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Abstract
This paper explores how to identify a reduced order model (ROM) from a physical
system. A ROM captures an invariant subset of the observed dynamics. We find that
there are four ways a physical system can be related to amathematical model: invariant
foliations, invariant manifolds, autoencoders and equation-free models. Identification
of invariant manifolds and equation-free models require closed-loop manipulation
of the system. Invariant foliations and autoencoders can also use off-line data. Only
invariant foliations and invariant manifolds can identify ROMs, and the rest identify
complete models. Therefore, the common case of identifying a ROM from existing
data can only be achieved using invariant foliations. Finding an invariant foliation
requires approximating high-dimensional functions. For function approximation, we
use polynomials with compressed tensor coefficients, whose complexity increases
linearly with increasing dimensions. An invariant manifold can also be found as the
fixed leaf of a foliation. This only requires us to resolve the foliation in a small neigh-
bourhood of the invariant manifold, which greatly simplifies the process. Combining
an invariant foliation with the corresponding invariant manifold provides an accurate
ROM. We analyse the ROM in case of a focus type equilibrium, typical in mechan-
ical systems. The nonlinear coordinate system defined by the invariant foliation or
the invariant manifold distorts instantaneous frequencies and damping ratios, which
we correct. Through examples we illustrate the calculation of invariant foliations and
manifolds and at the same time show that Koopman eigenfunctions and autoencoders
fail to capture accurate ROMs under the same conditions.
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1 Introduction

There is a great interest in the scientific community to identify explainable and/or
parsimonious mathematical models from data. In this paper we classify these methods
and identify one concept that is best suited to accurately calculate reduced order
models (ROM) from off-line data. A ROM must track some selected features of the
data over time and predict them into the future. We call this property of the ROM
invariance. A ROM may also be unique, which means that barring a (nonlinear)
coordinate transformation, the mathematical expression of the ROM is independent
of who and when obtained the data as long as the sample size is sufficiently large and
the distribution of the data satisfies some minimum requirements.

Not all methods that identify low-dimensional models produce ROMs. In some
cases the data lie on a low-dimensional manifold embedded in a high-dimensional,
typically Euclidean, space as in Fig. 1a. In this case the task is to parametrise the
low-dimensional manifold and fit a model to the data in the coordinates of the
parametrisation. The choice of parametrisation influences the form of the model. It is
desired to use a parametrisation that yields a model with the least number of param-
eters. Approaches to reduce the number of parameters include compressed sensing
(Billings 2013; Brunton et al. 2014, 2016; Champion et al. 2019; Donoho 2006) and
normal form methods (Cenedese et al. 2022; Read and Ray 1998; Yair et al. 2017).
Themethods to obtain a parametrisation of the manifold include diffusionmaps (Coif-
man and Lafon 2006), isomaps (Tenenbaum et al. 2000), autoencoders (Cenedese et al.
2022; Champion et al. 2019; Kalia et al. 2021; Kramer 1991) and equation-freemodels
(Kevrekidis et al. 2003; Kevrekidis and Samaey 2009).

The main focus of this paper is genuine ROMs, where we need to find structure in
a cloud of data as illustrated in Fig. 1b. An invariant manifold provides such structure,
since all trajectories starting from the manifold stay on the manifold for all times.
However an invariant manifold is not defined by the dynamics on it but by the dynam-
ics in its neighbourhood (Cabré et al. 2003; de la Llave 1997; Fenichel 1972). This

Fig. 1 Two cases of data distribution. The blue dots (initial conditions) are mapped into the red triangles by
the nonlinear map F given by Eq. (36). aData points are distributed in the neighbourhood of the solid green
curve, which is identified as an approximate invariant manifold. b Initial conditions are well-distributed in
the neighbourhood of the steady state and there is no obvious manifold structure. For completeness, the
second invariant manifold is denoted by the dashed line (Color figure online)
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means that identifying a manifold must also involve identifying the dynamics in its
neighbourhood, which is regularly omitted, such as in Cenedese et al. (2022). We find
that resolving the nearby dynamics is the same as identifying an invariant foliation, as
explained in Sect. 2.2.

Invariant foliations (Szalai 2020) can also be used to find structure in data like in
Fig. 1b. An invariant foliation consists of a family of leaves (manifolds) that map onto
each other under the dynamics of our system as in Fig. 4a. Each leaf of the foliation
has a parameter from a space which has the dimensionality of the phase space minus
the dimensionality of a leaf. As the leaves map onto each other, so do the parameters,
which then defines a low-dimensional map or ROM. A leaf that maps onto itself is an
invariant manifold. Invariant foliations are also useful to find suitable initial conditions
for ROMs (Roberts 1989).

A natural question is if we have exhausted all possible concepts that identify struc-
ture in dynamic data. To address this, we systematically explore how a physical (or
any other data producing) system can be related to a mathematical model. This allows
us to categorise ROM concepts and choose the most suitable one for a given purpose.
Through this process we arrive at the definitions of four cases: invariant foliations,
invariant manifolds, autoencoders and equation-free models, and uncover their rela-
tions to each other.

We find that not all methods are applicable to off-line produced data. Indeed, calcu-
lating an invariant manifold requires actively probing the mathematical model (Haller
and Ponsioen 2016). If a model is not available, the physical system must be placed
under closed-loop control, such as in control-based continuation (Barton 2017; Sieber
and Krauskopf 2008), which can currently identify equilibria or periodic orbits, but
potentially it could also be used to find invariant manifolds of those equilibria and
periodic orbits. Equation-free models were developed to recover inherently low-order
dynamics from large systems by systematically probing the system input (Kevrekidis
et al. 2003; Kevrekidis and Samaey 2009). However, not all systems can be put under
closed-loop control, mainly because either setting up the required high-speed control
loop is too costly or time consuming, or the system is simply inaccessible to the data
analyst. In this case, the data collection is carried out separately from the data anal-
ysis without instant feedback to the system. We call this case open-loop or off-line
data collection. We conclude that invariant foliations and autoencoders can be fitted
to off-line data, but only invariant foliations produce genuine ROMs.

Surprisingly, invariant foliations were not explored for ROM identification before
paper (Szalai 2020). Here, we propose a two-stage process, which finds an invariant
foliation, that captures a low-order model and then finds a transverse and locally
defined invariant foliation, whose fixed leaf is the invariant manifold with the same
dynamics as the globally defined invariant foliation. This ensures that we take into
account all data when the low-order dynamics is uncovered, and at the same time also
produce a familiar structure, which is the corresponding invariant manifold. As per
remark 15, this process may be simplified at the possible cost of losing some accuracy.

Another contribution of the paper is that we resolve the problem with high-
dimensional data, which requires the approximation of high-dimensional functions,
when invariant foliations are identified. We use polynomials that have compressed
tensor coefficients (Grasedyck et al. 2013), and whose complexity scales linearly,
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instead of combinatorially with the underlying dimension. Compressed tensors in the
hierarchical Tucker format (HT) (Hackbusch and Kühn 2009) are amenable to singu-
lar value decomposition (Grasedyck 2010), hence by calculating the singular values
we can check the accuracy of the approximation. In addition, compressed tensors
can be truncated if some singular values are near zero without losing their accuracy.
However for our purpose, the most important property is that within an optimisation
framework a HT tensor is linear in each of its parameter matrices (when the rest of the
parameters are fixed), which gives us a convex cost function. Indeed, when solving
the invariance equation of the foliation, we use a block coordinate descent method, the
Gauss–Southwell scheme (Nutini et al. 2015), which significantly speeds up the solu-
tion process. We also note that optimisation of each coefficient matrix of a HT tensor
is constrained to a matrix manifold; hence, we use a trust-region method designed for
matrix manifolds (Boumal 2022; Conn et al. 2000) when solving for individual matrix
components.

A ROM is usually represented in a nonlinear coordinate system; hence, the quan-
tities predicted by the ROM may not behave the same way as in Euclidean frames.
This is particularly true for instantaneous frequencies and damping ratios of decaying
vibrations. In Sect. 3, we take the distortion of the nonlinear coordinate system into
account and derive correct values of instantaneous frequencies and damping ratios.

The structure of the paper is as follows. We first discuss the type of data assumed
for ROM identification. Then, we define what a ROM is and go through all possi-
ble connections between a data producing system and a ROM. We then classify the
uncovered conceptual connections along two properties: whether they are applicable
to off-line data or produce genuine ROMs. Next, we discuss instantaneous frequen-
cies and damping ratios in nonlinear frames. In Sect. 4, we summarise the proposed
and tested numerical algorithms and describe their implementation details. Finally,
we discuss three example problems. We start with a conceptual model that illustrates
the non-applicability of autoencoders to genuine model order reduction. We then use
a nonlinear ten-dimensional mathematical model to create synthetic data sets. Here
we demonstrate the accuracy of our method to full state-space data, but also highlight
problems with phase-space reconstruction from scalar signals. Finally, we analyse
vibration data from a jointed beam, for which there is no accurate physical model due
to the frictional interface in the joint.

1.1 Set-Up

The first step on our journey is to characterise the type of data we are working with.
We assume a real n-dimensional Euclidean space, denoted by X (a vector space with
an inner product 〈·, ·〉X : X × X → R), which contains all our data. We further
assume that the data are produced by a deterministic process, which is represented by
an unknown map F : X → X . In particular, the data are organised into N ∈ N

+ pairs
of vectors from space X , that is

(
xk, yk

)
, k = 1, . . . , N
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that satisfy

yk = F (xk) + ξ k, k = 1, . . . , N , (1)

where ξ k ∈ X represents a small measurement noise, which is sampled from a dis-
tribution with zero mean. Equation (1) describes pieces of trajectories if for some
k ∈ {1, . . . , N }, xk+1 = yk . The state of the system can also be defined on a mani-
fold, in which case X is chosen such that the manifold is embedded in X according to
Whitney’s embedding theorem (Whitney 1936). It is also possible that the state can-
not be directly measured, in which case Takens’ delay embedding technique (Takens
1981) can be used to reconstruct the state, which we will do subsequently in an opti-
mal manner (Casdagli 1989). As a minimum, we require that our system is observable
(Hermann and Krener 1977).

For the purpose of this paper we also assume a fixed point at the origin, such that
F (0) = 0 and that the domain of F is a compact and connected subset G ⊂ X that
includes a neighbourhood of the origin.

2 Reduced Order Models

We now describe a weak definition of a ROM, which only requires invariance. There
are two ingredients of a ROM: a function connecting vector space X to another vector
space Z of lower dimensionality and a map on vector space Z . The connection can
go two ways, either from Z to X or from X to Z . To make this more precise, we also
assume that Z has an inner product 〈·, ·〉Z : Z × Z → R and that dim Z < dim X . The
connectionU : X → Z is called an encoder and the connectionW : Z → X is called
a decoder. We also assume that both the encoder and the decoder are continuously
differentiable and their Jacobians have full rank. Our terminology is borrowed from
computer science (Kramer 1991), but we can also use mathematical terms that calls
U a manifold submersion (Lawson 1974) and W a manifold immersion (Lang 2012).
In accordance with our assumption that F (0) = 0, we also assume that U (0) = 0
and W (0) = 0.

Definition 1 Assume two maps F : X → X , S : Z → Z and an encoder U : X → Z
or a decoder W : Z → X .

1. The encoder-mappair (U, S) is aROM of F if for all initial conditions x0 ∈ G ⊂ X ,
the trajectory xk+1 = F (xk) and for initial condition z0 = U (x0) the second
trajectory zk+1 = S (zk) are connected such that zk = U (xk) for all k > 0.

2. The decoder-map pair (W , S) is a ROM of F if for all initial conditions z0 ∈ H =
{z ∈ Z : W (z) ∈ G}, the trajectory zk+1 = S (zk) and for initial condition x0 =
W (z0) the second trajectory xk+1 = F (xk) are connected such that xk = W (zk)
for all k > 0.

Remark 2 In essence, a ROM is a model whose trajectories are connected to the tra-
jectories of our system F. We call this property invariance. It is possible to define a
weaker ROM, where the connections zk = U (xk) or xk = W (zk) are only approxi-
mate, which is not discussed here.
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Fig. 2 Commutative diagrams of a invariant foliations, b invariant manifolds, and connection diagrams of
c autoencoders and d equation-free models. The dashed arrows denote the chain of function composition(s)
that involves F, the continuous arrows denote the chain of function composition(s) that involves map S.
The encircled vector space denotes the domain of the invariance equation, and the boxed vector space is
the target of the invariance equation

The following corollary can be thought of as an equivalent definition of a ROM.

Corollary 3 The encoder-map pair (U, S) or decoder-map pair (W , S) is a ROM if
and only if either invariance equation

S (U (x)) = U (F (x)) , x ∈ G or (2)

W (S (z)) = F (W (z)) , z ∈ H , (3)

hold, where H = {z ∈ Z : W (z) ∈ G}.

Proof Let us assume that (2) holds, and choose an x0 ∈ X and let z0 = U (x0).
First we check whether zk = U (xk), if xk = Fk (x0), zk = Sk (z0) and (2) hold.
Substituting x = Fk (x0) into (2) yields

Sk (z0) = U
(
Fk (x0)

)

zk = U (xk) .

Now in reverse, assuming that zk = U (xk), zk = Sk (z0), xk = Fk (x0) and setting
k = 1 yields that

z1 = S (z0) = U (x1) ,

S (U (x0)) = U (F (x0)) ,

which is true for all xk−1 ∈ G, hence (2) holds. The proof for the decoder is identical,
except that we swap F and S and replace U with W . ��
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Fig. 3 a Autoencoder. Encoder U maps data to parameter space Z , then the low-order map S takes the
parameter forward in time and finally the decoder W brings the new parameter back to the state space.
This chain of maps denoted by solid purple arrows must be the same as map F denoted by the dashed
arrow. The two results can only match between two manifolds M and N and not elsewhere in the state
space. Manifold M is invariant if and only if M ⊂ N , which is not guaranteed by this construction. b
Equation-free model. The only difference from the autoencoder is the reversal of the arrow under F, hence
S (z) = U (F (W (z))) (Color figure online)

Now the question arises if we can use a combination of an encoder and a decoder?
This is the case of the autoencoder or nonlinear principal component analysis (Kramer
1991) and the equation-free model (Kevrekidis et al. 2003; Kevrekidis and Samaey
2009). Indeed, there are four combinations of encoders and decoders, which are
depicted in diagrams Fig. 2a–d. We name these four scenarios as follows.

Definition 4 We call the connections displayed in Fig. 2a–d, invariant foliation, invari-
ant manifold, autoencoder and equation-free model, respectively.

As we walk through the dashed and solid arrows in diagram Fig. 2a, we find the two
sides of the invariance Eq. (2). If we do the same for diagram Fig. 2b, we find Eq. (3).
This implies that invariant foliations and invariant manifolds are ROMs. The same is
not true for autoencoders and equation-free models. Reading off diagram Fig. 2c, the
autoencoder must satisfy

W (S (U (x))) = F (x) . (4)

Equation (4) is depicted in Fig. 3a. Since the decoderW maps onto a manifoldM, Eq.
(4) can only hold if x is chosen from the preimage ofM, that is, x ∈ N = F−1 (M).
For invariance, we need F (M) ⊂ M, which is the same asM ⊂ N if F is invertible.
However, the inclusion M ⊂ N is not guaranteed by Eq. (4). The only way to
guarantee M ⊂ N , is by stipulating that the function composition W ◦ U is the
identity map on the data. A trivial case is when dim Z = dim X or, in general, when
all data fall onto a dim Z -dimensional submanifold of X . Indeed, the standard way to
find an autoencoder (Kramer 1991) is to solve

arg min
U,W

N∑

k=1

‖W (U (xk)) − xk‖2 . (5)
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Unfortunately, if the data are not on a dim Z -dimensional submanifold of X , which
is the case of genuine ROMs, the minimum of

∑N
k=1 ‖W (U (xk)) − xk‖2 will be far

from zero and the location ofM as the solution of (5) will only indicate where the data
are in the state space. It is customary to seek a solution to (5) under the normalising
condition that U ◦ W is the identity and hence S = U ◦ F ◦ W .

The equation-free model in diagram Fig. 2d is identical to the autoencoder Fig. 2c if
we replace F with F−1 and Swith S−1. Reading off diagramFig. 2d, the equation-free
model must satisfy

S (z) = U (F (W (z))) . (6)

Equation (6) immediately provides S, for anyU, W , without identifying any structure
in the data.

Only invariant foliations, through Eq. (2) and autoencoders through Eqs. (4) and
(5) can be fitted to off-line data. Invariant manifolds and equation-free models require
the ability the manipulate the input of our system F during the identification process.
Indeed, for off-line data, produced by Eq. (1), the foliation invariance Eq. (2) turns
into an optimisation problem

argmin
S,U

N∑

k=1

‖xk‖−2
∥∥S (U (xk)) − U

(
yk
)∥∥2 , (7)

and the autoencoder Eq. (4) turns into

arg min
S,U,W

N∑

k=1

‖xk‖−2
∥∥W (S (U (xk))) − yk

∥∥2 . (8)

For the optimisation problem (7) to have a unique solution, we need to apply a con-
straint toU . One possible constraint is explained in remark 7. In case of the autoencoder
(8), the constraint, in addition to the one restrictingU , can be thatU ◦W is the identity,
as also stipulated in Cenedese et al. (2022).

2.1 Invariant Foliations and Invariant Manifolds

An encoder represents a family of manifolds, called foliation, which is the set of con-
stant level surfaces of U . A single level surface is called a leaf of the foliation; hence,
the foliation is a collection of leaves. In mathematical terms, a leaf with parameter
z ∈ Z is denoted by

Lz = {x ∈ G ⊂ X : U (x) = z} . (9)

All leaves are dim X − dim Z -dimensional differentiable manifolds, because we
assumed that the Jacobian DU has full rank (Lawson 1974). The collection of all
leaves is a foliation, denoted by
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Fig. 4 a Invariant foliation: a leaf Lz is being mapped onto leaf LS(z). Since the origin 0 ∈ Z is a steady
state of S, the leaf L0 is mapped into itself and therefore it is an invariant manifold. b Invariant manifold:
a single trajectory, represented by red dots, starting from the invariant manifold M remains on the green
invariant manifold (Color figure online)

F = {Lz : z ∈ H} ,

where H = U (G). The foliation is characterised by its co-dimension, which is the
same as dim Z . Invariance Eq. (2) means that each leaf of the foliation is mapped
onto another leaf, in particular the leaf with parameter z is mapped onto the leaf with
parameter S (z), that is

F (Lz) ⊂ LS(z).

Due to our assumptions, leaf L0 is an invariant manifold, because F (L0) ⊂ L0. This
geometry is illustrated in Fig. 4a.

We now characterise the existence and uniqueness of invariant foliations about a
fixed point. We assume that F is aCr , r ≥ 2 map and that the Jacobian matrix DF (0)
has eigenvalues μ1, . . . , μn such that |μi | < 1, i = 1, . . . , n. To select the invariant
manifold or foliation we assume two ν-dimensional linear subspaces E of X and E�

of X corresponding to eigenvalues μ1, . . . , μν such that DF (0) E ⊂ E and for the
adjoint map (DF (0))� E� ⊂ E�.

Definition 5 The number

�E� = mink=1...ν log |μk |
maxk=1...n log |μk |

is called the spectral quotient of the left-invariant linear subspace E� of F about the
origin.

Theorem 6 Assume that DF (0) is semisimple and that there exists an integer σ ≥ 2,
such that �E� < σ ≤ r . Also assume that

n∏

k=1

μ
mk
k = μ j , j = 1, . . . , ν (10)
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for all mk ≥ 0, 1 ≤ k ≤ n with at least one ml = 0, ν + 1 ≤ l ≤ n and with∑n
k=0 mk ≤ σ − 1. Then in a sufficiently small neighbourhood of the origin there

exists an invariant foliation F tangent to the left-invariant linear subspace E� of the
Cr map F. The foliation F is unique among the σ times differentiable foliations and
it is also Cr smooth.

Proof The proof is carried out in Szalai (2020). Note that the assumption of DF (0)
being semisimple was used to simplify the proof in Szalai (2020), therefore it is
unlikely to be needed. ��
Remark 7 Theorem6 only concerns the uniqueness of the foliation, but not the encoder
U . However, for any smooth and invertible map R : Z → Z , the encoder Ũ = R ◦U
represents the same foliation and the nonlinearmap S transforms into S̃ = R◦S◦R−1.
If we want to solve the invariance Eq. (2), we need to constrain U . The simplest such
constraint is that

U (W1z) = z, (11)

where W1 : Z → X is a linear map with full rank such that E� ∩ kerW�
1 = {0}. To

explain the meaning of Eq. (11), we note that the image of W1 is a linear subspace
H of X . Equation (11) therefore means that each leaf Lz must intersect subspace H
exactly at parameter z. The condition E� ∩ kerW�

1 = {0} then means that the leaf
L0 has a transverse intersection with subspace H. This is similar to the graph-style
parametrisation of a manifold over a linear subspace.

Remark 8 Eigenvalues and eigenfunctions of the Koopman operator (Mezić 2005,
2021) are invariant foliations. Indeed, the Koopman operator is defined as (Ku) (x) =
u (F (x)). If we assume that U = (u1, . . . , uν) is a collection of functions u j : X →
R, Z = R

ν , then U spans an invariant subspace of K if there exists a linear map S
such that K (U) = SU . Expanding this equation yields U (F (x)) = SU (x), which
is the same as the invariance Eq. (2), except that S is linear. The existence of linear
map S requires further non-resonance conditions, which are

ν∏

k=1

μ
mk
k = μ j , j = 1, . . . , ν (12)

for all mk ≥ 0 such that
∑n

k=0 mk ≤ σ − 1. Equation (12) is referred to as the
set of internal non-resonance conditions, because these are intrinsic to the invariant
subspace E�. In many cases S represents the slowest dynamics, hence even if there
are no internal resonances, the two sides of (12) will be close to each other for some
set of m1, . . . ,mν exponents and that causes numerical issues leading to undesired
inaccuracies. We will illustrate this in Sect. 5.2.

Now we discuss invariant manifolds. A decoder W defines a differentiable manifold

M = {W (z) : z ∈ H} ,
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where H = {z ∈ Z : W (z) ∈ G}. Invariance Eq. (3) is equivalent to the geometric
condition that F (M) ⊂ M. This geometry is shown in Fig. 4b, which illustrates that
if a trajectory is started on M, all subsequent points of the trajectory stay onM.

Invariant manifolds as a concept cannot be used to identify ROMs from off-line
data. As we will see below, invariant manifolds can still be identified as a leaf of an
invariant foliation, but not through the invariance Eq. (3). Indeed, it is not possible to
guess the manifold parameter z ∈ Z from data. Introducing an encoder U : X → Z
to calculate z = U (x), transforms the invariant manifold into an autoencoder, which
does not guarantee invariance.

We now state the conditions of the existence and uniqueness of an invariant mani-
fold.

Definition 9 The number

ℵE = mink=ν+1...n log |μk |
maxk=1...ν log |μk |

is called the spectral quotient of the right-invariant linear subspace E of map F about
the origin.

Theorem 10 Assume that there exists an integer σ ≥ 2, such that ℵE < σ ≤ r . Also
assume that

ν∏

k=1

μ
mk
k = μ j , j = ν + 1, . . . , n (13)

for all mk ≥ 0 such that
∑ν

k=0 mk ≤ σ − 1. Then, in a sufficiently small neigh-
bourhood of the origin there exists an invariant manifold M tangent to the invariant
linear subspace E of the Cr map F. The manifold M is unique among the σ -times
differentiable manifolds and it is also Cr smooth.

Proof The theorem is a subset of theorem 1.1 in Cabré et al. (2003). ��
Remark 11 To calculate an invariant manifold with a unique representation, we need
to impose a constraint on W and/or S. The simplest constraint is imposed by

U1W (z) = z, (14)

where U1 : Z → X is a linear map with full rank such that E ∩ kerU�
1 = {0}. This is

similar to a graph-style parametrisation (akin to theorem 1.2 in Cabré et al. (2003)),
where the range of U1 must span the linear subspace E . Constraint (14) can break
down for large ‖z‖, when U1DW (z) does not have full rank. A globally suitable
constraint is that DW� (z) DW (z) = I .

For linear subspaces E and E� with eigenvalues closest to the complex unit circle
(representing the slowest dynamics), �E = 1 and ℵE is maximal. Therefore the
foliation corresponding to the slowest dynamics requires the least smoothness, while
the invariant manifold requires the maximum smoothness for uniqueness.
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Table 1 Comparison of invariant foliations, invariant manifolds and autoencoders

Invariant
foliation

Invariant
manifold

Autoencoder Eq.-free model

Usable closed-loop YES YES YES YES

Usable open-loop YES NO YES NO

Obtains a ROM YES YES NO NO

Uniqueness Slowest most
unique

Slowest least
unique

NO NO

References Mezić (2005),
Roberts
(1989),
Roberts
(1992),
Szalai
(2020)

Cabré et al.
(2003),
Cabré et al.
(2005), de la
Llave
(1997),
Haller and
Ponsioen
(2016),
Shaw and
Pierre
(1994),
Szalai et al.
(2017),
Vizzaccaro
et al. (2021)

Cenedese et al.
(2022),
Champion
et al. (2019),
Kalia et al.
(2021)

Kevrekidis
et al. (2003),
Kevrekidis
and Samaey
(2009)

Table 1 summarises the main properties of the three conceptually different model
identification techniques. Ultimately, in the presence of off-line data, only invariant
foliations can be fitted to the data and produce a ROM at the same time.

2.2 Invariant Manifolds Represented by Locally Defined Invariant Foliations

As discussed before, we cannot fit invariant manifolds to data, instead we can fit an
invariant foliation that contains our invariant manifold (which is the leaf containing
the fixed point L0 at the origin). This invariant foliation only needs to be defined near
the invariant manifold and therefore we can simplify the functional representation of
the encoder that defines the foliation. In this section we discuss this simplification.

To begin with, assume that we already have an invariant foliationF with an encoder
U and nonlinear map S. Our objective is to find the invariant manifoldM, represented
by decoder W that has the same dynamics S as the foliation. This is useful if we want
to know quantities that are only defined for invariant manifolds, such as instantaneous
frequencies and damping ratios. Formally, we are looking for a simplified invariant
foliation F̂ with encoder Û : X → Ẑ that together with F form a coordinate system

in X . (Technically speaking,
(
U, Û

)
: X → Z × Ẑ must be a isomorphism.) In this

case our invariant manifold is the zero level surface of encoder Û , i.e.M = L̂0 ∈ F̂ .
Naturally, we must have dim Z + dim Ẑ = dim X .
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Fig. 5 Approximate invariant foliation. The linear map U⊥ and the nonlinear map U create a coordinate
system, so that in this frame the invariant manifold M is given by U⊥x = W0 (z), where z = U (z). We
then allow to shift manifoldM in the U⊥ direction such that U⊥x−W0 (z) = ẑ, which creates a foliation
parametrised by ẑ ∈ Ẑ . If this foliation satisfies the invariance equation in a neighbourhood of M with a
linear map B as per Eq. (16), thenM is an invariant manifold. In other words, nearby blue dashed leaves are
mapped towardsM by linear map B the same way as the underlying dynamics does (Color figure online)

The sufficient condition that F and F̂ form a coordinate system locally about the
fixed point is that the square matrix

Q =
(
DU (0)
DÛ (0)

)

is invertible. Let us represent our approximate (or locally defined) encoder by

Û (x) = U⊥x − W0 (U (x)) , (15)

where W0 : Z → Ẑ is a nonlinear map with DW0 (0) = 0, U⊥ : X → Ẑ is an
orthogonal linear map, U⊥ (U⊥)� = I and U⊥W0 (z) = 0. Here, the linear map U⊥
measures coordinates in a transversal direction to the manifold and W0 prescribes
where the actual manifold is along this transversal direction, while U provides the
parametrisation of the manifold. All other leaves of the approximate foliation F̂ are
shifted copies of M along the U⊥ direction as displayed in Fig. 5. A locally defined
foliation means that ẑ = Û (x) ∈ Ẑ is assumed to be small; hence, we can also
assume linear dynamics among the leaves of F̂ , which is represented by a linear
operator B : Ẑ → Ẑ . Therefore, the invariance Eq. (2) becomes

BÛ (x) = Û (F (x)) . (16)

Once B, U⊥ and W0 are found, the final step is to reconstruct the decoder W of our
invariant manifold M.

Proposition 12 The decoderW of the invariant manifoldM =
{
x ∈ X : Û (x) = 0

}

is the unique solution of the system of equations

U (W (z)) = z
U⊥W (z) = W0 (z)

}
. (17)
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Proof First we show that conditions (17) imply Û (W (x)) = 0. We expand our
expression using (15) into Û (W (x)) = U⊥W (z) − W0 (U (W (z))), then use Eq.
(17), which yields Û (W (x)) = 0. To solve Eq. (17) for W , we decompose U , W
into linear and nonlinear components, such that U (x) = DU (0) x + Ũ (x) and
W (z) = DW (0) z + W̃ (z). Expanding Eq. (17) with the decomposed U , W yields

DU (0)
(
DW (0) z + W̃ (z)

)+ Ũ
(
DW (0) z + W̃ (z)

) = z
U⊥ (DW (0) z + W̃ (z)

) = W0 (z)

}
. (18)

The linear part of Eq. (18) is

QDW (0) =
(
I
0

)
,

hence DW (0) = Q−1
(
I
0

)
. The nonlinear part of (18) is

QW̃ (z) =
(−Ũ

(
DW (0) z + W̃ (z)

)

W0 (z)

)
,

which can be solved by the iteration

W̃ k+1 (z) = Q−1
(−Ũ

(
DW (0) z + W̃ k (z)

)

W0 (z)

)
, W̃1 (z) = 0, k = 1, 2, . . . .

(19)

Iteration (19) converges for |z| sufficiently small, due to Ũ(x) = O (|x|2) and
W0 (z) = O (|z|2). ��
As we will see in Sect. 5, this approach provides better results than using an autoen-
coder. Here we have resolved the dynamics transversal to the invariant manifold M
up to linear order. It is essential to resolve this dynamics to find invariance, not just
the location of data points.

Remark 13 More consideration is needed in case Û (xk) assumes large values over
some data points. This either requires to replace B with a nonlinear map or we need
to filter out data points that are not in a small neighbourhood of the invariant manifold
M. Due to B being high-dimensional, replacing it with a nonlinear map leads to
numerical difficulties. Filtering data is easier. For example, we can assign weights to
each term in our optimisation problem (7) depending on how far a data point is from
the predicted manifold, which is the zero level surface of Û . This can be done using
the optimisation problem

arg min
B,U⊥,W0

N∑

k=1

‖xk‖−2 φκ

(∥∥∥Û (xk)
∥∥∥
2
)∥∥∥BÛ (xk) − Û

(
yk
)∥∥∥

2
, (20)
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where

φκ (x) =
{
exp x

x−κ2
0 ≤ x < κ2

0 x ≥ κ2

is the bump function and κ > 0 determines the size of the neighbourhood of the
invariant manifold M that we take into account.

Remark 14 The approximation (16) can be made more accurate if we allow matrix
U⊥ to vary with the parameter of the manifold z = U (x). In this case the encoder
becomes

Ŭ (x) = U⊥ (U (x)) x − W0 (U (x)) .

This does increase computational costs, but not nearly asmuchas ifwewere calculating
a globally accurate invariant foliation. For our example problems, we find that this
extension is not necessary.

Remark 15 It is also possible to eliminate a-priori calculation of U . We can assume
thatU is a linear map, such thatUU� = I and treat it as an unknown in representation
(15). The assumption that U is linear makes sense if we limit ourselves to a small
neighbourhood of the invariant manifold M by setting κ < ∞ in (20), as we have
already assumed a linear dynamics among the leaves of the associated foliation F̂
given by linear map B. Once B, U, U⊥ and W0 are found, map S can also be fitted
to the invariance Eq. (2). The equation to fit S to data is

argmin
S

N∑

k=1

‖xk‖−2 φκ

(∥
∥∥Û (xk)

∥
∥∥
2
)∥
∥U yk − S (Uxk)

∥
∥2 ,

which is a straightforward linear least squares problem, if S is linear in its parameters.
This approach will be further explored elsewhere.

3 Instantaneous Frequencies and Damping Ratios

Instantaneous damping ratios and frequencies are usually defined with respect to a
model that is fitted to data (Jin et al. 2020). Here we take a similar approach and
stress that these quantities only make sense in an Euclidean frame and not in the
nonlinear frame of an invariant manifold or foliation. The geometry of a manifold
or foliation depends on an arbitrary parametrisation; hence, uncorrected results are
not unique. Many studies mistakenly use nonlinear coordinate systems, for example
one by the present author (Szalai et al. 2017) and colleagues (Breunung and Haller
2018; Ponsioen et al. 2018). Such calculations are only asymptotically accurate near
the equilibrium. Here we describe how to correct this error.

We assume a two-dimensional invariant manifold M, parametrised by a decoder
W in polar coordinates r , θ . The invariance Eq. (3) for the decoder W can be written
as
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W (R (r) , θ + T (r)) = F (W (r , θ)) . (21)

Without much thinking (as described in (Szalai et al. 2017; Szalai 2020)), the instan-
taneous frequency and damping could be calculated as

ω (r) = T (r)
[
rad/step

]
, (22)

ζ (r) = − log R(r)
r

ω (r)
[−] , (23)

respectively. The instantaneous amplitude is a norm A (r) = ‖W (r , ·)‖A, for example

‖ f ‖A = √〈 f , f 〉A, 〈 f , f 〉A = 1

2π

∫ 2π

0
〈 f (θ) , f (θ)〉X dθ, (24)

where 〈·, ·〉X is the inner product on vector space X .
The frequency and damping ratio values are only accurate if there is a linear relation

between ‖W (r , ·)‖A and r , for example

‖W (r , ·)‖A = r (25)

and the relative phase between two closed curves satisfies

argmin
γ

‖W (r1, ·) − W (r2, · + γ )‖A = 0. (26)

Equation (25) means that the instantaneous amplitude of the trajectories on manifold
M is the same as parameter r , hence the map r �→ R (r) determines the change in
amplitude. Equation (26) stipulates that the parametrisation in the angular variable is
such that there is no phase shift between the closed curves W (r1, ·) and W (r2, ·) for
r1 = r2. If there would be a phase shift γ , a trajectory that within a period moves
from amplitude r1 to r2, would misrepresent its instantaneous period of vibration by
phase γ , hence the frequency given by T (r)would be inaccurate. In fact, one can set a
continuous phase shift γ (r) among the closed curvesW (r , ·), such that the frequency
given by T (r) has a prescribed value. The following result provides accurate values
for instantaneous frequencies and damping ratios.

Proposition 16 Assume a decoder W : [0, r1] × [0, 2π ] → X and functions R, T :
[0, r1] → R such that they satisfy invariance Eq. (21).

1. A new parametrisation W̃ of the manifold generated by W that satisfies the con-
straints (25) and (26) is given by

W̃ (r , θ) = W (t, θ + γ (t)) , t = κ−1 (r) ,

123



Journal of Nonlinear Science (2023) 33 :75 Page 17 of 49 75

where

γ (r) = −
∫ r

0

∫ 2π
0 〈D1W (ρ, θ) , D2W (ρ, θ)〉X dθ
∫ 2π
0 〈D2W (ρ, θ) , D2W (ρ, θ)〉X dθ

dρ, (27)

κ (r) =
√

1

2π

∫ 2π

0
〈W (r , θ) ,W (r , θ)〉X dθ (28)

and 〈·, ·〉X is the inner product on vector space X.
2. The instantaneous natural frequency and damping ratio are calculated as

ω (r) = T (t) + γ (t) − γ (R (t))
[
rad/step

]
, (29)

ζ (r) = − log
[
r−1κ (R (t))

]

ω (r)
[−] . (30)

where t = κ−1 (r).

Proof A proof is given in “Appendix C”. ��
Remark 17 The transformed expressions (29), (30) for the instantaneous frequency and
damping ratio show that any instantaneous frequency can be achieved for all r > 0
if R (r) = r by choosing appropriate functions ρ, γ . For example, zero frequency is
achieved by solving

γ (r) = γ (R (r)) − T (r) , (31)

which is a functional equation. For an ε > 0, fix γ (R (ε)) = 0, γ (ε) = T (ε) and
some interpolating values in the interior of the interval [R (ε) , ε], then use contraction
mapping to arrive at a unique solution for function γ .

Remark 18 The same calculation applies to vector fields, ẋ = f (x), but the final result
is somewhat different. Assume a decoder W : [0, r1] × [0, 2π ] → X and functions
R, T : [0, r1] → R such that they satisfy the invariance equation

D1W (r , θ) R (r) + D2W (r , θ) T (r) = f (W (r , θ)) . (32)

The instantaneous natural frequency and damping ratio is calculated by

ω (r) = T (t) − γ̇ (t) R (t) [rad/unit time] ,

ζ (r) = − κ̇ (t) R (t)

rω (r)
[−] ,

where t = κ−1 (r). All other quantities are as in proposition 16. A proof is given in
“Appendix C”.
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Remark 19 Note that proposition 16 also applies if we create a different measure of
amplitude, for example Ŵ (r , θ) = w� ·W (r , θ), wherew� is a linear map. Indeed, in
the proof we did not use that W is a manifold immersion, it only served as Euclidean
coordinates of points on the invariant manifold. Hence, the transformed function Ŵ
gives us the same frequencies and damping ratios as W , but at linearly scaled ampli-
tudes.

The following example illustrates that if a system is linear in a nonlinear coordinate
system, we can recover the actual instantaneous damping ratios and frequencies using
proposition 16. This is the case of Koopman eigenfunctions (as in remark 8), or normal
form transformations where all the nonlinear terms are eliminated.

Example 20 Let us consider the linear map

rk+1 = eζ0ω0rk
θk+1 = θk + ω0 (33)

and the corresponding nonlinear decoder

W (r , θ) =
(
r cos θ − 1

4r
3 cos3 θ

r sin θ + 1
2r

3 cos3 θ

)
. (34)

In terms of the polar invariance Eq. (21), the linear map (33) translates to T (r) = ω0
and R (r) = eζ0ω0r . If we disregard the nonlinearity ofW , the instantaneous frequency
and the instantaneous damping ratio of our hypothetical system would be constant,
that is ω (r) = ω0 and ζ (r) = ζ0. Using proposition 16, we calculate the effect of W
and find that

γ (r) = − 2√
19

(
tan−1

(
15r2 − 8

8
√
19

)
+ cot−1

(√
19
))

,

κ (r) = r2 − 3r4

16
+ 25r6

256
.

Finally, we plot expressions (29) and (30) in Fig. 6a, b, respectively. It can be seen
that frequencies and damping ratios change with the vibration amplitude (red lines),
but they are constant without taking the decoder (34) into account (blue lines).

The geometry of the re-parametrisation is illustrated in Fig. 7.

4 ROM Identification Procedures

Here we describe our methodology of finding invariant foliations, manifolds and
autoencoders. These steps involve methods described so far and further methods from
the appendices. First we start with finding an invariant foliation together with the
invariant manifold that has the same dynamics as the foliation.
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Fig. 6 The instantaneous frequency a and instantaneous damping of system (33) together with the decoder
(34). The blue line represents the naive calculation just from system (33), and the red lines represent the
corrected values (29) and (30) (Color figure online)

Fig. 7 Geometry of the decoder (34). The blue grid represents the polar coordinate system with maximum
radius r = 1. The red curves are the images of the blue concentric circles under the decoder W . The red
dots are images of the intersection points of the blue circles with the blue radial lines under W . The red
dots do not fall onto the radial blue lines, which indicates a phase shift. The green curves correspond to
the images of the blue concentric circles under the re-parametrised decoder W̃ for the same parameters as
the red curves. The amplitudes of the green curves are now the same as the amplitude of the corresponding
blue curves. Due to the re-parametrisation, there is no phase shift between the black dots and the blue radial
lines, on average (Color figure online)
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F1. If the data are not from the full state space, especially when it is a scalar signal,
we use a state-space reconstruction technique as described in “Appendix B”. At
this point we have data points xk, yk ∈ X , k = 1, . . . , N .

F2. To ensure that the solution of (7) converges to the desired foliation, we calculate
a linear approximation of the foliation. We only consider a small neighbourhood
of the fixed point, where the dynamics is nearly linear. Hence, we define the
index set Iρ = {k ∈ {1, . . . , N } : |xk | < ρ} with ρ sufficiently small, but large
enough that it encompasses enough data for linear parameter estimation.

1. First we fit a linear model to the data using a create a least-squares method
(Boyd and Vandenberghe 2018). The linear map is assumed to be yk = Axk ,
where the coefficient matrix is calculated as

K =
∑

k∈Iρ

|xk |−2 xk ⊗ xTk ,

L =
∑

k∈Iρ

|xk |−2 yk ⊗ xTk ,

A = LK−1.

Matrix A approximates the Jacobian DF (0), which then can be used to identify
the invariant subspaces E� and E .

2. The linearised version of foliation invariance (2) and manifold invariance (3)
are

S1U1 = U1A and

W1S1 = AW1,

respectively. We also need to calculate the linearised version of our locally
defined foliation (16), that is

BU⊥
1 = U⊥

1 A.

To find the unknown linear maps U1, W1, U⊥
1 , S1 and B from A, let us

calculate the using real Schur decomposition of A, that is AQ = QH or
QT A = H QT , where Q is unitary and H is in an upper Hessenberg matrix,
which is zero below the first subdiagonal. The Schur decomposition is cal-
culated (or rearranged) such that the first ν column vectors, q1, . . . , qν of Q
span the required right invariant subspace E and correspond to eigenvalues
μ1, . . . , μν . Therefore we find that W1 = [

q1, . . . , qν

]
. In addition, the last

n−ν column vectors of Q, when transposed, define a left-invariant subspace of
A. Therefore we define U⊥

1 = [
qν+1, . . . , qn

]T and B1 = U⊥
1 AU⊥T

1 , which
provides the initial guesses U⊥ ≈ U⊥

1 and B ≈ B1 in optimisation (20).
In order to find the left-invariant subspace of A corresponding to the selected

eigenvalues, we rearrange the Schur decomposition into Q̂
T
A = Ĥ Q̂

T
, where
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Q̂ = [
q̂1, . . . , q̂n

]
(using ordschur in Julia or Matlab) such thatμ1, . . . , μν

now appear last in the diagonal of Ĥ at indices ν + 1, . . . , n. This allows us
to define U1 = [

q̂n−ν, . . . , q̂n
]T and S1 = U1AUT

1 which provides the initial
guess for DU (0) = U1 and DS (0) = S1.

F3. We solve the optimisation problem (7) with the initial guess DU (0) = U1 and
DS (0) = S1 as calculated in the previous step. We also prescribe the constraints
that DU (0) (DU (0))T = I and that U (W1z) is linear in z. The numerical
representation of the encoder U is described in “Appendix A.3”.

F4. We perform a normal form transformation on map S and transform U into the
new coordinates. The normal form Sn satisfies the invariance equation Un ◦ S =
Sn ◦ Un (c.f. Equation (2)), where Un : Z → Z is a nonlinear map. We then
replaceU withUn ◦U and Swith Sn as our ROM. This step is optional and only
required if we want to calculate instantaneous frequencies and damping ratios.
In a two-dimensional coordinate system, where we have a complex conjugate
pair of eigenvalues μ1 = μ2, the real valued normal form is

(
z1
z2

)

k+1
=
(
z1 fr

(
z21 + z22

)− z2 fr
(
z21 + z22

)

z1 fi
(
z21 + z22

)+ z2 fr
(
z21 + z22

)
)

, (35)

which leads to the polar form (21) with R (r) = r
√

f 2r
(
r2
)+ f 2i

(
r2
)
and

T (r) = tan−1 fi
(
r2
)

fr(r2)
. This normal form calculation is described in Szalai (2020).

F5. To find the invariant manifold, we calculate a locally defined foliation (15) and
solve the optimisation problem (20) to find the decoder W of invariant manifold
M. The initial guess in problem (20) is such that U⊥ = U⊥

1 and B = B1. We
also need to set a κ parameter, which is assumed to be κ = 0.2 throughout the
paper. We have found that results are not sensitive to the value of kappa except
for extreme choices, such as 0,∞.

F6. In case of an oscillatory dynamics in a two-dimensional ROM, we recover the
actual instantaneous frequencies and damping ratios using proposition (16).

The procedure for the Koopman eigenfunction calculation is the same as steps F1-
F6, except that S is assumed to be linear. To identify an autoencoder, we use the same
setup as in Cenedese et al. (2022). The numerical representation of the autoencoder is
described in “Appendix A.2”. We carry out the following steps

AE1. We identify W1, S1 as in step F2 and set U = WT
1 and DS (0) = S1

AE2. Solve the optimisation problem

arg min
U,Wnl

N∑

k=1

∥∥ yk
∥∥−2 ∥∥W

(
U yk

)− yk
∥∥2 ,
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which tries to ensure that W ◦ U is the identity, and finally solve

argmin
S

N∑

k=1

‖xk‖−2
∥∥W (S (U (xk))) − yk

∥∥2 .

AE3. Perform a normal form transformation on S by seeking the simplest Sn that
satisfies Wn ◦ Sn = S ◦ Wn . This is similar to step F4, except that the normal
form is in the style of the invariance equation of a manifold (3).

AE4. Same as step F6, but applied to nonlinear map Sn and decoder W ◦ Wn .

5 Examples

We are considering three examples. The first is a caricature model to illustrate all
the techniques discussed in this paper and why certain techniques fail. The second
example is a series of synthetic data sets with higher dimensionality, to illustrate the
methods in more detail using a polynomial representations of the encoder with HT
tensor coefficients (see “Appendix A.3”). This example also illustrates two different
methods to reconstruct the state space of the system from a scalar measurement. The
final example is a physical experiment of a jointed beam, where only a scalar signal
is recorded and we need to reconstruct the state space with our previously tested
technique.

5.1 A Caricature Model

To illustrate the performance of autoencoders, invariant foliations and locally defined
invariant foliations, we construct a simple two-dimensional map F with a node-type
fixed point using the expression

F (x) = V
(
AV−1 (x)

)
, (36)

where

A =
( 9

10 0
0 4

5

)
,

the near-identity coordinate transformation is

V (x) =
(
x1 + 1

4

(
x31 − 3 (x1 − 1) x2x1 + 2x32 + (5x1 − 2) x22

)

x2 + 1
4

(
2x32 + (2x1 − 1) x22 − x21 (x1 + 2)

)
)

,

and the state vector is defined as x = (x1, x2). In a neighbourhood of the origin,
transformation V has a unique inverse, which we calculate numerically. Map F is con-
structed such that we can immediately identify the smoothest (hence unique) invariant
manifolds corresponding to the two eigenvalues of DF (0) as
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M 9
10

= {V (z, 0) , z ∈ R} ,

M 4
5

= {V (0, z) , z ∈ R} .

We can also calculate the leaves of the two invariant foliations as

L 9
10 ,z = {V (z, z) , z ∈ R} , (37)

L 4
5 ,z = {V (z, z) , z ∈ R} . (38)

To test the methods, we created 500 times 30 points long trajectories with initial
conditions sampled fromauniformdistribution over the rectangle

[− 4
5 ,

4
5

]×[− 1
4 ,− 1

4

]

to fit our ROM to.
We first attempt to fit an autoencoder to the data. We assume that the encoder,

decoder and the nonlinear map S are

U (x1, x2) = x1, (39)

W (z) = (z, h (z))T , (40)

S (z) = λ (z) , (41)

where λ, h are polynomials of order-5. Our expressions already contain the invariant
subspace E = span (1, 0)T , which should make the fitting easier. Finally, we solve the
optimisation problem (8). The result of the fitting can be seen in Fig. 8a as depicted by
the red curve. The fitted curve is more dependent on the distribution of data than the
actual position of the invariant manifold, which is represented by the blue dashed line
in Fig. 8a. Various other expressions for U and W were also tried that do not assume
the direction of the invariant subspace E with similar results.

To calculate the invariant foliation in the horizontal direction, we assume that

U (x1, x2) = x1 + u (x1, x2)
S (z) = λz

}
, (42)

where u is an order-5 polynomial which lacks the constant and linear terms. The
exact expression of U is not a polynomial, because it is the second coordinate of the
inverse of function V . The fitting is carried out by solving the optimisation problem
(7). The result can be seen in Fig. 8b, where the red curves are contour plots of the
identified encoder U and the dashed blue lines are the leaves as defined by Eq. (37).
Figure8c is produced in the same way as Fig. 8b, except that the encoder is defined as
U (x1, x2) = x2 + h (x1, x2) and the blue lines are the leaves given by (38).

As we have discussed in Sect. 2.2, a locally defined encoder can also be constructed
from a decoder. In the expression of the encoder (15) we take

W0 (z) = h (z)

andU⊥ = (0, 1), where h is an order-9 polynomial without constant and linear terms.
The expressions for U and S were already found as (42), hence our approximate
encoder becomes
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Fig. 8 Identifying invariant objects in Eq. (36). The data contain 500 trajectories of length 30 with initial
conditions picked from a uniform distribution; a fitting an autoencoder (red continuous curve) does not
reproduce the invariant manifold (blue dashed curve), instead it follows the distribution of data; b invariant
foliation in the horizontal direction; c invariant foliation in the vertical direction; d an invariant manifold is
calculated as the leaf of a locally defined invariant foliation. The green line is the invariant manifold. Each

diagram represents the box
[
− 4

5 , 4
5

]
×
[
− 1

4 , − 1
4

]
; the axes labels are intentionally hidden (Color figure

online)

Û (x) = x2 − h (x1 + u (x1, x2)) .

We solve the optimisation problem (20) with κ = 0.13. We do not reconstruct the
decoder W , as it is straightforward to plot the level surfaces of Û directly. The result
can be seen in Fig. 8d, where the green line is the approximate invariant manifold (the
zero level surface of Û) and the red lines are other level surfaces of Û .

In conclusion, this simple example shows that only invariant foliations can be fitted
to data and autoencoders give spurious results.

5.2 A Ten-Dimensional System

To create a numerically challenging example, we construct a ten-dimensional dif-
ferential equation from five decoupled second-order nonlinear oscillators using two
successive coordinate transformations. The system of decoupled oscillators is denoted
by ẋ = f 0 (x), where the state variable is in the form of

x = (r1, . . . , r5, θ1, . . . , θ5)
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and the dynamics is given by

ṙ1 = − 1
500r1 + 1

100r
3
1 − 1

10r
5
1 , θ̇1 = 1 + 1

4r
2
1 − 3

10r
4
1 ,

ṙ2 = − e
500r2 − 1

10r
5
2 , θ̇2 = e + 3

20r
2
2 − 1

5r
4
2 ,

ṙ3 = − 1
50

√
3
10r3 + 1

100r
3
3 − 1

10r
5
3 , θ̇3 = √

30 + 9
50r

2
3 − 19

100r
4
3 ,

ṙ4 = − 1
500π

2r4 + 1
100r

3
4 − 1

10r
5
4 , θ̇4 = π2 + 4

25r
2
4 − 17

100r
4
4 ,

ṙ5 = − 13
500r5 + 1

100r
3
5 , θ̇5 = 13 + 4

25r
2
5 − 9

50r
4
5 .

(43)

The first transformation brings the polar form of Eq. (43) into Cartesian coordinates
using the transformation y = g (x), which is defined by y2k−1 = rk cos θk and y2k =
rk sin θk . Finally, we couple all variables using the second nonlinear transformation
y = h (z), which reads

y1 = z1 + z3 − 1
12 z3z5, y2 = z2 − z3,

y3 = z3 + z5 − 1
12 z5z7, y4 = z4 − z5,

y5 = z5 + z7 + 1
12 z7z9, y6 = z6 − z7,

y7 = z7 + z9 − 1
12 z1z9, y8 = z8 − z9,

y9 = z9 + z1 − 1
12 z3z1, y10 = z10 − z1,

(44)

and where y = (y1, . . . , y10) and z = (z1, . . . , z10). The two transformations give us
the differential equation ż = f (z), where

f (z) =
[
Dg−1 (h (z)) Dh (z)

]−1
f 0
(
g−1 (h (z))

)
. (45)

The natural frequencies of our system at the origin are

ω1 = 1, ω2 = e, ω3 = √
30, ω4 = π2, ω5 = 13

and the damping ratios are the same ζ1 = · · · = ζ5 = 1/500.
We select the first natural frequency to test various methods. We also test the meth-

ods on three types of data. Firstly, full state space information is used, secondly the
state space is reconstructed from the signal ξk = 1

10

∑10
j=1 zk, j using principal com-

ponent analysis (PCA) as described in “Appendix B.1” with 16 PCA components,
and finally the state space is reconstructed from ξk using a discrete Fourier trans-
form (DFT) as described in “Appendix B.2”. When data are recorded in state space
form, 1000 trajectories 16 points long each with time step �T = 0.1 were created
by numerically solving (45). Initial conditions were sampled from unit balls of radius
0.8, 1.0, 1.2 and 1.4 about the origin. The Euclidean norm of the initial conditions
was uniformly distributed. The four data sets are labelled ST-1, ST-2, ST-3, ST-4 in
the diagrams. For state space reconstruction, 100 trajectories, 3000 points each, with
time step �T = 0.01 were created by numerically solving (45). The initial conditions
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Fig. 9 Instantaneous frequencies and damping ratios of differential Eq. (45) using invariant foliations.
The first column shows the data density with respect to the amplitude A (r), the second column is the
instantaneous frequency and the third column is the instantaneous damping. The first row corresponds to
state space data, the second row shows PCA reconstructed data, and the third row is DFT reconstructed
data. The data density is controlled by sampling initial conditions from different sized neighbourhoods of
the origin

for these data were similarly sampled from unit balls of radius 0.8, 1.0, 1.2 and 1.4
about the origin, such that the Euclidean norm of the initial conditions are uniformly
distributed. The PCA reconstructed data are labelled PCA-1, PCA-2, PCA-3, PCA-4,
and the DFT reconstructed data are labelled DFT-1, DFT-2, DFT-3, DFT-4.

The amplitude for each ROM is calculated as A (r) =
√

1
2π

∫
(w� · W (r , θ))2 dθ ,

where w� = 1
10 (1, 1, . . . , 1) for the state-space data and w� is calculated in

“Appendices B.1, B.2” when state-space reconstruction is used. We can also attach
an amplitude to each data point xk through the encoder and the decoder. If the
ROM assumes the normal form (35), the radial parameter r is simply calculated as
rk = ‖U (xk)‖, hence the amplitude is A (rk).
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Fig. 10 Histograms of the fitting error (46) for the data sets ST-1, PCA-1 and DFT-1 as a function of
vibration amplitude. The distribution appears uniform with respect to the amplitude

Figure 9 shows the result of our calculation for the three types of data. In the first
column data density is displayed with respect to amplitude A (r) in the ROM. Lower
amplitudes have higher densities, because trajectories exponentially converge to the
origin. In Fig. 9 we also display the identified instantaneous frequencies and damping
ratios. The results are then compared to the analytically calculated frequencies and
damping ratios labelled by VF.

State space data give the closest match to the analytical reference (labelled as
VF). We find that the PCA method cannot embed the data in a 10-dimesional space,
only an 16-dimensional embedding is acceptable, but still inaccurate. Using a perfect
reproducingfilter bank (DFT) yields better results, probably because the original signal
can be fully reconstructed and we expect a correct state-space reconstruction at small
amplitudes. Indeed, the PCA results diverge at higher amplitudes, where the state
space reconstruction is no longer valid. The author has also tried non-optimal delay
embedding, with inferior results. None of the techniques had any problem with the
less the challenging Shaw-Pierre example (Shaw and Pierre 1994; Szalai 2020) (data
not shown).

Figure 10 shows the accuracy of the data fit as a function of the amplitude A (r).
The relative error displayed is defined by

Erel (x, y) = ‖S (U (x)) − U ( y)‖
‖U (x)‖ . (46)

It turns out that the error is roughly independent of the amplitude, except for data
set ST-1, which has lower errors at low amplitudes. The accuracy is the highest for
state space data, while the accuracy of the DFT reconstructed data is slightly worse
than for the PCA reconstructed data. In contrast, the comparison with the analytically
calculated result is worse for the PCA data than for the DFT data. The reason is that
PCA reconstruction cannot exactly reproduce the original signal from the identified
components while the DFT method can.

When restricting map S to be linear, we are identifying Koopman eigenfunctions.
Despite that linear dynamics is identified we should be able to reproduce the nonlin-
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Fig. 11 ROM by Koopman eigenfunctions. The same quantities are calculated as in Fig. 9, except that map
S is assumed to be linear. There is some variation in the frequencies and damping ratios with respect to
the amplitude due to the corrections in Sect. 3, but accurate values could not be recovered as the linear
approximation does not account for near internal resonances, as in formula (12)

Fig. 12 Data analysis by autoencoder. An autoencoder can recover system dynamics if all data are on the
invariant manifold. For the solid line MAN, data were artificially forced to be on an a-priori calculated
invariant manifold. However if the data are not on an invariant manifold, such as for data set ST-1, the
autoencoder calculation is meaningless. The dotted line VF-1 represents the analytic calculation for the
first natural frequency, and the dash-dotted VF-2 depicts the analytic calculation for the second natural
frequency of vector field (45)

earities as illustrated in Sect. 3. However, we also have near internal resonances as per
Eq. (12), which make certain terms of encoder U large, which are difficult to find by
optimisation. The result can be seen in Fig. 11. The identified frequencies and damp-
ing ratios show little variation with amplitude and mostly capture the average of the
reference values. Fitting the Koopman eigenfunction achieves maximum and average
values of Erel at 8.66% and 0.189% over data set ST-1, respectively. Better accuracy
could be achieved using higher rank HT tensor coefficients in the encoder, which
would significantly increase the number of model parameters. In contrast, fitting the
invariant foliation to the same data set yields maximum and the average values of Erel

at 2.21% and 0.0118%, respectively (also illustrated in Fig. 10a). This better accuracy
is achieved with a small number of extra parameters that make the two-dimensional
map S nonlinear.

Knowing that autoencoders are only useful if all the dynamics is on the manifold,
we have synthetically created data consisting of trajectories with initial conditions
from the invariant manifold of the first natural frequency. We used 800 trajectories, 24
points each with time-step �t = 0.2 starting on the manifold. Fitting an autoencoder
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to these data yields a good match in Fig. 12, the corresponding lines are labelled
MAN. Then we tried dataset ST-1, that matched the reference best when calculating
an invariant foliation. However, our data do not lie on a manifold and it is impossible
to make W ◦ U close to the identity on our data. In fact the result (blue dashed line)
is closer to the second mode of vibration (green dash-dotted curve), which seems to
be the dominant vibration of the system.

5.3 Jointed Beam

It is challenging to accuratelymodel mechanical friction; hence data-orientedmethods
can play a huge role in identifying dynamics affected by frictional forces. Therefore
we analyse the data published in Titurus et al. (2016). The experimental setup can be
seen in Fig. 13. The two halves of the beam were joined together with an M6 bolt. The
two interfaces of the beams were sandblasted to increase friction, and a polished steel
plate was placed between them; finally the bolt was tightened using four different
torques: minimal torque so that the beam does not collapse under its own weight
(denoted as 0 Nm), 1 Nm, 2.1 Nm and 3.1 Nm. The free vibration of the steel beam
was recorded using an accelerometer placed at the end of the beam. The vibration
was initiated using an impact hammer at the position of the accelerometer. Calibration
data for the accelerometer are not available. For each torque value a number of 20 s
long signals were recorded with sampling frequency of 2048 Hz. The impacts were
of different magnitude so that the amplitude dependency of the dynamics could be
tracked. In Titurus et al. (2016), a linear model was fitted to each signal and the first
five vibration frequencies and damping ratios were identified. These are represented
by various markers in Fig. 14. In order to make a connection between the peak impact
force and the instantaneous amplitude we also calculated the peak root mean square
(RMS) amplitude for signals with the largest impact force for each tightening torque
and found that the average conversion factor between the peak RMS amplitude and
the peak impact force was 443, which we used to divide the peak force and plot the
equivalent peak RMS in Fig. 14. We also band filtered each trajectory with a 511
point FIR filter with 3 dB points at 30 Hz and 75 Hz and estimated the instantaneous
frequency and damping ratios from two consecutive vibration cycles, which are then
drawn as thick semi-transparent lines in Fig. 14 for each trajectory. It is worth noting
that the more friction there is in the system, the less reproducible the frequencies and
damping ratios become when using short trajectory segments for estimation.

To calculate the invariant foliation we used a 10-dimensional DFT reconstructed
state space, to include all five captured frequencies, as described is “AppendixB.2”.We
chose κ = 0.2 in the optimisation problem (20) when finding the invariant manifold.
The result can be seen in Fig. 14. Since we do not have the ground truth for this
system, it is not possible to tell which method is more accurate, especially that our
naive alternative calculation (thick semi-transparent lines) displays a wide spread of
results.

The fitting error to the invariant foliation can be assessed from the histograms in
Fig. 15. The distribution of the error is very similar to the synthetic model, which is
nearly uniform with respect to the vibration amplitude. It is also clear that there is no
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Fig. 13 a Experimental setup. b Schematic of the jointed beam. The width of the beam (not shown) is
25mm. All measurements are in millimetres

Fig. 14 Instantaneous frequencies and damping ratios of the jointed beam set-up in Fig. 13. Solid red lines
correspond to the invariant foliation of the system with minimal tightening torque, blue dashed lines with
tightening torque of 2.1 Nm and green dotted lines with tightening torque of 3.1 Nm. The markers of the
same colour show results calculated in Titurus et al. (2016) using curve fitting. a Data density with respect
to amplitude A (r), b instantaneous frequency, c instantaneous damping ratio (Color figure online)

Fig. 15 Histograms of the fitting error (46) for all four tightening torques of the jointed beam. Note that the
errors look very similar despite that repeatability for lower tightening torques appears worse in Fig. 14

real difference in the fitting error for different tightening torques, which indicates that
frictional dynamics can be accurately characterised using invariant foliations.

As a final test, we also assess whether the measured signal is reproduced by the
invariant foliation (U, S) in Fig. 16. For this we apply the encoder U to our original
signal xk , k = 1, . . . , N and compare this signal to the one produced by the recursion
zk+1 = S (zk), where z1 = U (x1). The instantaneous amplitude error in both cases
of Fig. 16a, c was mostly due to high frequency oscillations that was not completely
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Fig. 16 Reconstruction error of the foliation. a,bReconstructing the first signal of the series of experimental
data with 0 Nm tightening torque. c, d Reconstructing the first signal of the series of experimental data with
3.1 Nm tightening torque. The compared values are calculated through the encoder z = U (xk ) and the
reconstructed values are from the iteration zk+1 = S (zk ). The amplitude error (‖z‖) is minimal; however,
over time phase error accumulates; hence direct comparison of a coordinate (z1) can look unfavourable

filtered out by the encoder U at the high amplitudes. The phase error seemed to
have only accumulated for the lowest tightening torque (0 Nm) in Fig. 16b. This is
to be expected over long trajectories, since the fitting procedure only minimises the
prediction error for a single time step. Unfortunately, accumulating phase error is
rarely shown in the literature, where only short trajectories are compared, in contrast
to the 28685 and 25149 time-steps that are displayed in Fig. 16b, d, respectively.

6 Discussion

The main conclusion of this study is that only invariant foliations are suitable for
ROM identification from off-line data. Using an invariant foliation avoids the need
to use resonance decay (Ehrhardt and Allen 2016), or waiting for the signal to settle
near the most attracting invariant manifold (Cenedese et al. 2022), thereby throwing
away valuable data. Using invariant foliations can make use of unstructured data with
arbitrary initial conditions, such as impact hammer tests. Invariant foliations produce
genuine ROMs and not only parametrise a-priori known invariant manifolds, like other
methods (Cenedese et al. 2022; Champion et al. 2019; Yair et al. 2017).We have shown
that the high-dimensional function required to represent an encoder can be represented
by polynomials with compressed tensor coefficients, which significantly reduces the
computational and memory costs. Compressed tensors are also amenable to further
analysis, such as singular value decomposition (Grasedyck 2010), which gives way
to mathematical interpretations of the decoder U . The low-dimensional map S is also
amenable to normal form transformations, which can be used to extract information
such as instantaneous frequencies and damping ratios.

We have tested the related concept of Koopman eigenfunctions, which differs from
an invariant foliation in that map S is assumed to be linear. If there are no internal res-
onances, Koopman eigenfunctions are theoretically equivalent to invariant foliations.
However in numerical settings unresolved near internal resonances become impor-
tant and therefore Koopman eigenfunctions become inadequate. We have also tried
to fit autoencoders to our data (Cenedese et al. 2022), but apart from the artificial
case where the invariant manifold was pre-computed, it performed even worse than
Koopman eigenfunctions.
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Fitting an invariant foliation to data is extremely robust when state space data
are available. However, when the state space needed to be reproduced from a scalar
signal, the results were not as accurate as we hoped for. While Takens’ theorem allows
for any generic delay coordinates, in practice a non-optimal choice can lead to poor
results. We were expecting that the embedding dimension at least for low-amplitude
signals would be the same as the attractor dimension. This is, however, not true if
the data also include higher amplitude points. Despite not being theoretically optimal,
we have found that perfect reproducing filter banks produce accurate results for low-
amplitude signals and at the same time provide a state-space reconstruction with the
same dimensionality as that of the attractor. Future work should include exploring
various state-space reconstruction techniques in combination with fitting an invariant
foliation to data.

We did not fully explore the idea of locally defined invariant foliations in remark 15,
which can lead to computationally efficient methods. Further research can also be
directed towards cases, where the data are on a high-dimensional submanifold of an
even higher-dimensional vector space X . This is where an autoencoder and invariant
foliation may be combined.
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A Implementation details

In this appendix we deal with how to represent invariant foliations, locally defined
invariant foliations and autoencoders. We also describe our specific techniques to
carry out optimisation on these representations.
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A.1 Dense Polynomial Representation

The nonlinear map S, the polynomial part of the locally defined invariant foliation
W0 and the decoder part an autoencoder are represented by dense polynomials, that
we define here.

A polynomial P : Z → X of order d is represented as a linear combination of
monomials formed from the coordinates of vectors of Z . First we define what we
mean by a monomial and how we order them. Given a basis in Z with ν = dim Z ,
we can represent each vector z ∈ Z by z = (z1, z2, . . . , zν). Then we define non-
negative integer vectors m = (m1, . . . ,mν) ∈ N

ν and finally define a monomial of z
by zm = zm1

1 zm2
2 · · · zmν

ν . We also need an ordered set of integer exponents, which is
denoted by

Mc,d = {
m ∈ N

ν : c ≤ m1 + · · · + mν ≤ d
}
.

The ordering of Mc,d is such that m < n if there exists k ≤ ν and m j < n j for
all j = 1, . . . , k. The cardinality of set Mc,d is denoted by # (ν, c, d). Therefore
we can also write that Mc,d = {

m1,m2, . . . ,m#(ν,c,d)

}
. Using the ordered notation

of monomials, a polynomial P containing terms at least order c up to order-d is
represented by a matrix P ∈ R

n×#(ν,c,d), such that

P (z) = P
(
zm1 , zm2 , · · · , zm#(ν,c,d)

)T
.

We also call such polynomials order-(c, d) polynomials. For optimisation purposes
order-(c, d) polynomials form an Euclidean manifold and therefore no constraint is
placed on matrix P .

A.2 Autoencoder Representation

Apolynomial autoencoder of order d (as defined inCenedese et al. 2022) is represented
by an orthogonal matrix U ∈ R

n×ν (UTU = I) and an order-(2, d) polynomial W ,
represented by matrix W ∈ R

n×#(ν,2,d). The associated encoder is given by U (x) =
UT x and the decoder is given by W (z) = Uz + W (z), which must satisfy the
additional constraint U (W (z)) = z, that in terms of our matrices means UTW = 0.
In summary, we have the constraints

UTU = I,

UTW = 0, (47)

which turns the admissible set of matrices U, W into a matrix manifold. We call this
manifold the orthogonal autoencoder manifold and denote it by OAEn,ν,#(ν,2,d). In
paper (Cenedese et al. 2022), the authors also consider the case when the decoder is
decoupled from the encoder. In this caseW (z) does not include the orthogonal matrix
U and thereforeW (z) is represented by matrixW ∈ R

n×#(ν,1,d), which also includes
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linear terms. The constraint on matrices U, W is therefore different

UTU = I,

UTW = M, (48)

where matrix M represents the identity polynomial with respect to the monomials
M1,d . We call the resulting matrix manifold the generalised orthogonal autoencoder
manifold and denote it byGOAEM,n,ν,#(ν,1,d). Unfortunately, this generalised autoen-
coder leads to an ill-defined optimisation problem. Indeed, if all the data are on an
invariant manifold (the only sensible case), then the directions encoded by U are not
defined by the data, because any transversal direction is equally suitable for projecting
the data. In our numerical testU quickly degenerated and led to spurious results. Nev-
ertheless, due to the similar formulation we treat both cases at the same time, because
OAEn,m,l is a particular case ofGOAEM,n,m,l with M being equal to zero. The details
of how projections and retractions are calculated for GOAEM,n,m,l are presented in
Sect. A.5.1.

A.3 Compressed Polynomial Representation with Hierarchical Tensor Coefficients

To represent encoders of invariant foliationswe need to approximate high-dimensional
functions.Dense polynomials are not suitable to represent high-dimensional functions,
because the number of required parameters increase combinatorially. One approach
is to use multi-layer neural networks (Elbrachter et al. 2021; Hornik 1991); however,
their training can be problematic (Orr and Müller 2003). Standard training methods
take a long time and they rarely reach the global minimum (and there is no free lunch
Wolpert and Macready 1997). In addition, the approximation can overfit the data, that
is the accuracy on unseen data can be significantly worse than on the training data. In
terms of the geometry of neural networks, they do not form a differentiable manifold
and therefore parameters may tend to infinity without minimising the loss function
(Petersen et al. 2021).

To represent encoders we still use polynomials, except that the polynomial coeffi-
cients are represented by compressed tensors in the hierarchical Tucker (HT) format.
This tensor format was introduced in Hackbusch and Kühn (2009) and demonstrated
to solve many problems (Grasedyck et al. 2013) that would normally wrestle with
the ’curse of dimensionality’ (Bellman 2015). In chemistry and physics a somewhat
different but related format, the matrix product state (Perez-Garcia et al. 2007) is fre-
quently used and in other problems a particular type of HT representation the tensor
train format (Oseledets 2011) is used. However, the most important property of HT
tensors is that they form a smooth quotient manifold and therefore suitable to use in
optimisation problems (Uschmajew and Vandereycken 2013).

To define the format, we partly follow the notation ofUschmajew andVandereycken
(2013) in our definitions. First, we need to define the dimension tree.

Definition 21 Given an order d, a dimension tree T is a non-trivial rooted binary tree
whose nodes can be labelled by subsets of {1, 2, . . . , d} such that

1. the root has the label tr = {1, 2, . . . , d}, and
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2. every node t ∈ T , which is not a leaf has two descendants, t1 and t2 that form an
ordered partition of t , that is,

t1 ∪ t2 = t and μ < ν for all μ ∈ t1, ν ∈ t2.

The set of leaf nodes is denoted by L = {{1} , {2} , . . . , {d}}.
Definition 22 Let T be a dimension tree and k = (kt )t∈T a set of positive integers.
The hierarchical Tucker format for R

n0×n1×···×nd is defined as follows

1. For a leaf node Ut is an orthonormal matrix, such that Ut ∈ R
kt×nt with elements

Ut (i; j), where i = 1 . . . kt , j = 1 . . . nt
2. For not a leaf node with t = t1 ∪ t2 we define

Ut
(
p; i1, . . . , i|t1|, j1, . . . , j|t2|

)

=
kt1∑

q=1

kt2∑

r=1

Bt (p, q, r)Ut1

(
q; i1, . . . , i|t1|

)
Ut2

(
r; j1, . . . , j|t2|

)
, (49)

where |t | stands for the number of indices in label t .

The definition is recursive, hence data storage forUt is only required for the leaf nodes,
and for non-leaf nodes only storing Bt is sufficient. In other words, the set of matrices

{Ut : t ∈ L} ∪ {Bt : t ∈ T \ L}

fully specifies a HT tensor. For each node, apart from the root node tr , one can apply
a transformation, which does not change the resulting tensor. That is, for t = tr define
Ũt = AtUt and B̃t = Bt ×2,3 A

−1
t1 ⊗ A−1

t2 , where At ∈ R
kt×kt are invertible matrices.

Without restricting generality, we can stipulate that the leaf nodesUt andmatricisation
of Bt with respect to the first index are also orthogonal matrices, which means that
transformations At must be unitary to preserve orthogonality. This identity transfor-
mation defines an equivalence relation between parametrisations of a HT tensor and
therefore the HT format is a quotient manifold as described in (Boumal, 2022, chapter
7). Using a quotient manifold would prevent us from optimising for the matrices Ut ,
Bt individually, as we need to treat the whole HT tensor as a single entity. In addi-
tion, we could not find any example in the literature, where a HT tensor was treated
as a quotient manifold. Instead, we simply assume a simpler structure, that is, Btr
is on a Euclidean manifold and the rest of the coefficients Bt and Ut are orthogonal
matrices and therefore elements of Stiefel manifolds, which is the running example in
Boumal (2022). This way we have the HT format as an element of a product manifold,
where each coefficient matrix remains independent of each other. It is also possible
to calculate singular values of HT tensors. Vanishing singular values indicate that the
required quantity is well-approximated and that the HT tensor can be simplified to
include less terms. This further adds to our ability to identify parsimonious models.
In what follows, we use balanced dimension trees and up to rank six matrices Ut , Bt

for simplicity.
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Using notation (49), we can write the encoders as

U (x) = U1x +
p∑

d=2

n∑

i1···id=1

Ud
tr (·; i1, . . . , id) xi1 · · · xid , (50)

where U1 is an orthogonal matrix, similarly element of a Stiefel manifold. We also
apply the constraint that U (W1z) must be linear. This simply means that for the
nonlinear terms of U the data must not include components in the W1 direction. This
can be achieved by projecting our data, that is x̂ = U⊥

1 x, where U⊥
1 is obtained in

step F2 of the invariant foliation identification process of Sect. 4 and consists of row
vectors that are orthogonal to the column vectors of W1. Therefore our constrained
encoder assumes the form of

U (x) = U1x +
p∑

d=2

n∑

i1···id=1

Ud
tr (·; i1, . . . , id) x̂i1 · · · x̂id .

A.4 Optimisation Techniques

Given our compressed representation of the encoder in the form (50), we can now
discuss how to solve the optimisation problem (7).

HT tensors,whichmake up the parametrisation of the encoderU , depend linearly on
eachmatrix Bd

t ,U
d
t individually. Therefore, it is beneficial to carry out the optimisation

for each matrix component individually, and cycle through all matrix components a
number of times until convergence is reached. This is called batch coordinate descent
(Ortega et al. 1970). The complicating factor in this approach is that the encoder also
appears as an inner function of map S and therefore the dependence of the objective
function becomes nonlinear on matrices Bt , Ut . For optimisation in each coordinate
we use the second order trust-region method (Conn et al. 2000) as we can explicitly
calculate the Hessian of the objective function with respect to each matrix Bd

t ,Ud
t

and the parameters of S. We only take a limited number of steps with the trust region
method, aswe cycle through all parametermatrices. The algorithm cycles through each
tensor and the parameters of S in a given order, but for each tensor of order d, only
the coefficient matrix for which the gradient of the objective function is the largest
is optimised for. This is a variant of the Gauss–Southwell algorithm (Nutini et al.
2015). We found that this technique, as it eliminates unnecessary optimisation steps
for parameters that do not influence the objective function much, converges relatively
fast. Attempts to use off-the-shelf optimisers were fruitless, due to computational
costs.

To identify locally defined foliationswe use theRiemannian trust regionmethod and
for identifying autoencoders, we use the Riemannian BFGS quasi-Newton technique
from software package (Bergmann 2022).
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A.5 Projections and Retractions onMatrix Manifolds

As we perform optimisation on matrix manifolds, we also require an orthogonal pro-
jection from the ambient space to the tangent space to the manifold and a retraction
(Absil et al. 2009; Boumal 2022). The advantage of optimising on a manifold instead
of using standard constrained optimisation is that retractions and projections are gen-
erally easier to evaluate than solving the constraints using generic methods.

Let us assume that our matrix manifold M is embedded into the Euclidean space
E . As computers deal with lists of numbers, we only have a cost function defined on E ,
which we denote by F : E → R, instead on the manifold F : M → R. Carrying out
optimisation on M therefore requires various corrections when we use cost function
F . The gradient ∇F onM is a map fromM to the tangent bundle TM. Generally F
does not map into TM, therefore a projection is necessary. In particular, for a specific
point p ∈ M, the projection is the linear map P p : TpE → TpM and the gradient is
calculated as

∇F ( p) = P p∇F ( p) .

Asimple gradient descentmethodwouldmove in the direction of the gradient, however
that is not necessarily on manifoldM, so we need to bring the result back toM using
a retraction. A retraction is a map R p (X) : TM → M for which DR p (0)Y = Y .
A retraction is supposed to approximate the so-called exponential map on the tangent
space, which produces the geodesics along the manifold in the direction of the tangent
vector X up to the length of X . A second-order approximation of the exponential
retraction is the solution of the minimisation problem

R p (X) = arg min
q∈M

‖ p + X − q‖2 . (51)

Projection like retractions are explained in detail in Absil and Malick (2012). Using
a retraction we can pull back our result onto the manifold. The Hessian of F can
be defined in terms of a second order retraction R. If we assume that F̃ ( p, X) =
F
(
R p

(
P pX

))
, then the Hessian is

D2F ( p) = D2
2 F̃ ( p, 0) .

The expression of the Hessian can be simplified in many ways, which is described,
e.g. in Boumal (2022).

In what follows we detail two matrix manifolds that do not appear in the literature
and are specific to our problems. We also use the Stiefel manifold of orthogonal
matrices that is covered in many publications (Boumal 2022). In particular, we use
the so-called polar retraction of the Stiefel manifold, which is equivalent to Eq. (51).
For our specific matrix manifolds we solve (51).
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A.5.1 Autoencoder Manifold

The two matrices p1 = U ∈ R
n×m , p2 = W ∈ R

n×l that satisfy the constraints (47)
represent an orthogonal autoencoder form the matrix manifold M = GOAEM,n,m,l ,
which is defined by the zero-level set of submersion

h
(
p1, p2

) =
(

pT1 p1 − I
pT1 p2 − M

)
.

For M to be a manifold the derivative Dh must have full rank. Indeed, we calculate
that

Dh
(
p1, p2

)
(X1, X2) =

(
XT
1 p1 + pT1 X1

XT
1 p2 + pT1 X2

)
,

and substitute X1 = p1A, X2 = p1B, which yields

Dh
(
p1, p2

)
(X1, X2) =

(
AT + A

B

)
.

Since A and B are arbitrary matrices, the range of Dh is the full set of symmetric and
general matrices, that is, Dh has full rank; hence M is an embedded manifold.
Tangent space. The tangent space T( p1, p2)M is defined as the null space of Dh ( p),
that is

T( p1, p2)M = {
X ∈ R

n×m : Dh
(
p1, p2

)
(X1, X2) = (0, 0)

}
.

We define p⊥ ∈ R
n×(n−m) by p⊥T p⊥ = I and pT p⊥ = 0, hence the direct sum

of ranges of p and p⊥ span R
n . To characterise the tangent space we decompose

X1 = p1A1 + p⊥
1 B1, X2 = p1A2 + p⊥

1 B2, and find that

Dh
(
p1, p2

)
(X1, X2) =

(
AT
1 + A1

BT
1 p⊥T

1 p2 + A2

)
. (52)

For (53) to equal zero, A1 must be antisymmetric, B1, B2 can be arbitrary and A2 =
−BT

1 p⊥T
1 p2.

Normal space. We use X1 = p1A1 + p⊥
1 B1, X2 = − p1B

T
1 p⊥T

1 p2 + p⊥
1 B2 to

represent an element of the tangent space and Y1 = p1K 1 + p⊥
1 L1, Y2 = p1K 2 +

p⊥
1 L2 to represent an arbitrary element of the ambient space. For (Y1,Y2) to be a

normal vector in N( p1, p2)M equation

〈X1,Y1〉 + 〈X2,Y2〉 = 0 (53)
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must hold for all B1, B2 and A1 antisymmetric matrices. Therefore we expand (53)
into

〈A1, K 1〉 + 〈B1, L1〉 −
〈
BT
1 p⊥T

1 p2, K 2

〉
+ 〈B2, L2〉 = 0. (54)

To explore what parameters are allowed, we consider (54) term-by-term. If we set
B1 = 0, B2 = 0, then what remains is 〈A1, K 1〉 = 0 for all A1 anti-symmetric.
This constraint holds if and only if K 1 is symmetric. Now we set A1 = 0, B1 = 0,
which leads to 〈B2, L2〉 = 0 for all B2, hence we must have L2 = 0. Finally we set
A1 = 0, B2 = 0, which gives us

〈B1, L1〉 −
〈
BT
1 p⊥T

1 p2, K 2

〉
= 0,

〈B1, L1〉 −
〈
p2, p

⊥
1 B1K 2

〉
= 0

or in index notation

B1i j L1i j − p2 j i p
⊥
1 jk B1kl K2li = 0. (55)

Now we differentiate (55) with respect to B1, which gives

L1rs − p2 j i p
⊥
1 jr K2si = 0 �⇒ L1 = p⊥T

1 p2K
T
2 .

In conclusion the normal space is given by matrices of the form

Y1 = p1K 1 + p⊥
1 p⊥T

1 p2K
T
2 ,

Y2 = p1K 2, (56)

where K 1 symmetric and K 2 is a general matrix.
Projection to tangent space. A projection is an operation that removes a vector
from the normal space from any input such that the result becomes a tangent vector.
Therefore we need to solve equation

Dh
(
p1, p2

) (X1 − Y1
X2 − Y2

)
=
(
0
0

)
,

where (Y1,Y2) is in the normal space N( p1, p2)M. Using the representation (56) of
the normal space, we find that the equation to solve is

Dh
(
p1, p2

) (X1 − p1K 1 − p⊥
1 p⊥T

1 p2K
T
2

X2 − p1K 2

)
=
(
0
0

)
.
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It remains to evaluate Dh, which yields

Dh
(
p1, p2

) (X1 − p1K 1 − p⊥
1 p⊥T

1 p2K
T
2

X2 − p1K 2

)

=
(

XT
1 p1 + pT1 X1 − K T

1 − K 1

XT
1 p2 + pT1 X2 − K 2

(
pT2 p⊥

1 p⊥T
1 p2 + I

)
)

=
(
0
0

)
. (57)

The solution of Eq. (57) is

K 1 = 1

2

(
XT
1 p1 + pT1 X1

)

K 2 =
(
X1 p2 + pT1 X2

) (
I + pT2 p⊥

1 p⊥T
1 p2

)−1

and therefore the required projection is written as

P( p1, p2)

(
X1

X2

)

=
(
X1 − 1

2 p1
(
XT
1 p1 + pT1 X1

)− p⊥
1 p⊥T

1 p2
(
I + pT2 p⊥

1 p⊥T
1 p2

)−1 (
pT2 X

T
1 + XT

2 p1
)

X2 − p1
(
X1 p2 + pT1 X2

) (
I + pT2 p⊥

1 p⊥T
1 p2

)−1

)

.

Projective retraction. The retraction we calculate is the orthogonal projection onto
the manifold (51). This is a second order retraction according to Absil and Malick
(2012). In our case, the projection is defined as

PM
(
q1, q2

) = arg min
( p1, p2)∈M

1

2

∥∥q1 − p1
∥∥2 + 1

2

∥∥q2 − p2
∥∥2 ,

where we can assume that m < l and m < n. Using constrained optimisation we
define the auxiliary objective function

g
(
p1, p1,α,β

)= 1

2

∥∥q1 − p1
∥∥2 +

〈
α, pT1 p1 − I

〉
+ 1

2

∥∥q2− p2
∥∥2 +

〈
β, pT1 p2 − M

〉
,

where α ∈ R
m×m , β ∈ R

m×l are Lagrange multipliers. We can also write the aug-
mented cost function in index notation, that is

g
(
p1, p1,α,β

) = 1

2
q1i j q1i j − q1i j p1i j + 1

2
p1i j p1i j + α j i p1k j p1ki − αi i

+ 1

2
q2i j q2i j − q2i j p2i j + 1

2
p2i j p2i j + β j i p1k j p2ki − β j i M ji .
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To find the stationary point of g, we take the derivatives

D1g
(
p1, p2,α,β

) = −q1rs + p1rs + α js p1r j + αsi p1ri + βsi p2ri

= −q1 + p1 + p1α + p1α
T + p2β

T ,

D2g
(
p1, p2,α,β

) = −q2rs + p2rs + β js p1r j = −q2 + p2 + p1β,

which must vanish. Let us define σ = I + α + αT ; hence the equations to solve
become

p1σ + p2β
T = q1,

p2 + p1β = q2,

pT1 p1 = I,

pT1 p2 = M.

We can eliminate unknown variables σ , β and p2 by solving the equations, that is

β = pT1 q2 − M,

σ = pT1 q1 − MqT2 p1 + MMT ,

p2 = q2 − p1
(
pT1 q2 − M

)
.

The equation for the remaining p1 then becomes

(
p1 p

T
1 − I

) (
q1 − q2q

T
2 p1 + q2M

T
)

= 0. (58)

Equation (58) means that q1 + q2M
T − q2q

T
2 p1 ∈ range p1, therefore there exists

matrix a such that

p1a = q1 + q2M
T − q2q

T
2 p1

pT1 p1 = I . (59)

The solution of Eq. (59) is not unique, because for any unitary transformation T , p1 �→
p1T and a �→ T T a are also a solution. We use Newton’s method in combination with
the Moore–Penrose inverse of the Jacobian to find a solution of (59). Finally, the
retraction is set to the solution of (59)

R( p̃1, p̃2)

(
X1
X2

)
= (

p1, p2
)
,

where q1 = p̃1 + X1, q2 = p̃2 + X2.
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B State-Space Reconstruction

When the full state of the system cannot be measured, but it is still observable from the
output, we need to employ state-space reconstruction. We focus on the case of a real
valued scalar signal z j ∈ R, j = 1 . . . , M , sampled with frequency fs , where j stands
for time. Takens’ embedding theorem (Takens 1981) states that if we know the box
counting dimension of our attractor, which is denoted by n, the full state can almost
always be observed if we create a new vector x p = (

z p, z p+τ1 , . . . , z p+τd−1

) ∈ R
d ,

where d > 2n and τ1, . . . , τd−1 are integer delays. The required number of delays
is a conservative estimate, in many cases n ≤ d < 2n + 1 is sufficient. The general
problem, how to select the number of delays d and the delays τ1, . . . , τd−1 optimally
(Kramer 1991; Pecora et al. 2007), is a much researched subject.

Instead of selecting delays τ1, . . . , τd−1, we use linear combinations of all possible
delay embeddings, which allows us to consider the optimality of the embedding in a
linear parameter space. We create vectors of length L ,

up = (
z ps+1, · · · , z ps+L

) ∈ R
L , p = 0, 1, . . . ,

⌊
M − L

s

⌋
,

where s is the number of samples by which the window is shifted forward in time
with increasing p. Our reconstructed state variable x p ∈ R

d
� X is then calculated

by a linear map T : R
L → R

d , in the form x p = Tup such that our scalar signal is
returned by z ps+� ≈ v · x p for some � ∈ {1, . . . , L}. We assume that the signal has
m dominant frequencies fk , k = 1, . . . ,m, with f1 being the lowest frequency. We

define w =
⌊

fs
f1

⌋
as an approximate period of the signal, where fs is the sampling

frequency and set L = 2w + 1. This makes each up capture roughly two periods of
oscillations of the lowest frequency f1.

In what follows we use two approaches to construct the linear map T .

B.1 Principal Component Analysis

In Broomhead and King (1986) it is suggested to use Principal Component Analysis
to find an optimal delay embedding. Let us construct the matrix

V =
(
u1 u2 · · · u⌊ M−L

s

⌋)
,

where up are the columns of V . Then calculate the singular value decomposition (or
equivalently Jordan decomposition) of the symmetric matrix in the form

VV T = H�HT ,

where H is a unitary matrix and � is diagonal. Now let us take the columns of H
corresponding to the d largest elements of �, and these columns then become the d
rows of T . In this case, we can only achieve an approximate reconstruction of the

123



Journal of Nonlinear Science (2023) 33 :75 Page 43 of 49 75

signal by defining

v = (
T1� T2� · · · Td�

)
,

where Tk� is the element of matrix T in the k-th row and �-th column. The dot product
z ps+� ≈ v · x p approximately reproduces our signal. The quality of the approximation
depends on how small the discarded singular values in � are.

B.2 Perfect Reproducing Filter Bank

We can also use discrete Fourier transform (DFT) to create state-space vectors and
reconstruct the original signal exactly. Such transformations are called perfect repro-
ducing filter banks (Strang and Nguyen 1996). The DFT of vector up is calculated by
ûp = Kup, where matrix K is defined by its elements

K1,q =
√
2

2
,

K2p,q = cos

(
2π p

q − 1

2w + 1

)
,

K2p+1,q = sin

(
2π p

q − 1

2w + 1

)
,

where p = 1, . . . , w and q = 1, . . . , 2w + 1. Note that K T K = I 2w+1
2 , hence the

inverse transform is K−1 = 2
2w+1 K

T . Let us denote the �-th column of K by c�,
which creates a delay filter

2

2w + 1
cT� Kup = z ps+�,

that delays the signal by � samples. Separating c� into components, such that

c� = v1 + v2 + · · · + vd , (60)

we can create a perfect reproducing filter bank, that is the vector

x̂ p = 2

2w + 1

⎛

⎜⎜⎜
⎝

vT1 Kup

vT2 Kup
...

vT2mKup

⎞

⎟⎟⎟
⎠

when summed over its components, the input z ps+� is recovered. The question is how
to create an optimal decomposition (60). Aswe assumed that our signal hasm frequen-
cies, we can further assume that we are dealing with m coupled nonlinear oscillators,
and therefore we can set d = 2m. We therefore divide the resolved frequencies of the
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DFT, which are f̃k = k fs
2w+1 , k = 0, . . . , w into m bins, which are centred around the

frequencies of the signal f1, . . . , fm . We set the boundaries of these bins as

b0 = 0, b1 = f1 + f2
2

, b2 = f2 + f3
2

, · · · , bm−1 = fm−1 + fm
2

, bm = w fs
2w + 1

and for each bin labelled by k, we create an index set

Ik =
{
l ∈ 1, . . . , w : bk−1 < f̃l ≤ bk

}
,

which ensures that all DFT frequencies are taken into account without overlap, that is
∪kIk = {0, 1, . . . , w} and Ip ∩ Iq = ∅ for p = q. This creates a decomposition (60)
in the form of

v2k−1,2 j =
{
c�,2 j if j ∈ Ik
0 if j /∈ Ik

, v2k,2 j+1 =
{
c�,2 j+1 if j ∈ Ik
0 if j /∈ Ik

with the exception of v1, for which we also set v1,1 = c�,1 to take into account the
moving average of the signal and to make sure that

∑
vk = c�. Here vk,l stands for

the l-th element of vector vk . Finally, we define the transformation matrix

H = 2

2w + 1

⎛

⎜
⎝

‖v1‖−1 vT1
...

‖v2m‖−1 vT2m

⎞

⎟
⎠ ,

where each row is normalised such that our separated signals have the same amplitude.
The newly created signal is then

x p = Tup,

where T = HK and the original signal can be reproduced as

z ps+� = (‖v1‖ · · · ‖v2m‖) x p.

C Proof of Proposition 16

Proof of proposition 16 Firstwe explorewhat happens ifwe introduce a newparametri-
sation of the decoder W that replaces r by ρ (r) and θ by θ + γ (ρ (r)), where
ρ : R

+ → R
+ is an invertible function with ρ (0) = 0 and γ : R

+ → R with
γ (0) = 0. This transformation creates a new decoder W̃ of M in the form of

W̃ (r , θ) = W (ρ (r) , θ + γ (ρ (r))) , (61)

W̃
(
ρ−1 (r) , θ − γ (r)

)
= W (r , θ) . (62)
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Equation (61) is not the only re-parametrisation, but this is the only one that pre-
serves the structure of the polar invariance Eq. (21). After substituting the transformed
decoder, invariance Eq. (21) becomes

W̃
(
R̃ (r) , θ + T̃ (r)

)
= F

(
W̃ (r , θ)

)
,

where

R̃ (r) = ρ−1 (R (ρ (r))) ,

T̃ (r) = T (ρ (r)) + γ (ρ (r)) − γ (R (ρ (r))) .

In the new coordinates, the instantaneous frequency ω (r) and damping ratio ζ (r)
become

ω (r) = T (ρ (r)) + γ (ρ (r)) − γ (R (ρ (r)))
[
rad/step

]
, (63)

ζ (r) = − log
[
r−1ρ−1 (R (ρ (r)))

]

ω (r)
[−] . (64)

Before we go further, let us introduce the notation

〈x, y〉 = 1

2π

∫ 2π

0
〈x (θ) , x (θ)〉X dθ,

where x, y : [0, 2π ] → X and 〈·, ·〉X is the inner product on vector space X . The
norm of function x is then defined by ‖x‖ = √〈x, x〉.

We now turn to the phase constraint given by Eq. (26). We choose a fixed ε > 0,
substitute r1 = ρ (r + ε), r2 = ρ (r) and the phase shift γ = γ (ρ (r + ε))−γ (ρ (r))
into Eq. (26) and find the objective function

J (γ (ρ (r+ε)))=ε−1 ‖W (ρ (r+ε) , ·+γ (ρ (r + ε)))−W (ρ (r) , · + γ (ρ (r)))‖2 ,

where we also divided by ε. We then need to find the value of γ (ρ (r + ε)) that
minimises J for a fixed ε. A necessary condition for a local minimum of J is that the
derivative J ′ = 0, that is,

ε−1 〈W (ρ (r + ε) , · + γ (ρ (r + ε))) − W (ρ (r) , · + γ (ρ (r))) ,

D2W (ρ (r + ε) , · + γ (ρ (r + ε)))〉 = 0.

To find a continuous parametrisation, let us now take the limit ε → 0 to get

ρ̇ (r) 〈D1W (ρ (r) , · + γ (ρ (r))) + D2W (ρ (r) , · + γ (ρ (r))) γ̇ (ρ (r)) ,

D2W (ρ (r) , · + γ (ρ (r)))〉 = 0.
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We can also remove the constant phase shift and use t = ρ (r) to find the phase
condition

〈D1W (t, ·) + D2W (t, ·) γ̇ (t) , D2W (t, ·)〉 = 0. (65)

Integrating Eq. (65) leads to the phase shift

γ (t) = −
∫ t

0

〈D1W (r , ·) , D2W (r , ·)〉
〈D2W (r , ·) , D2W (r , ·)〉dr (66)

Note that phase conditions are commonly used in numerical continuation of periodic
orbits (Beyn and Thümmler 2007), for slightly different reasons.

The next quantity to fix is the amplitude constraint given by Eq. (25). In the new
parametrisation, Eq. (25) can be written as

‖W (ρ (r) , ·)‖2 = r2. (67)

If we define κ (r) = ‖W (r , ·)‖, then we have

ρ (r) = κ−1 (r) . (68)

Finally, substituting (66), (68) into Eqs. (63), (64) completes the proof. ��
Proof of remark 18 In case of a vector field f : X → X , and invariance equation

D1W (r , θ) R (r) + D2W (r , θ) T (r) = f (W (r , θ)) ,

the instantaneous frequency and damping ratios with respect to the coordinate system
defined by the decoder W , are

ω (r) = T (r) ,

ζ (r) = − R(r)
rω(r) ,

}

(69)

respectively. However the coordinate system defined by W is nonlinear, which needs
correcting. As in the proof of proposition 16, we assume a coordinate transformation

W̃ (r , θ) = W (ρ (r) , θ + γ (ρ (r))) , (70)

and find that invariance Eq. (32) becomes

D1W̃ (r , θ) R̃ (r) + D2W̃ (r , θ) T̃ (r) = f
(
W̃ (r , θ)

)
. (71)

When substituting (70) into (71) we find

D1W̃ (r , θ) κ̇ (ρ (r)) R (ρ (r)) + D2W̃ (r , θ) (T (ρ (r)) − γ̇ (ρ (r)) R (ρ (r))) =
= f

(
W̃ (r , θ)

)
. (72)
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Comparing (72) and (32) we extract that

R̃ (r) = κ̇ (ρ (r)) R (ρ (r))
T̃ (r) = T (ρ (r)) − γ̇ (ρ (r)) R (ρ (r))

}
. (73)

Recognising that t = ρ (r) = κ−1 (r) and replacing T with T̃ , R with R̃ in formulae
(69) proves remark 18. ��
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