0.
A suitable compatibility condition is the C1-differentiability of the desingularized
linearized flow across the fold. We compare (87) with the projectivization of the
desingularized slow eigenvalue problem (47), whichwewrite over the chart S = P/V ,
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Fig. 7 Demonstration of the convergence of the projectivized dynamics (blueish curves) onto the reduced
dynamics (red curve) as ε → 0 for λ = 15. Solutions of reduced dynamical system are defined by
concatenating the solution of the projectivized flow of d S/dζ (see (89)), defined for Ū ∈ (0, ŪF )∪(ŪJ , 1),
with the graph of the map (90) defined for ū ∈ [ūF , ū J ]. The left dotted line denotes the fold ū = ūF , and
the right dotted line denotes the jump curve ū = ū J (and hence the fast dynamics takes place in between
these dotted lines). The right dotted line is the jump curve, where the jump condition is used to concatenate
the appropriate solutions. The wave speed was held at c = c0 ≈ 0.199362 for each value of ε

with V �= 0, as

d S

dζ
= (R′(Ū ) − λ − cS + D(Ū )S2). (88)

Using the chain rule, we write

∂S

∂ P̄

d P̄

dζ
+ ∂S

∂Ū

d S

dζ
∗ = d S

dζ
= (R′(Ū ) − λ − cS + D(Ū )S2)

ds

dū
= 1

cū − C
(R′(Ū ) − λ − cS). (89)

At the point 	0 ∩ F− = {X̄ F = (ūF , p̄F , v̄F )} where the singular orbit intersects
the fold, we have D(ŪF ) = 0 and thus (d S/dζ )|X̄ F

= (∂S/∂Ū )(cūF − p̄F ). By

matching (∂S/∂Ū ) and ds/dū at X̄ F , we find

C = p̄F .
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At the projective level, the jumpmap u J �→ s(ū J ) is defined from the solution s(ū)

of the (complex) one-dimensional initial-value problem

ds

dū
= 1

cū − p̄ f
(R′(ū) − λ − cs)

s(ūF ) = s0.

Note that cū− p̄F > 0 is bounded away from0 for ū ∈ [ūF , ū J ] since cūF − p̄F > 0
by Hypothesis 2.8 and ū ≥ ū f across the jump. Explicitly, we have

s(ū, λ) = R(ū) − R(ūF ) − λ(ū − ūF ) + s0(cūF − p̄F )

cū − p̄F
(90)

for ūF ≤ ū ≤ ū J . See Fig. 7 for a demonstration of the approximation of the ‘full’
linearized flow to that of the hybrid reduced problem for a nonzero value of λ.
The linear jump map (55) can be extracted from (90) by using the chart map s = p/v.
For a, b ∈ C

n , we define the equivalence relation a ∼ b if a = γ b for some complex
number γ �= 0. We then have

(p0, v0) �→ (p, v) = ((p/v)v, v) = (sv, v)

∼ (s, 1) =
(

R(ū) − R(ūF ) − λ(ū − ūF ) + s0(cūF − p̄F )

cū − p̄F
, 1

)

∼
(

v0(R(ū) − R(ūF ) − λ(ū − ūF )) + p0(cūF − p̄F )

cū − p̄F
, v0

)

:= J (p0, v0, λ, ū). (91)

We can now define Jλ(P, V ) := J (P, V , λ, ŪJ ). Our jumpmap is defined up to linear
equivalence and is therefore clearly nonunique; however, any two linear choices induce
the same projective jump map Ĵλ := s(ū J , λ) on CP. This essentially completes the
proof of Theorem 7.1(b).

7.4 Control from the Reduced Dynamics

Proof of Theorem 7.1(c) By Corollary B.4, the unique solution Ê(ζ, λ, ε), which tends
to the unstable eigenvector at û = 0 as ζ → −∞, remains uniformly close to the
(projectivized) slow subbundle �̂s .
Fix an interval a ≤ |ζ | ≤ A, where 0 < a < A with A ≤ ∞. For fixed λ, ε, let
(β1(ξ), β2(ξ)) denote the local coordinates of the solution Ê(ζ, λ, ε) which coin-
cide with the coordinates used to define the slow projectivized system (32). Then by
Lemma 4.2, for any δ > 0 we can find some sufficiently small ε̄ = ε̄(δ) so that
|β1 − 1/D(Ū )| ≤ δ for all a ≤ |ζ | ≤ A and for all 0 < ε ≤ ε̄. This estimate can be
read off from the expressions for the reduced eigenvectors in (36).

Now consider the solution Ẑ∗(ζ, λ) written with the coordinate S∗(ζ ) =
P(ζ )/V (ζ ) with V �= 0. The dynamics of S(ζ ) is determined by the system (46).
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At either limit ζ → −∞ and ζ → +∞, the corresponding asymptotic systems admit
a pair of hyperbolic (saddle) fixed points, interpreted in the projectivized system as an
attractor and a repeller. Let us consider the case ζ → −∞ and denote the projectivized
attractor (corresponding to the unstable eigenvector of the saddle) by û−(λ) and the
projectivized repeller (stable eigenvector) by ŝ−(λ). We seek to verify that the only
possibility is that Ẑ∗(ζ, λ) → û−(λ) as ζ → −∞ (i.e. that Ê∗(ζ, λ) → r̂−

s,1, with r−
s,1

as defined in (36)).
So suppose that Ê∗(ζ, λ) → r̂−

s,2 (the weak stable eigenvector) instead. Since the
corresponding critical point ŝ− is a repeller, let N denote a repelling neighbourhood of
radius η > 0. Then by hypothesis, there exists some ζ1 = ζ1(η) so that S∗(ζ, λ, ε) ∈ N
for all ζ ≤ ζ1. As long as V �= 0 remains bounded away from zero, for each sufficiently
small ε > 0 we may choose a section E ∈ π−1 Ê so that

E(ζ, λ, ε) = (1/D(û), ac0/D(û) + (b − a)νm,−, 1) + O(δ)

where a + b = 1. Thus, |β1| and |β2| (the norms of the coordinates of Ê with respect
to the chart specified by (32)) remain uniformly bounded, while S ∈ N . Now, observe
that the β2 equation in (32) may be written as follows:

β̇2 = (R′(Ū−) − λ) − cβ + D(Ū−)S2 + d(ζ, λ, ε),

where d(ζ, λ, ε) consists of terms characterizing the perturbation from the asymp-
totic system together with terms of the form (β1 − 1/D(Ū )), which can be uniformly
bounded as stated in the beginning of the proof. Hence, N remains a repelling neigh-
bourhood of ŝ− for the system above. But this implies that Ê(ζ, λ, ε) can be chosen to
remain in any small neighbourhood of r̂−

s,1(λ) as ζ → −∞, which contradicts the fact

that Ê(ζ, λ, ε) → r̂−
s,2 as ζ → −∞. Hence, Ê∗ and Ê0 = ι0 Ẑ0 coincide for ζ < 0.

For the matching on the right-hand side, we have by Theorem 7.1(b) that the jump
condition is identical and uniquely determined, so in fact Ê∗ and Ê0 coincide for
ζ > 0 as well. It remains to check that Ê tends uniformly to r̂+

s,1. This step proceeds
identically to the preceding argument, so we omit it. �	

7.5 Continuing E"(K) to E0(K)

We now prove the following corollary of Theorem 7.1:

Corollary 7.10 There exists ε0 > 0 such that for each ε ∈ (0, ε0], Eε(K ) ∼= E0(K ). In
particular, c1(Eε(K )) = c1(E0(K )).

We follow the approach of Sect. VI-D in Gardner and Jones (1991). The method
is quite natural. With respect to the compactified time T -scaling (see (57)), the fast
dynamics over the jump occurs over an O(ε)-interval straddling the midpoint of the
interval [−1, 1]. The approach is to first define two hemispheric bundles over the
complement of this small interval in [−1, 1], using the flow itself to construct the
gluing map. We then construct a homotopy, which closes this gap continuously as the
homotopy parameter is varied. Theorem 7.1 is then used to show that the gluing map
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and bundles have nice singular limits: they are precisely the ones used to construct the
reduced augmented unstable bundle E0(K ).

Proof of Corollary 7.10 Fix the pair of real parameters Sa,−
ε , Sa,+

ε with −1 < Sa,−
ε <

0 < Sa,+
ε < 1. We work with the parameter pair S = (Sa,−

ε , σ ), where σ ∈
[Sa,−

ε , Sa,+
ε ] is the homotopy parameter that we will continuously vary.

For ε > 0 fixed, define the bundle E(S, ε) as follows. The base space BS of E(S, ε) is
a sphere obtained by gluing the following two hemispheres along their boundaries:

b−(Sa,−
ε ) = B ∩ {T ≤ Sa,−

ε }
b+(σ ) = B ∩ {T ≥ σ }.

We define two hemispheric bundles over these base spaces as follows:

E−(Sa,−
ε , ε) = Eε(K )|b−(Sa,−

ε )

E+(σ, ε) = Eε(K )|b+(σ ).

Wecomplete the constructionbydefining agluingmapϕS,ε : E−(Sa,−
ε , ε)|b−∩ b+ →

E+(σ, ε). Here “b−∩b+” refers to the intersection curve of the hemisphere boundaries,
corresponding to a copy of K in BS . Let ζL and ζσ be the values of ζ corresponding
to T = Sa,−

ε and T = σ , respectively, defined using the initial value problem (57).
Let E(ζ, λ, ε) be the solution, which has data EL at ζ = ζL (by a time translation, if
necessary), where EL lies in the fibre of E−(Sa,−

ε , ε) over (Sa,−
ε , λ). A suitable gluing

map is then the obvious one, which is induced by the flow:

ϕS,ε EL = E(ζσ , λ, ε). (92)

The bundle E(S, ε) is then defined as:

E(S, ε) := E−(Sa,−
ε , ε) ∪ϕS,ε

E+(σ, ε). (93)

Note that at σ = Sa,−
ε , the map ϕS,ε is the identity (since ζL = ζσ ). Furthermore,

the flow map is continuous for each ε > 0, implying that ϕS,ε forms a homotopy of
isomorphisms. These facts imply (see, e.g. Atiyah 1967) that

Eε(K ) ∼= E(S, ε)). (94)

Note that we have fixed ε > 0 up to now. Let us now fix Sa,−
ε and Sa,+

ε and take
ε > 0 sufficiently small that Theorem 7.1 holds. By Theorem 7.1 (a) and (c),

lim
ε→0

Ê(T , λ, ε) = Ê0(T , λ)

uniformly for (T , λ) ∈ b−(Sa,−
ε ) ∪ b+(Sa,+

ε ). Observe here that the information
about the jump map is already encoded in the solution Ê0(T , λ), as described in
Theorem 7.1(c). Let us now determine the singular limit of the gluing map ϕS,ε.
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Let ζL and ζR correspond (as described earlier) to T = Sa,−
ε and T = Sa,+

ε , respec-
tively, and choose a solution Z0(ζ, λ) of the reduced problem so that

Ê0 = ι0(ζ, λ)Z0(ζ, λ)
∧

.

It follows from Theorem 7.1(a) that

ϕS,0[ι0(Sa,−
ε , λ)Z0(Sa,−

ε , λ)] = ι0(ζR, λ)Z0(ζR, λ). (95)

We now define the ‘singular’ limit of the glued hemispheric bundles E(S, ε) in the
obvious way:

E(S, 0) := E0|b−(Sa,−
ε ) ∪ϕS,0 E0|b+(Sa,+

ε ). (96)

We emphasize here that this is a topological limit, and so E(S, ε) ∼= E(S, 0)
directly—this is the advantage of using the augmented unstable bundle. It thus follows
from (94) that Eε(K ) ∼= E(S, 0) for each ε > 0 sufficiently small.
We have so far held Sa,−

ε and Sa,+
ε fixed. Noting that the required smallness of ε from

the above argument is independent of these parameters, we are free to send Sa,−
ε to

0 from below and Sa,+
ε to 0 from above. By Theorem 7.1(b), ϕS,0 approaches ϕH as

defined in (60). �	

8 Counting the Slow Eigenvalues

Wenowcompute the slow eigenvaluesλ ∈ �; seeDef. 6.4.Wewill adapt the technique
presented in Section E of Gardner and Jones (1991); we split the projectivized Eq. (88)
for (47) into its real and imaginary parts, with the spatial eigenvalue parameter written
as λ = μ + iω, and we consider separately the cases ω �= 0 and ω = 0. Afterwards,
we may restrict our analysis to the real line; using comparison of solutions together
with a Gronwall estimate, we demonstrate that there are no positive real eigenvalues.
Here we need the monotonicity hypothesis 2.8 to ensure that we can work with the
chart defined by V �= 0 for λ ≥ 0. Generally speaking, the jump condition does not
introduce any new complications with respect to these arguments.

Theorem 8.1 There are exactly two slow eigenvalues in �, given by λ0 = 0 and λ1,
with Im(λ1) = 0 and R′(0) < λ1 < 0. Both λ0 and λ1 are simple.

Remark 8.2 As far as spectral stability of the wave for ε > 0 is concerned, it suffices to
verify that the eigenvalue with the largest real part in the point spectrum is the simple
translational eigenvalue λ0.We resort to a numerical calculation using aRiccati–Evans
function to determine the existence of the secondary eigenvalue λ1, but the simplicity
of both eigenvalues is verified rigorously. �	

Proof that λ0 = 0 is the eigenvalue of largest real part:
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We will prove that all slow eigenvalues are real, and furthermore, there is no slow
eigenvalue λ with Re(λ) > 0. The asymptotic systems associated with the projec-
tivized linearized slow flow (56) admit the fixed points û−, ŝ− at Ū = 0 and û+, ŝ+
at Ū = 1, defined as follows:

û−(λ) = c −√c2 + D(0)(R′(0) − λ)

2D(0)

ŝ−(λ) = c +√c2 + D(0)(R′(0) − λ)

2D(0)

û+(λ) = c −√c2 + D(1)(R′(1) − λ)

2D(1)

ŝ+(λ) = c +√c2 + D(1)(R′(1) − λ)

2D(1)
. (97)

Linear analysis verifies that û± are attractors and ŝ± are repellers with respect
to the projectivized asymptotic dynamics, corresponding to the asymptotic unstable
resp. stable eigendirections. We remind the reader of the geometric characterization of
eigenvalues of (47) in terms of their asymptotic behaviour; if λ is not a slow eigenvalue,
it suffices to show that ‘the’ unique solution S0(ζ, λ)which tends to û−(λ) as ζ → −∞
does not tend to ŝ+(λ) as ζ → +∞.7

We now write (56) in terms of its real and imaginary parts. Specifically, writing S =
X + iY and λ = μ + iω, we have

Ẋ = R′(Ū ) − μ − cX + (X2 − Y 2)D(Ū )

Ẏ = −ω − cY + 2XY D(Ū ). (98)

We consider the two subcases ω �= 0 and ω = 0.
The subcase ω �= 0. Let us focus on the case ω > 0; the case ω < 0 is similar. We
have Im (û±(λ)) < 0 and Im (ŝ±(λ)) > 0 for each λ ∈ �, by applying the inequality
R′(1) < R′(0) < Re (λ) on this set to the expressions (97) for the asymptotic fixed
points. On the other hand, the half-plane {Y ≤ 0} is forward invariant since Ẏ =
−ω < 0 along {Y = 0}. Furthermore, the jump condition is monotone decreasing in
Y , i.e. Sa,+

ε (0, λ)Y = (Jλ(Sa,−
ε (0, λ)))Y ≤ Sa,−

ε (0, λ)Y . Thus, if S(ζ, λ) = X(ζ, λ)+
iY (ζ, λ) remains on the chart specified by V �= 0, then it is impossible that S(ζ, λ) →
s+(λ) as ζ → +∞.
It could happen that the solution S0(ζ, λ) leaves the chart by blowing up in the Y →
−∞ direction, emerging ‘on the other side’ of the half-plane {Y > 0} fromY = +∞ to
make a connection to s+(λ). Let us show that any such blow-up leads to a contradiction.
Following the style of Lemma 6.6 in Gardner and Jones (1991), we observe that if the
blow-up happens at ζ0 = +∞, then S0(ζ, λ) remains inside the closure of the image
of {Y ≤ 0} on the Riemann sphere, and s+(λ) is bounded away from this closed set;

7 Strictly speaking, S0 refers to a pair of solutions Sa,−
ε and Sa,+

ε , defined for ζ ≤ 0 and ζ ≥ 0, which are
uniquely defined by two constraints: the aforementioned asymptotic constraint at ζ = −∞, and the jump
condition defined using (90).
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hence, we suppose that ζ0 ∈ R and that ζ0 is the smallest real number so that S0(ζ, λ)

becomes unbounded as ζ → ζ0 but for which S0(ζ, λ) remains finite within the lower
half-plane for all ζ < ζ0. Then, T0(ζ, λ) := S0(ζ, λ)−1 remains well-defined for all ζ
sufficiently close to ζ0. This motivates the corresponding change in chart

s = X

X2 + Y 2 , t = −Y

X2 + Y 2 . (99)

The corresponding dynamical system (98) expressed in the new chart is:

ṡ = −D(Ū ) + cs − 2ωst − (R′(Ū ) − μ)(s2 − t2)

ṫ = ct − 2st(R′(Ū ) − μ) + ω(s2 − t2), (100)

with the solution written as T0(ζ ) = s(ζ ) + i t(ζ ). If Y → −∞, then both s and t
tend to 0 as ζ → ζ0; furthermore, t(ζ ) > 0 for values of ζ < ζ0 sufficiently close to
the blow-up value according to (99). The contradiction will arise by considering the
behaviour of t(ζ ) for ζ near ζ0 using Taylor expansions. In the following argument,
we suppose that ζ0 �= 0, i.e. we are not exactly at the jump and all two-sided limits
of the relevant functions exist; we discuss the case ζ0 = 0 later. By Taylor expanding
s(ζ ) around ζ = ζ0 and using the first equation in (100), we find that

s(ζ ) = −D(Ū (ζ0))(ζ − ζ0) + O(ζ − ζ0)
2. (101)

Using the second equation in (100), we note that ṫ = ẗ = 0 at ζ = ζ0; however, we
have

...
t (ζ0) = 2ωD(Ū (ζ0))

2, and so the Taylor expansion of t(ζ ) gives

t(ζ ) = ωD(Ū (ζ0))
2

3
(ζ − ζ0)

3 + O(ζ − ζ0)
4. (102)

But this implies that t(ζ ) < 0 for ζ < ζ0 and ζ sufficiently close to ζ0, which produces
a contradiction.
If the blow-up occurs exactly at the point of discontinuity ζ0 = 0, the argument above
survives by constructing continuous extensions of D(Ū (ζ )) and R′(Ū (ζ )), since their
right limits still exist. Altogether, we have shown that there are no slow eigenvalues
with nonzero imaginary part.
The subcase ω = 0. The (un)stable eigenvectors associated with the asymptotic sub-
spaces are real, and by (98) the subset {Y = 0} is invariant when ω = 0; hence, we
are able to focus on the real one-dimensional problem given by the first equation in
(98)

Ẋ = f (X , Ū ;μ) := R′(Ū ) − μ − cX + X2D(Ū ). (103)

By Remark 6.5, μ = 0 is a slow eigenvalue. Now suppose μ > 0. Noting that
∂ f /∂μ < 0 and that ∂ û−/∂μ < 0 from (97), any solution X(ζ, λ) which tends to
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û−(λ) as ζ → −∞ satisfies the comparison

X(ζ, μ′) ≤ X(ζ, μ) (104)

for all ζ ∈ R whenever 0 < μ ≤ μ′ (note that this comparison is preserved across
the jump). Each such solution for any given μ > 0 has a common upper bound, given
by the solution for λ = μ = 0, which does not blow up by Hypothesis 2.8. We also
have ∂ ŝ+/∂μ > 0 for μ > 0 from (97); thus, ŝ+(μ) lies on the other side of the
connection for μ = 0 (relative to the solution X(ζ, μ)). As long as we can show that
the solution for μ > 0 does not blow up (potentially allowing X(ζ, μ) to connect to
s+ by ‘looping around’ the Riemann sphere), it is impossible for the solution X(ζ, λ)

to approach ŝ+(μ) as ζ → ∞, and we will be done.
According to the comparison to the common upper bound stated above, the solution
X(ζ, λ) can only possibly blow up in the direction X → −∞. This does not happen
since for each μ > 0, a specific lower bound is given by Gronwall’s inequality and a
comparison to the system Ẋ = min0≤Ū≤1 R′(Ū ) − μ − cX , whose solutions do not
blow up. �	
The existence of λ1. We now verify the remaining statements in Theorem 8.1. It is
a straightforward task to numerically integrate the one-dimensional projection of the
system (98) along the invariant subspace of real solutions {Y = 0}. The solution can
blow up by leaving the chart given by S = P/V , V �= 0. If this happens, the system
(100) can be numerically integrated without issue on the chart T = V /P , P �= 0,
around a small interval surrounding the pole, and then, we can return to the original
chart.
These numerics are depicted in Fig. 8 for seven values of λ within the range
[−0.85, 0.1]. As shown in Fig. 8a–c and e–g, a connection is formed between the
unstable eigendirection of the saddle point at Ū = 0 and the stable eigendirection of
the saddle point at Ū = 1 for the distinguished valuesλ = λ0 = 0 andλ1 ≈ −0.80925.
Simultaneously, we observe the winds that are necessarily generated upon crossing
these eigenvalues. These winds can be continued in the parameter λ—such coordinate
singularities can of course be characterized as zeroes of the flow with respect to a
suitably chosen chart. They propagate to the left and are preserved across the jump,
as is shown in Fig. 8c–d.
The simplicity of the eigenvalues in the reduced problem. We have now determined
the existence of eigenfunctions as solutions to the Riccati formulation (103) of the
linearized problem (47). Recall that the jump conditions for X are given in Def. 6.4,
and boundary conditions for X given in (97), i.e.

lim
ζ→±∞ X = û−(μ), ŝ+(μ).

In terms of the original reduced problem (47), this means that we have a value
λ = μ, and a solution to (47) satisfying the boundary conditions

lim
ζ→±∞ P, V = 0,
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Fig. 8 Numerical integration of (98) along {Y = 0} for a λ = 0.1, b λ = λ0 = 0, c λ = −0.1, d λ = −0.3,
e λ = −0.8, f λ = λ1 ≈ −0.80925, g λ = −0.85. Red resp. black dots: (projectivization of) the unstable
resp. stable eigenvectors of the saddle-point at Ū = 1. Magenta segments: concatenated fast jumps defined
by the map (90)
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and appropriate jump conditions.
Differentiating the equation for V with respect to ζ , and substituting in for Ṗ , and

multiplying through by

g(ζ ) := exp

(
−
∫ ζ

(log(D(Ū )))s + cds

)
= e−cζ

D(Ū )

we are led to the ‘Sturm–Liouville’ form of the reduced problem on the slowmanifold:

ecζ d

dζ

(
e−cζ

D(Ū )

d

dζ
V

)
+ Q̃(ζ )V = μV . (105)

where Q̃(ζ ) is defined as:

Q̃(ζ ) := R′(Ū ) + cD′(Ū )Ūζ

D(Ū )2

Letting L be the symmetric linear operator:

L[y] := ecζ d

dζ

(
e−cζ

D(Ū )

dy

dζ

)
+ Q̃(ζ )y

we are interested in establishing the simplicity of the eigenvalues of such an operator
whereU (ζ ) is given as the solution on the slowmanifoldwith the appropriate boundary
conditions, and jump at ζ = 0.

Remark 8.3 As D(Ū ) is discontinuous at ζ = 0, the domain of the linear operator L is a
function space that will necessarily incorporate a jump condition, which is compatible
with the one from Definition 6.4. Further, the weighting function ecζ will define the
inner product space on which L is symmetric and well-defined. Here we only aim to
establish simplicity of any eigenvalues/eigenfunctions, which a priori exist. �	

First we note that because L is symmetric on eigenfunctions, the Fredholm alterna-
tive means that the geometric multiplicity of any eigenvalues must be the same as the
algebraic multiplicity, and in particular if (L − μ)[y1] = 0, there can be no nonzero
solutions to (L − μ)[y] = y1.

Now, suppose that v1 and v2 are eigenfunctions of L with the same eigenvalue μ,
so L[v j ] = μv j . On the one hand, we have

v1L[v2] − v2L[v1] = μ(v1v2 − v2v1) = 0, (106)

while on the other we have

v1L[v2] − v2L[v1] = ecζ d

dζ

(
g(ζ )(v1

dv2

dζ
− dv1

dζ
v2)

)
. (107)
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Thus, the quantity

g(ζ )(v1
dv2

dζ
− dv1

dζ
v2) =: e−cζ

D(Ū )
W (v1, v2) (108)

is a constant. Evaluating at ζ = +∞, we have

lim
ζ→+∞

e−cζ

D(Ū )
W (v1, v2) = 0.

We observe that

v1,2(ζ ) ∼ e
1
2

(
c+

√
c2+4D(0)(μ−R′(0))

)
ζ

as ζ < 0 grows very large in magnitude, and so in particular

lim
ζ→−∞

e−cζ

D(Ū )
W (v1, v2) = 0

when μ > R′(0). Thus, e−cζ

D(Ū )
W (v1, v2) ≡ 0 on both sides of the jump, and hence, we

have that W (v1, v2) ≡ 0. Since theWronskian of the two eigenfunctions is identically
zero, they must be linearly dependent. We conclude that the slow eigenvalues λ0 and
λ1 are both simple. �	
We supplement our proofs with a numerical demonstration of the existence of the
simple eigenvalues λ0, λ1, by means of a Riccati–Evans function. Define the cross
section � = {Ū = 0.95}. The Riccati–Evans function associated with the Riccati
Eq. (98) on the coordinate chart {V �= 0} is

E�(λ) := s�
1 (λ) − u�

0 (λ), (109)

where s�
1 (λ) denotes the (first) intersection of the unique nontrivial solution s1(ζ, λ)

of (98) which converges asymptotically to the stable eigenvector of the saddle point
at Ū = 1 as ζ → +∞, and similarly for u�

0 (λ), which connects to the unstable
eigendirection of the saddle point as ζ → −∞. Compare our definition to the general
construction in Harley et al. (2020).
We highlight a few key points about our function (109). The function is meromorphic
(hence satisfying the argument principle), and it vanishes on eigenvalues λ. Its zeroes
are intrinsic, depending neither on the choice of section nor on the choice of chart. On
the other hand, as we can anticipate from the dynamics depicted in Fig. 8, the poles
arise for values of λwhere the solution leaves the chart by winding. In other words, the
poles are an artefact of the choice of coordinate chart as well as the choice of section
and can usually be moved (or even removed entirely) by a judicious selection of the
chart and the section (with our choice of �, we locate a pole near λp = −0.08). See
Harley et al. (2020) for a general exposition.
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Fig. 9 Evaluation of the Riccati–Evans function (109) along circles Cz of radius 0.03 centred at the point
z ∈ C. The winding numbers along each contour are given in the legend and are also depicted by the
arrowheads. Note that λ0 and λ1 denote the two eigenvalues and λp = −0.08 is the approximate location
of the pole of E�(λ)

In this analysis, we find it instructive to work with the ‘naive’ chart S = P/V , V �= 0,
for all values of λ—the dimensionality of the slow eigenvalue problem is low enough
that we can easily demonstrate the utility of the argument principle. As shown in
Fig. 9, the multiplicity of each eigenvalue can be readily computed by evaluating the
corresponding winding number W (E�, C) along simple closed contours C . Contours
which surround poles, corresponding to blow-up of solutions off the chosen coordinate
chart, will map under E to contours with a negative winding number (corresponding
to a clockwise orientation). Here we demonstrate that the poles are also simple. This
completes our numerical verification of Theorem 8.1.

9 Concluding Remarks

We have given a complete characterization of the spectral stability problem for shock-
fronted travelling waves of the regularized system (1). But other types of high-order
regularization terms can be applied to the underlying system that exhibits shock solu-
tions; it can further be shown that these nonequivalent regularizations pick out distinct
one-parameter families of shock-fronted travelling waves, which limit to singular
solutions satisfying different rules.
Consider the following systemwhich applies to both a viscous relaxation and a fourth-
order nonlocal regularization, where the new parameter a ≥ 0 characterizes the
relative weighting of the two regularizations.

∂Ū

∂t
= ∂

∂x

(
D(Ū )

∂Ū

∂x

)
+ R(Ū ) + εa

∂3Ū

∂x2∂t
− ε2

∂4Ū

∂x4
. (110)
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Fig. 10 Plot of the essential spectrum (shaded regions) of the of the linearized operator L in (112), which
shows � and the Ai partitioning the complex plane via the Fredholm borders (continuous spectrum). The
shape of the essential spectrum means that the operator L , for nonzero ε, is sectorial. The dashed line (red
online) is one of the Fredholm borders coming from the linearization of the reduced problem about the
(constant) steady state Ū− c.f. the right figure in Fig 4. For the figure, ε = 0.1 and c = a = 1, with D and
R as in (3) and (4)

Setting a = 0 recovers a regularized system with ‘purely’ nonlocal regularization.
In this case, it can be shown that the corresponding one-parameter family of travelling
waves solutions has a singular limit as a shock-fronted travelling wave, which satisfies
a so-called equal area rule—the shock connection across disjoint branches of the
potential function F(Ū ) is selected so that the area bounded above and below the
shock height is exactly balanced. Recent work (Bradshaw-Hajek et al. 2022) has
shown that families of shock-fronted waves persist robustly for a > 0, with each such
family satisfying a generalized equal area rule in the singular limit. Furthermore, there
is a finite value a = aV > 0 for which the shock connection is formed at the fold,
again resulting in viscous-type shocks. The problem in this paper can be thought of
as the regularization in the (scaled) limit as a → ∞.
Thus, let a > 0 be given and assume the existence of such a family of travelling waves
for (110).Asbefore,we canfind suchwaves as standingwave solutions Ū (z, t) ≡ Ū (z)
to:

(Ū − εaŪzz)t = −ε2Ūzzzz − εacŪzzz + (F(Ū ))zz + cŪz + R(Ū ). (111)

We now discuss how the stability problem changes in this more general case. Lin-
earizing about a standing wave solution Ū (z) to (111) leads to the eigenvalue problem

λp − εaλpzz = −ε2 pzzzz − εacpzzz + (D(Ū )p)zz + cpz + R′(Ū )p. (112)
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Defining the variables

s := ε2 pzzz + εacpzz − ((D(U ) + εaλ)p)z − cp (113)

r := ε2 pzz + εacpz − (D(U ) + εaλ)p (114)

q = εpz + acp, (115)

we can write the closed system

⎛
⎜⎜⎝

εp
εq
r
s

⎞
⎟⎟⎠

z

=

⎛
⎜⎜⎝

−ac 1 0 0
D(Ū ) + εaλ 0 1 0

c 0 0 1
R′(Ū ) − λ 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p
q
r
s

⎞
⎟⎟⎠ , (116)

with two fast and two slow variables. The calculations for the essential (and absolute)
spectrum follow the same ideas as in Sect. 5. Presuming the existence of a wave Ū
which exponentially approaches its end states Ū±, we have the dispersion relations
are the pair of parametrized equations given by k ∈ R:

λ± = −ε2k4 − D(Ū±)k2 + R′(Ū±)

1 + aεk2
+ ick.

These are a pair of curves in the complex plane, which are always opening leftward
and intersecting the real axis at the points (R′(Ū±), 0) in the left half plane. The
dispersion relations again form the Fredholm borders and make up the continuous
spectrum. As before, C is partitioned into five regions: the region � which contains
the right half plane, together with A j for j = 1, 2, 3, 4. The essential spectrum
in this case can again be determined by considering the signatures of the asymptotic
matrices and can be seen to consist of the regionsA1,2,3, which is the region “between”
the Fredholm borders. We have Again, the Fredholm borders will be close to the

Region sgn(A−) sgn(A+)

� (−, −,++) (−, −, +,+)

A1 (−, −,−,+) (−, −, +,+)

A2 (−, −,++) (−, −, −,+)

A3 (−, −,+,+) (−, −, −,+)

A4 (−, −,−,+) (−, −, −,+)

Fredholm borders of the linearized reduced problem, linearized about the steady states
corresponding to the end states of the unperturbed problem. Eventually, as with the
third-order perturbation problem, the higher-order modes in the dispersion relations
will dominate, and the essential spectrumwill diverge from the appropriate continuous
spectrum of the unperturbed problem (see Fig. 10). In contrast to the case of ‘pure’
viscous relaxation, however, the Fredholm borders do not asymptote to vertical lines
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in the complex plane and so the operator is sectorial, and spectral stability in this case
would indeed imply linearized stability of the perturbation problem.
Having shown that the essential spectrum remains remarkably well-behaved in this
more general context, let us now highlight key differences (and difficulties) in calcu-
lating the point spectrum. Here, the problem is now four-dimensional, and it can be
verified with direct calculation that the two-dimensional slow manifolds on which lie
saddle-type equilibria at Ū = 0 and Ū = 1 are now saddle-type (i.e. there is now both
a fast stable and fast unstable direction). The augmented unstable bundle construction
for ε > 0 now defines a complex 2-plane bundle over the sphere.
It is natural to ask whether the present problem is amenable to the splitting techniques
introduced in Gardner and Jones (1991): namely, is it possible to decompose this 2-
plane bundle into ‘fast unstable’ and ‘slow unstable’ line bundles which are controlled
by separated reduced eigenvalue problems?
We conjecture that such a separation is not possible: as in the ‘pure’ viscous case, it
can be directly calculated that the eigenvalue problem again introduces the eigenvalue
parameter λ only ‘weakly,’ i.e. throughO(ελ) terms. Thus, the reduced fast eigenvalue
problem again degenerates. As mentioned in the introduction, this poses issues for the
construction of a fast elephant trunk over the entire wave; consequently, it does not
appear to be feasible with the present techniques to uniformly separate a fast unstable
line bundle from a slow unstable one. Furthermore, any such reduced line bundle over
the fast layer is governed by the layer flow, which connects an unstable eigendirection
to a stable one in the singular limit (i.e. we are not able to construct an augmented
unstable line bundle for the reduced problem).
Nonetheless, we assert that estimates similar to Lemma 7.7 can be brought to bear to
regain control of the unstable 2-plane bundle as we track it across the fast shock layer.
It would be of interest to write down sharper (i.e. exponential closeness) estimates
to the invariant manifold near the slow subbundle, as discussed in Remark 7.8. The
calculation in Appendix D gives a concrete example of such an exponential closeness
result in an elementary problem. Such calculations appear to be very cumbersome in
the general case without resorting to further straightening transformations. It would
also be interesting to situate the construction of such invariant manifolds within the
context of general invariant manifold results in nonautonomous dynamical systems
(see e.g. Kloeden and Rasmussen 2011). These are topics of ongoing work.
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Appendix A: Construction of the Fast and Slow Elephant Trunks

Proof of Lemma 7.4 We follow the strategy to the proof of Lemma 4.2 in Gardner and
Jones (1991). The goal is to verify the following four conditions for the projectivization
of the linearized system (26):

• ((4.6)G J in Sect. IV of Gardner and Jones 1991): There exists α > 0 independent
of ε and ξ ∈ I so that the curve of critical points β0(γ, ε) associated with the
frozen family (71) satisfies

Re σ [Gβ(β0(γ, ε), γ, ε)] < −α;

• ((4.7)G J in Sect. IV of Gardner and Jones 1991): for any d > 0, there exists
ε0 = ε0(d) and a nested family of subintervals I (d) ⊂ I (i.e. I (d1) ⊂ I (d2) for
d1 < d2) with

sup(β,ξ,ε)∈C {|G|ξ , ||Gβ,ε||, |β0ξ |} < d,

where the set C can be taken as

C = {(β, ξ, ε) : |β − β0(ξ, ε)| < c0, ξ ∈ I (d), 0 < ε ≤ ε0}

for some c0 > 0;
• ((4.8)G J in Sect. IV of Gardner and Jones 1991): we have

K = supC ||D2G(β, ξ, ε)|| < ∞; and

• ((4.9)G J in Sect. IV of Gardner and Jones 1991): let A(γ ) := Gβ(β0(γ, ε), γ, ε).
Then, there exists some invertible matrix Y (γ ) depending smoothly on γ , such
that the following holds for some a > 0 depending only on α (from condition
(4.6)G J ):

Re(A(γ )β, β)γ < −a|β|2γ ,

||Y (γ )||γ = 1,

||Yγ (γ )||γ ≤ d,

where we define the inner product (β1, β2)γ := Y (γ )β1 · Y (γ )β2 and the norm

|β|γ = (β, β)
1/2
γ .
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Lemma 4.1 in Gardner and Jones (1991) then gives the result. By Lemma 4.2,
there exists ξ̄ > 0 such that the second bullet point in the Lemma above holds for
all |ξ | ≥ ξ̄ and all sufficiently small ε > 0. This verifies the condition (4.6)G J .
Furthermore, the branch of equilibria β0(ξ, λ, ε) for the corresponding frozen family
is uniformly bounded for all |ξ | > ξ̄ and all λ ∈ K , with K ⊂ � a fixed contour.
Hence, condition (4.8)G J holds for some constant K , with c0 in the definition equal
to 1.
Let us check the remaining conditions (4.7)G J and (4.9)G J . Take the interval I to
be either I− = {ξ ∈ R : −∞ < ξ < −ξ̄} or I+ = {ξ ∈ R : ξ̄ < ξ < +∞}.
On either interval, the projectivized vector field G(β, ξ, λ, ε) depends on ξ through
components of the (nonautonomous) linearization matrix, in particular through the
diffusion and reaction terms (i.e. through ū). Hence, for each constant L > 0 there
exists ε0 := ε0(L), so that for 0 < ε ≤ ε0 we have

max{|Gξ |, ||Gξ,β ||, |β0,ξ |} < L max{|u′(ξ, ε)|}.

Now let n(δ) denote a δ-tube around the singular limit of the travelling wave and
assume that I = I−. Resetting ε0 again if necessary, we can assume that the travelling
wave x(ξ, ε) lies within n(δ) for each ξ ≤ ξL(δ). Then there exists a constant M > 0
so that |ū′(ξ, ε)| ≤ Mδ for all ξ ≤ ξL(δ), since ū′ = v̄ − �(ū) is uniformly bounded
along the entire wave. Hence we may take δ(d) = d/M and define

I−(d) = {ξ : ξL(δ(d))}.

Note that δ(d) depends smoothly on d and that δ(0) = 0, and furthermore that the
definition for I−(d) provides nested intervals. This verifies condition (4.7)G J .
To verify the remaining condition (4.9)G J , it is enough to note that the linearization
A(ξ, λ, ε) = A0(ξ, λ, ε) + O(δ) of G (the projectivization of the linear system),
evaluated along the strong unstable eigendirection, is a 2 × 2 matrix which has two
O(1) negative eigenvalues. This matrix A(ξ, λ, ε), is necessarily negative definite for
IL(d), and hence, we can take Y = A−1

0 such that Y −1AY produces a matrix with
diagonal entries of uniformly negative real part and remaining entries of O(δ). This
immediately implies the needed inequalities. Applying Lemma 4.1 in Gardner and
Jones (1991), we have constructed the necessary elephant trunk �

f
− over Sa,−

ε .
The preceding discussion applies identically for the case I = I+ to produce a fast
elephant trunk along Sa,+

ε . �	

Appendix B: Lemmas for Estimates Near the Slow Subbundle

Lemma B.1 Let δ, a > 0 be fixed. There exists ε̄ > 0 sufficiently small and T > 0,
both depending only on δ and a, so that for each 0 < ε ≤ ε̄ and |γ | ≥ a/ε, each
solution ŷ(s) of (79) must satisfy at least one of the following:

(i) ŷ(0) ∈ Nδ(σ̂s(γ, λ, ε))
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(ii) ŷ(−T ) ∈ Nδ( f̂1(γ, λ, ε)).

Remark B.2 Fix some γ as above and let ŷ(s) denote a solution to the corresponding
member of the family of projectivized frozen systems in (79), and let y(s) ∈ π−1(ŷ(s))
be chosen so that |y(0)|∞ = 1. The corresponding frozen linearized system in (79)
is autonomous and linear, and thus, its solution can be written explicitly as a linear
combination of eigenvectors

y(s) = g1 f1esμ1,s + g2 f2esμ2,s + g f f f esμ f . (117)

It thus follows from invariance of (generalized) eigenspaces that if (i) in Lemma B.1
above does not hold for some fixed γ , then g f �= 0, and so there is some T > 0 so
that (ii) holds. The point of this lemma is to show that for all sufficiently small ε, such
a T > 0 exists which can be chosen depending only on δ and a. �	
Proof of Lemma B.1 Assume that item (i) does not hold for some γ as given in the
Lemma, so that there exists T so that item (ii) holds for that value of γ . Using the
normalization of y(s) in Remark B.2, we note that |gi | ≤ 1. By Lemma 3.1, there
exists some K > 0, depending only on the metric ρ, so that

|g f | ≥ K δ. (118)

From (117), we may write

y(−T ) = e−μ f T (g f e f + R(T )), (119)

where

R(T ) = g1 f1e−T (μ1,s−μ f ) + g2 f2e−T (μ2,s−μ f ).

At this stage, we remind the reader that theμi are still γ - and ε-dependent. We now
apply the asymptotic estimate in Lemma 4.2 to find ε̄ ≥ 0, and α > 0 depending only
on ε̄ and a, so that for each ε ∈ (0, ε̄] and |γ | ≥ a/ε, we extract the uniform bound
min{Re(μ1,s −μ f ), Re(μ2,s −μ f )} > α. It thus follows from the triangle inequality
and the estimates |gi | ≤ 1, | fi | = 1 that

|R(T )| < 2e−αT .

For each T ′ > T , we have |R(T ′)| < |R(T )|. This estimate and (118) applied to
the factored form (119) then implies that

ŷ(−T ) ∈ Nδ( f̂ f (γ, λ, ε))

for T depending only on α, δ, a, and ρ. �	
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We now turn to the dynamics on the slow timescale. Our objective here is to strengthen
the estimate in Lemma B.1 slightly, so that a(ε) ≡ a can be chosen independently of
ε > 0 such that the solution Ê remains uniformly near the slow subbundle for |ζ | ≥ a.
This will be crucial in making the comparison to the linearized reduced flow defined
on Sa,−

ε , Sa,+
ε .

From the construction in Lemmas 7.4 and 7.5, there exists δ1 > 0 such that for each
sufficiently small ε,

Nδ1( f̂ f (ξ, λ, ε)) ⊂ �̂ f (ξ) for ξ ≤ −a/ε and

Nδ1(σ̂s(ξ, λ, ε)) ⊂ �̂s(ξ) for ξ ≥ a/ε,

where �̂ f (ξ) and �̂s(ξ) denote the projectivizations of the slices of the corresponding
elephant trunks within CP

2 × {ξ}.
Lemma B.3 Set δ > 0 with δ < δ1, with δ1 as above, and fix a > 0. Suppose that Ŷ is
a solution to the projectivization of the slow linearized equations

˙̂Y = Â(Ŷ , ζ, λ, ε) (120)

so that for each ε sufficiently small, there exists A(ε) > a with the property that

Ŷ (ζ, λ, ε) ∈ Nδ(�s(ζ, λ, ε)). (121)

Then there exists ε̄ > 0 such that for each 0 < ε < ε̄ and |ζ | ≥ a we have

Ŷ (ζ, λ, ε) ∈ Nδ(�s(ζ, λ, ε)). (122)

Proof of Lemma B.3 Our strategy will be to verify the uniform closeness estimate sepa-
rately over the slowbranches Sa,−

ε and Sa,+
ε . The argument for Sa,−

ε follows the indirect
proof inGardner and Jones (1991) closely.With ourmodified exchange lemma in hand,
the remaining closeness estimate over Sa,+

ε is direct.
Suppose the lemma were false over Sa,−

ε ; then there would exist sequences ζn < −a
and εn → 0 so that (122) fails to hold for all n. By passing to subsequences, we can
assume that the following sequences converge simultaneously:

ζn → ζ̄ where a ≤ −ζ̄ < ∞,

X(ζn, εn) → x̄ ∈ Sa,−
ε , and

Ŷ (ζn, λ, εn) = Ŷn → Ŷ∗ ∈ CP
2.

Let us first suppose that x̄ ∈ Sa,−
ε . After centring the linearized equations near ζ̄

by making the change of variables s = (ζ̄ − ζn)/ε and γn = ζn/εn , we arrive at the
following recentred equations on the fast timescale:
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dẑ

ds
= â(ẑ, γn + s, λ, εn)

ẑ(0) = Ŷn .

Proceeding as before, we define an associated family of frozen systems. Let ẑ∗(s, λ, n)

denote the solution of the corresponding frozen system

dẑ

ds
= â(ẑ∗, γn, λ, εn)

ẑ∗(0, λ, n) = Ŷn .

Now fix δ2 > 0 such that δ < δ2 < δ1. By assumption, for each n we have
Ŷn /∈ Nδ(σ̂s(γn, λ, εn)), and so it must be true by Lemma B.1 that

ẑ(γn − T , λ, n) ∈ Nδ2( f̂ f (γn − T , λ, εn)).

Since δ2 < δ1, ŷ must enter the fast elephant trunk about f̂ f over Sa,−
ε , which

contradicts the assumed behaviour of ŷ as ζ → −∞.
We now know that Ŷ (ζ, λ, ε) ∈ Nδ(�̂(ζ, λ, ε)) for each ζ ≤ −a. Then set δ > 0
small enough that for each sufficiently small ε > 0, Lemma 7.7 applies to Ŷ (ζ, λ, ε) as
the wave enters the vicinity of x̄ := X(a, ε) ∈ Sa,+

ε from the fast layer. In particular,
we have the asymptotics that Ŷ lies O(ε)-close to �̂ at the time ζ = a, with respect
to the Fubini–Study metric, and so for each sufficiently small ε > 0, we have Ŷ ∈
Nδ(�̂s(a, λ, ε)). Simultaneously, Ŷ enters the slow elephant trunk over Sa,+

ε since
δ < δ1, and thus remains δ-close to the slow subbundle for each ζ > a. This completes
the proof. �	

Corollary B.4 Fix λ ∈ C and a, δ > 0. Then there exists ε̄ > 0 sufficiently small so
that for each ε ∈ (0, ε̄], the unique solution Ê(ζ, λ) of the projectivized linearized
equations for which Ê(ζ, λ) → ê−

s,2 (the unstable eigenvector) as ζ → −∞, also
satisfies

Ê(ζ, λ, ε) ∈ Nδ(�̂s(ζ, λ, ε)). (123)

for |ζ | ≥ a.

Appendix C: Proof of Lemma 7.7

In this proof we focus on clarifying the essential steps in the estimate, omitting
unwieldy calculations while noting that they can be traced from Jones and Tin (2009).
The key step is towrite down a slightlymodified version of the estimate given in Propo-
sition 8 in Jones and Tin (2009); namely, there exist positive constants B1, B2, B3,
and T0 depending only on the width � of the defining box (75), so that for all T ≥ T0

123



82 Page 68 of 71 Journal of Nonlinear Science (2023) 33 :82

and for each q ∈ QT , we have the upper bounds

|dy(q(t))| ≤ B1eαt

|db(q(t))| ≤ B2e(α−κ)t + B3ελeαt
(124)

for all t ∈ [0, T ], where α > 0 and 0 < κ < |γ0| are growth rate constants character-
izing, respectively, slow growth versus fast exponential contraction (see Proposition
8 and Corollary 2 in Jones and Tin 2009). We highlight the essential modification:
whereas in the standard exchange lemma, the component db(t) of the tangent vector
that is aligned along the fast fibres can be arranged to shrink exponentially quickly
over long times, i.e. with growth rate (α −κ) < 0 (in the case of a slow manifold with
only attracting directions), there is now an extra, slowly-growing error term, arising
from the new ελ term in the eigenvalue problem.
The strategy to prove (124) proceeds essentially as in the proof of Proposition 8 in
Jones and Tin (2009). By smoothness of solutions to the ODEs, there exists some
T ′ > 0 such that the upper bound for |db(t)| holds for t ∈ [0, T ′] if we choose B2 and
B3 sufficiently large. We seek to show that we can take T ′ = T for choices B2, B3
which are independent of the initial condition. Assume that there is a maximal T ′ > 0
such that the error estimate is attained (otherwise there is nothing to prove). We show
that this leads to a contradiction if T is large enough.
By a similar calculation to that in the proof of Proposition 8 in Jones and Tin (2009),
we find that

|dy(t)| ≤ B̄1eαt ,

where the new constant B̄1 > 0 depends upon the width of the defining box � > 0,
as well as the growth rate constants. There is also an extra term of the form e(α−κ)t

arising from applying theDuhamel principle (see Lemma 5.1 in Jones and Tin 2009) to
the extra term of the form ελM2db, where M2 is a smooth bounded function defined
by compositions of the Fenichel straightening diffeomorphism and its inverse. We
subsume this extra error term into the constant B̄1.
By the Duhamel principle and the bounding estimates on points in QT together with
the basic flow estimates for slowly-varying nonautonomous linear systems (see Propo-
sition 2, Corollary 1, Proposition 6, and Proposition 7 in Jones and Tin 2009), we then
have

|db(t)| ≤ K̄ X e(α−κ)t M̄2 + ελ

∫ t

0
e−μ(t−ζ )|M2(b(ζ ), y(ζ ), ε)||dy(ζ )|dζ

≤ K̄ X e(α−κ)t M̄2 + ελM�,ε̄e−μt B̄1
e(μ+α)t

μ + α

< B2e(α−κ)t + B3eαt

if T is chosen large enough and for B2, B3 defined from the coefficients as in the above
calculation. This contradicts the assumed maximality of T ′, and so we conclude that
db(t) satisfies the required inequality for all sufficiently large t .
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The remainder of the proof follows the outlines of the main Theorem 6.5 in Jones and
Tin (2009). By assumption we have that |dy(0)| ≥ Mε for some M > 0, and let β < 0
be fixed. It follows from general considerations about slowly varying nonautonomous
linear systems (see Proposition 2 in Jones and Tin 2009) together with the Duhamel
principle that

|dy(Tε)| ≥ KyεeβTq .

The result follows from applying the estimate for |dy(t)| above and calculating the
distance between (db(Tε), dy(Tε)) and (0, dy(Tε)) in the Fubini–Study metric. �

Remark C.1 An elephant trunk lemma is used in Gardner and Jones to prove an anal-
ogous result. We point out that only partial elephant trunk-type estimates over Sa,−

ε

and Sa,+
ε are required to provide an estimate of the type proven above. �	

Appendix D: Example: Exchange Lemma Estimates

We illustrate the assertions in Remark 7.8 with the following toy problem defined in
a suitable box � in R2 × C

2, where λ ∈ C is taken to be a fixed constant:

b′ = −b

y′ = εy

db′ = −db + ελy dy

dy′ = ε dy.

(125)

The critical manifold M0 of this system is given by {b = 0, db = 0}. This
manifold is normally hyperbolic and attracting since the real parts of the nontrivial
eigenvalues of the corresponding layer problem of (125) alongM0 are both negative
in �, and hence there exists a one-parameter familyMε of attracting slow manifolds
for sufficiently small values of ε > 0.Without loss of generality we think of this family
as parametrized by the slow variables (y, dy), and evidently b = 0 specifies one of the
defining equations forMε. The slow subbundle alongMε in terms of this coordinate
representation can be computed by calculating the eigenvector corresponding to the
O(ε) eigenvalue of the 2 × 2 Jacobian of the latter two equations in (125). It is given
by the span of the vector

(
ελy
1+ε

1

)

as y varies. On the other hand, the system (125) can be explicitly solved for
(db(t), dy(t)) given initial values (b(0), y(0), db(0), dy(0)) = (b0, y0, db0, dy0) to
find
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db(t) =
(

1

1 + 2ε

)(
e−t [db0(1 + 2ε) − ελy0dy0] + e2εtελy0dy0

)

dy(t) = dy0eεt .

From this calculation, it follows thatMε is given by {b = 0, db = ελy dy/(1+2ε)}.
For times t = T = O(1/ε), We find that the tangent vector (db(t), dy(t)) lies
exponentially close to

(
ελy0dy0
1+2ε e2εT

dy0eεT

)
.

Evidently, this vector is O(ε) close to the tangent bundle of the slow manifold,
which has the local representation

(
0
1

)
.

Further comparing the angle of this vector to the slow subbundle at the point y = y0eεT

by using the distance estimate Lemma 3.1 in Jones and Tin (2009), we find that the
angle is no larger than

2ε2λy0
(1 + 2ε)(1 + ε)

,

i.e. the angle scales as O(ε2). This error estimate is sharper than that given by the
tangent bundle of the slow manifold.
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