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Abstract
In this article, we study scaling laws for simplified multi-well nucleation problems
without gauge invariances which are motivated by models for shape-memory alloys.
Seeking to explore the role of the order of lamination on the energy scaling for nucle-
ation processes, we provide scaling laws for various model problems in two and three
dimensions. In particular, we discuss (optimal) scaling results in the volume and the
singular perturbation parameter for settings in which the surrounding parent phase is
in the first-, the second- and the third-order lamination convex hull of the wells of the
nucleating phase. Furthermore, we provide a corresponding result for the setting of
an infinite order laminate which arises in the context of the Tartar square. In particu-
lar, our results provide isoperimetric estimates in situations in which strong nonlocal
anisotropies are present.

Keywords Isoperimetric inequality · Anisotropy · Nucleation · Shape-memory alloys

Mathematics Subject Classification 74N05 · 74N15 · 49N99

1 Introduction

Motivated by nucleation problems in shape-memory alloys, in this article, we study
scaling laws for simplified, highly non-convex multi-well model problems with a
prescribed volume constraint andwith surface energy regularizations. Adopting a vari-
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ational point of view and considering these results in the context of phase-transforming
systems, we interpret these scaling laws as nucleation barriers for the nucleation of
one phase within a matrix of the other phase. Typical systems which we have in
mind are, for instance, the description of martensitic inclusions within an austenite
matrix in the context of phase-transformations in shape-memory-alloys (Bhattacharya
and Kohn 1997; Müller 1999). Closely related models also arise in micromagnetism
and ferrofluidic droplets (Knüpfer and Nolte 2018; Knüpfer and Stantejsky 2022).
Mathematically these nucleation problems correspond to isoperimetric problems in
which there is a competition between a perimeter contribution and strong nonlocal
anisotropies which are determined by the multi-well energies. In this article, our main
objective is to contribute to an improved understanding of the complexity of possible
microstructures as a consequence of the interplay between non-convexity, nonlocal
anisotropy and the higher-order regularization term. In particular, we seek to identify
model settings in which a relatively simple quantity, the order of lamination of the par-
ent phase with respect to the nucleating phase, determines the “degree of complexity”
of the scaling law for the resulting microstructure.

1.1 TheModels and the General Setting

Let us describe the models which we are considering in the following sections in more
detail: We study an inclusion of a phase with several variants—in the shape-memory
context this would correspond to the “martensite” phase—inside a parent phase, the
“austenite” phase. FollowingBall (1989), Ball and James (1992)we adopt a variational
perspective and consider elastic energies of the form

Eel(u) =
∫
Rn

dist2(∇u, K0)dx, K0 = K ∪ {0} ⊂ R
n×n (1)

with n ≥ 2 and u ∈ H1(Rn;Rn). Here, physically, u : R
n → R

n models the
deformation of the material and the set K0 corresponds to the stress-free states at the
critical temperature. We use 0 ∈ R

n×n to denote the zero matrix, which models the
austenite phase. The set K ⊂ R

n×n represents the variants of martensite. Seeking to
provide optimal scaling laws, we simplify the problem and do not include the typical
gauge invariances (e.g. invariances with respect to the action of the groups SO(n)

or Skew(n)) arising from the physical requirement of frame-indifference, but study
quantitative and discrete versions of m-well problems as proposed in Ball and James
(1989). Here, a main objective is the investigation of the role of the order of lamination
of the parent phase with respect to the nucleating phase. More precisely, given a set
K ⊂ R

n×n with 0 ∈ K (m) \ K (m−1) for some m ≥ 1,m ∈ N, we seek to explore the
influence of the parameterm, describing the lamination order of the parent phase with
respect to the nucleating phase, on the complexity of the underlying microstructure in
terms of a precise scaling law (c.f. Definition 2.1 for the definition of the lamination
convex hulls K (m) of a set K and for the notion of a laminate of a certain prescribed
order). To this end, we focus on sets K ⊂ R

n×n of diagonal matrices. Moreover, we
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concentrate on situations in which a suitable lamination or rank-one convex hull of K
contains the zero matrix.

Following Bhattacharya and Kohn (1997), Capella and Otto (2009), Capella and
Otto (2012), we express the elastic energies with the help of phase indicators which
allows to decouple the gradient and the phase indicator (i.e. the projection of ∇u onto
K0). This leads to elastic energies of the following form

Eel(χ) := inf
u∈H1(Rn;Rn)

Eel(u, χ), where Eel(u, χ) :=
∫
Rn

|∇u − χ |2dx (2)

with χ ∈ BV (Rn; K0), χ = diag(χ1,1, . . . , χn,n) and | · | denoting the Frobenius
norm.

Seeking to study the nucleation behaviour of a minority phase in a majority phase
and to also include surface energies into the model, we further introduce the length
scale ε > 0 by adding to the elastic energy Eel a singular higher-order term of the
type

Esurf(χ) := |Dχ |(Rn),

where |Dχ |(Rn) denotes the total variation semi-norm of χ .
This leads to a singular perturbation problem consisting of a combination of elastic

and surface energies

Eε(u, χ) := Eel(u, χ) + εEsurf(χ) and Eε(χ) := Eel(χ) + εEsurf(χ). (3)

In this setting, it is our main objective to investigate the scaling behaviour of the
minimal energy depending on the volume of the inclusion, thus providing matching
upper and lower scaling bounds for the quantity

Eε(V ) := inf
{
Eε(χ) : |supp(χ)| = V

}
. (4)

A key emphasis here will be on the role of the order of lamination of the parent
phase with respect to the nucleating phase which we aim to investigate in two and
three dimensions for model problems.

1.2 TheMain Results

We study the scaling behaviour of the described isoperimetric problems depending
on the order of lamination of the parent phase with respect to the minority phase. In
what follows, we thus consider four model problems and determine the corresponding
scaling laws for the nucleation of a martensitic nucleus in the austenite parent phase
in the respective settings. Further possible generalizations and the role of the outlined
model problems are discussed subsequently in Sect. 1.3.
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1.2.1 Laminates of First Order

As the most basic example, we begin by studying the situation in which the parent
phase is rank-one connected with the nucleating phase. Here we focus on two settings:
In the first case, K0 consists only of two matrices (the martensite and the austenite),
while in the second case it is given by threematrices—two variants of martensite in the
inclusion and one in the parent phase. In what follows we will refer to these settings as
the “1+1-well” and the “2+1-well” case (and more generally the “m+1-well” case for
m ∈ N in later parts of the article), the first slot indicating the size of the set K—and
thus the number of martensitic variants—and the second slot the presence of austenite.

We begin by considering the case of two stress-free states, for which K = {A} for
some A ∈ diag(n,R) with rank(A) = 1. A similar, more complex setting including
a linear gauge symmetry (in the linearized theory of elasticity) had been studied in
Knüpfer and Kohn (2011) where optimal scaling bounds had been deduced. Relying
on the argument from Knüpfer and Kohn (2011), also in our setting, we recover the
same scaling law behaviour in this situation:

Theorem 1 (Theorem 2.1, Knüpfer and Kohn 2011) Let Eε(V ) be as in (4) and let
K = {A} for some A ∈ diag(n,R) with rank(A) = 1. Then there exist two positive
constants C2 > C1 > 0 depending on A and n such that for every V > 0 and every
ε > 0 there holds

C1rε(V ) ≤ Eε(V ) ≤ C2rε(V ), where rε(V ) =
{

εV
n−1
n V ≤ εn,

ε
n

2n−1 V
2n−2
2n−1 V > εn .

We refer to the workAkramov et al. (2022) for an analogous two-dimensional result
within the geometrically nonlinear theory of elasticity having full SO(2) invariance.

Turning to the setting of #K = 2 and imposing that the two martensitic wells are
rank-one connected and that the austenite is in the lamination convex hull of K , after
a change of coordinates we may without loss of generality assume that

K = {A, B}, with A =
(−λ 0

0 0

)
, B =

(
1 − λ 0
0 0

)
(5)

for someλ ∈ (0, 1)fixed,with “austenite" given by the zeromatrix (seeRemark 4.4 for
the details of this reduction). In this case 0 ∈ K (1), where K (1) denotes the first-order
lamination convex hull (and coincides with conv(K ) in this case, see Definition 2.1
below). In contrast to the previous case in which #K = 1, in the nucleation process it
is now possible for the nucleating phase to form an internal microstructure lowering
the elastic energy. This leads to an overall improved energy scaling behaviour in this
setting for large volume fractions:

Theorem 2 Let Eε(V ) be as in (4) and let K be as in (5). Then, there exist two positive
constants C2 > C1 > 0 depending on K such that for every V > 0 and for every
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ε > 0 there holds

C1rε(V ) ≤ Eε(V ) ≤ C2rε(V ), where rε(V ) =
{

εV
1
2 V ≤ ε2,

ε
4
5 V

3
5 V > ε2.

Moreover, it is possible to generalize this to arbitrary dimensions, picking up a
dimensional dependence:

Corollary 1.1 Let Eε(V ) be as in (4) and let K = {−λe1 ⊗ e1, (1 − λ)e1 ⊗ e1} with
λ ∈ (0, 1) and e1 denoting the first, normalized canonical basis vector. Then there
exist two positive constants C2 > C1 > 0 depending on K and n such that for every
V > 0 and for every ε > 0 there holds

C1rε(V ) ≤ Eε(V ) ≤ C2rε(V ), where rε(V ) =
{

εV
n−1
n V ≤ εn,

ε
2n

3n−1 V
3n−3
3n−1 V > εn .

1.2.2 A Second-Order Laminate in Two Dimensions

Considering nucleation settings in which the parent phase is a second-order laminate,
the elastic energy plays a stronger role in the resulting scaling law. Indeed, we expect
that more microstructure is necessary in order to obey self-accommodation of the
nucleus on the one hand and to ensure compatibility of the phases on the other hand.
Seeking to study these effects, we consider the following set K = {A1, A2, A3, A4}
with

A1 =
(−1 0

0 −2

)
, A2 =

(−1 0
0 1

)
, A3 =

(
1 0
0 2

)
, A4 =

(
1 0
0 −1

)
. (6)

In this setting, we have first- and second-order laminates given by the following for-
mulas: K (1) := conv{A1, A2} ∪ conv{A3, A4} and

K (2) \ K (1) =
{(

μ 0
0 ν

)
: |μ| < 1, |ν| ≤ 1

}
,

see Fig. 1 (and where we refer to Definition 2.1 in Sect. 2.1 for the definition of the
first- and second-order lamination convex hulls K (1) and K (2)).

In particular, the zero matrix belongs to the lamination convex hull Klc and can be
obtained as

1

2

(1
3
A1 + 2

3
A2

)
+ 1

2

(1
3
A3 + 2

3
A4

)
= 0,

that is the zero matrix is a second-order laminate of K .
In this setting, it turns out that indeed, the nucleation process is more expensive for

large nucleation cores than in the setting of Theorem 2:
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Fig. 1 The matrix set from
Sect. 1.2.2: In blue the set
K (1) \ K , in red K (2) \ K (1)

(Color figure online)

Theorem 3 Let Eε(V ) be as in (4) and let K be given by the matrices in (6). Then,
there exist two positive constants C2 > C1 > 0 depending on K such that for every
V > 0 and for every ε > 0 there holds

C1rε(V ) ≤ Eε(V ) ≤ C2rε(V ), where rε(V ) =
{

εV
1
2 if V ≤ ε2,

ε
4
7 V

5
7 if V > ε2.

We remark that also for this setting, a higher-dimensional analogue can be obtained.
Indeed, we refer to Sect. 5.3 (Proposition 5.3) in which a lower scaling bound for
a second-order laminate parent phase in three dimensions is investigated. For this
simple model problem we in particular recover the lower scaling bound which had
earlier been derived for the cubic-to-tetragonal phase transition in the geometrically
linearized theory of elasticity in Knüpfer et al. (2013) (with gauge group Skew(3)).
As a consequence, in spite of our substantial simplification in ignoring gauges, these
models may capture some of the mathematical features of physically more realistic
models and can mathematically thus be regarded as interesting, simpler substitutes for
these which may allow for a more detailed analysis.

1.2.3 A Three-Dimensional Third-Order Laminate

In addition to the two-dimensional settings, we also consider a three-dimensional
problem for which the zero matrix is a third-order laminate. To this end, we consider
the set of wells given by

K =
⎧⎨
⎩

⎛
⎝2 0 0
0 −2 0
0 0 1

⎞
⎠ ,

⎛
⎝−2 0 0

0 −2 0
0 0 1

⎞
⎠ ,

⎛
⎝−3 0 0

0 2 0
0 0 1

⎞
⎠ ,

⎛
⎝3 0 0
0 2 0
0 0 1

⎞
⎠ ,

⎛
⎝1 0 0
0 −1 0
0 0 −1

⎞
⎠ ,

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ ,

⎛
⎝−4 0 0

0 1 0
0 0 −1

⎞
⎠ ,

⎛
⎝4 0 0
0 1 0
0 0 −1

⎞
⎠

⎫⎬
⎭ ,

(7)
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Fig. 2 The matrix set from
Sect. 1.2.3: In blue the set
K (1) \ K , in red K (2) \ K (1), in
green K (3) \ K (2)

see also Fig. 2. For this choice of the set K the lamination convex hull K (lc) contains
matrices with lamination orders up to order three. In particular, the zero matrix has
lamination order three.

In this setting, we consider lower scaling bounds and show that again these are
determined by the order of lamination:

Proposition 1.2 Let Eε(V ) be as in (4) and let K be as (7). Then, there exists a positive
constant C > 0 depending on K such that for every V > 0 and for every ε > 0 it
holds

Eε(V ) ≥ Crε(V ), where rε(V ) =
{

εV
2
3 , V ≤ ε3,

ε
3
7 V

6
7 , V > ε3.

We expect that matching upper bounds could be proved using the three-dimensional
construction from Rüland and Tribuzio (2021, Proposition 6.3). As this however is
technically rather involved due to the presence of the higher order of lamination and
the necessity of achieving compatibility with the parent phase at the boundary of the
inclusion domain in all three directions, we do not provide the matching upper bounds
here but postpone this to future work.

1.2.4 A Laminate of Infinite Order

Last but not least, we study a setting which is “almost rigid” in that the zero matrix
is an infinite order laminate of the nucleating phases. Here, the set K consists of
the matrices forming the Tartar square (Aumann and Hart 1986; Casadio-Tarabusi
1993; Nesi and Milton 1991; Scheffer 1975; Tartar 1993), i.e. they are given by K =
{A1, A2, A3, A4} ⊂ R

2×2 with

A1 =
(−1 0

0 −3

)
, A2 =

(−3 0
0 1

)
, A3 =

(
1 0
0 3

)
, A4 =

(
3 0
0 −1

)
. (8)

In this setting, very complicatedmicrostructure has to emerge in order to ensure self-
accommodation and compatibility. Hence, the infinite order of lamination is reflected
in a very rigid, high energy scaling law behaviour:

Theorem 4 Let Eε(V ) be as in (4) and let K consist of the matrices in (8). Then, there
exist four positive constants C (1) > C (2) > 0, C2 > C1 > 0 depending on K such
that for every V > 0 and for every ε > 0 there holds
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C1r
(1)
ε (V ) ≤ Eε(V ) ≤ C2r

(2)
ε (V ),where r ( j)

ε (V ) =

⎧⎪⎨
⎪⎩

εV
1
2 if V ≤ ε2,

V exp
(

− C( j)
(
log

(
V
ε2

)) 1
2

)
if V > ε2.

The nucleation result of Theorem 4 is in parallel to the scaling law from Rüland
and Tribuzio (2022) and the earlier upper bound estimates from Chipot (1999) and
Winter (1997) in which the scaling behaviour of a singular perturbation problem for
the Tartar square was analyzed in a fixed domain with Dirichlet boundary conditions.
In both the fixed domain and the nucleation setting, a rather unusual “high energy”
behaviour is deduced in the scaling law. In the fixed domain setting this is manifested
in a subalgebraic scaling law behaviour in the singular perturbation parameter ε, i.e.
in a scaling law behaviour which is slower (as ε → 0) than any power law behaviour.
In the nucleation problem this is reflected in the large volume bound which only
deviates from the linear volume scaling by a subalgebraic volume correction term. In
this sense, the nucleation problem is “rather close to being incompatible”. We remark
that while our result quantitatively captures this major “footprint” of the infinite order
of lamination, it does not provide sharp values for the constants C ( j), encoding the
detailed subalgebraic behaviour. We refer to Sect. 7 for a more detailed discussion on
this.

1.3 Generalizations

The results from Sects. 1.2.1–1.2.4 illustrate the relevance of the order of lamination of
the parent phase with respect to the nucleating phase.We emphasize that in our presen-
tation we have selected prototypical model settings for the sets K . These are chosen
in such a way that the zero matrix is in the corresponding generalized convex hull
(e.g. the first, second, third lamination or rank-one convex hull) and that additionally a
certain “nonlinear structural condition” is present. The latter is a central ingredient in
our derivation of the lower scaling bounds by means of commutator estimates which
allow us to iteratively obtain improved control of the a priori possible Fourier-space
concentration of the phase indicators.

This is ensured by the property that the diagonal components of the phase indicator
“determine” each other in a way which reflects the order of lamination. This is par-
ticularly visible for the Tartar square. Due to the absence of rank-one connections, in
this setting each diagonal component already determines the other diagonal compo-
nent. In the case of the differential inclusion ∇u ∈ {A1, . . . , A4}, together with the
diagonal structure of the matrices A j , this already implies the qualitative rigidity of
the Tartar square (see Müller 1999; Rüland and Tribuzio 2022, Section 3.1) which is
made quantitative in Rüland and Tribuzio (2022).

For situations in which rank-one directions between the wells are present, the
“nonlinear structural condition” is only valid in a weaker form with not all diagonal
components “determining” each other. Here, there is a hierarchy of nonlinear relations:
Only some diagonal components determine some of the other components, e.g. in our
example fromSect. 1.2.2 only the second diagonal componentχ2,2 determines the first
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component χ1,1 but not conversely. In the examples of sets K ⊂ diag(n,R) which
are discussed in this article the structure of the wells is chosen exactly in such a way
that the number and structure of the nonlinear relations corresponds to the order of
lamination of the parent phase. In this sense, in these cases the order of lamination
determines the scaling behaviour of the nucleation problem. In particular, we empha-
size that our specific examples are only exemplary model choices of settings in which
this idea can be used and many more settings could be analysed with this method.

Building on these ideas for the lower scaling bounds and formally computing the
associated optimization problems similarly as outlined in the following sections, we
further conjecture that it is possible to produce wells K ⊂ diag(n,R) with nucleation
scaling behaviour of the order

C1rε(V ) ≤ Eε(V ) ≤ C2rε(V ), where rε(V ) =
⎧⎨
⎩

εV
n−1
n if V ≤ εn,

ε
2n

n2+2n−1 V
n2+2n−3
n2+2n−1 if V > εn,

(9)

in n-dimensional situations for constants 0 < C1 ≤ C2. In particular, this “interpo-
lates” between the rather low energy 2+ 1-well case and the very rigid, energetically
expensive Tartar setting.

Remark 1.3 (On the role of the order of lamination) In the examples from Theorems 2
and 3, Corollary 1.1 and Propositions 1.2 and 5.3, the role of the order of lamination
of the parent phase with respect to the nucleating phase is directly reflected in the
associated (lower) scaling bounds. Indeed, in all these examples, the (lower) scaling
bounds are given in terms of the following estimate relating the dimension n ∈ N and
the lamination order m ∈ N

Eε(V ) ≥ Crε(V ), where rε(V ) =
{

εV
n−1
n , V ≤ εn,

ε
2n

n(m+2)−1 V
n(m+2)−3
n(m+2)−1 , V > εn,

(10)

for some constant C > 0. In parts (e.g. in our two-dimensional results) even corre-
sponding matching upper bounds are proved in our discussion below. Moreover, also
the example from Knüpfer et al. (2013) and our conjectured scaling bounds from (9)
fit into this scheme (with n = 3, m = 2 and with n = n, m = n, respectively).

Let us emphasize that this (lower) scaling bound behaviour is no coincidence:
Indeed, as explained in the above discussion on the general structure of our sets K , the
sets K are chosen in such away that a certain nonlinear structure is present allowing for
an iterative application of the commutator arguments fromRüland andTribuzio (2021).
More precisely, all our sets K from above are such that the number of iterations of
these commutator estimates is directly related to the order of lamination of the parent
phase with respect to the nucleating phase. Thus, by carrying out the optimization
arguments from below, this eventually leads to the (lower) scaling bounds stated in
(10).

In addition to the discussion from Remark 1.3, let us however also caution that,
in general, the lamination order of the parent phase with respect to the nucleating
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phase certainly is not the only factor determining the scaling behaviour in nucleation
problems. Indeed, considering for instance sets K giving rise to two-dimensional
“stair-case laminates” as in Conti et al. (2005), it is possible to create arbitrarily high
orders of lamination. In this situation it is however not expected that this is necessarily
reflected in the nucleation scaling law. We postpone more detailed results on this to
future work.

1.4 Relation to the Literature

The results derived in this article mathematically fall into the class of isoperimetric
inequalities (Maggi 2012) in which anisotropies are present. Due to the presence of
the strong anisotropies, for large volumes, balls are in general no longer minimizers
of these isoperimetric problems, but interesting microstructure emerges as a com-
petition between the anisotropic nonlocal and the surface energies. These questions
arise naturally in nucleation processes in materials science. In the context of shape-
memory alloys, these have, for instance, been studied for the incompatible two-well
problem (Chaudhuri and Müller 2004), for the cubic-to-tetragonal phase transforma-
tion in the geometrically linearized theory of elasticity (Knüpfer et al. 2013), for the
geometrically linearized two-well problem (Knüpfer and Kohn 2011) and the bound-
ary nucleation for the cubic-to-tetragonal phase transformation (Bella and Goldman
2015). The location of nucleation was also studied in Ball and Koumatos (2016). In the
absence of self-accommodation bounds have been deduced for the cubic-to-tetragonal
phase transformation in Knüpfer andOtto (2019).Moreover, special constructions and
behaviour is known in highly symmetric situations in two dimensions (Cesana et al.
2020; Conti et al. 2017b).

Many of these results and ideas are closely related to singular perturbation problems
for shape-memory materials with prescribed boundary conditions (see for instance,
Chan andConti 2014, 2015;Conti et al. 2020, 2017a; Chipot andMüller 1999;Capella
and Otto 2009, 2012; Conti 2000; Conti and Zwicknagl 2016; Kohn andMüller 1992,
1994; Lorent 2001, 2006; Rüland and Tribuzio 2021, 2022; Rüland 2016) and the use
of scaling as a selection mechanism for wild microstructure (Rüland et al. 2018a, b).
Although in spirit similar to these singular perturbation problems, due to the flexibility
of the domain geometry, in the nucleation setting the problem is less constrained and
has more freedom to relax, in part leading to interesting new behaviour.

We emphasize that related questions and results have also been considered in other
physical systems such as in compliance minimization (Kohn and Wirth 2014, 2016),
micromagnetism (Choksi et al. 1999) or in models motivated by Coulombic inter-
actions with radially symmetric nonlocal contributions (Knüpfer and Muratov 2013;
Muratov and Knüpfer 2014).

1.5 Outline of the Article

The remainder of the article is structured as follows: After briefly recalling a number
of auxiliary results in Sect. 2, we deal with the scaling laws from Sects. 1.2.1–1.2.4 in
individual sections splitting the proofs into lower bound estimates and upper bound
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constructions. Thus, in Sect. 3 we begin by recalling the result from (Knüpfer and
Kohn 2011) and illustrating how the method from Knüpfer and Kohn (2011) yields
the behaviour of the 1+1 well case. In Sect. 4 we invoke Fourier tools to deduce
improved lower bounds and complement these with matching upper bounds leading
to the proof of Theorem 2. Building on these ideas, in Sect. 5 we discuss second-
order laminates in two and three dimensions. In three dimensions we in particular
recover the lower scaling bound from Knüpfer et al. (2013) in our model problem (see
Proposition 5.3). In Sect. 6 we then show that the lower bound estimates are robust and
can also be applied to deduce bounds for third-order laminates in three dimensions
which results in the proof of Proposition 1.2. In Sect. 7 we then deduce scaling bounds
for infinite order laminates for the Tartar square. Finally, we conclude the article in
Sect. 8 by briefly summarizing our main findings and giving a short outlook.

2 Preliminary Results

In this section we collect some intermediate results that will be used in the following
sections. Although we mainly treat two- and three-dimensional problems, presenting
the results of this section in their general version requires no additional effort.

Here and in what follows, when writing a ∼ b we mean that c−1a ≤ b ≤ ca for
some constant c > 0 independent of ε and V . Analogously we will write a � b and
a � b meaning a ≤ cb and a ≥ cb, respectively.

2.1 Laminates and Lamination Convex Hulls

Due to its relevance for our arguments, we recall the notion of the lamination convex
hull of a compact set K ⊂ R

n×n .

Definition 2.1 (Lamination convex hull) Let K ⊂ R
n×n be a compact set. Iteratively,

we define the following lamination convex hulls

K (0) := K ,

K (m) := {M ∈ R
n×n : M = λA + (1 − λ)B for A, B ∈ K (m−1), λ ∈ [0, 1]} for m ≥ 1.

An element in K (m) \ K (m−1) is called a laminate of order m. The lamination convex
hull of K is defined as

K (lc) :=
∞⋃

m=0

K (m).

2.2 Normalization

In considering and estimating our energieswhich a priori depend on the two parameters
ε and V , we can always reduce ourselves to a one-parameter problem by a normal-
ization argument. Let Eε be as in (3) and let u ∈ H1(Rn;Rn), χ ∈ BV (Rn; K0) be
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given, where K0 = K ∪ {0} ⊂ R
n×n and K ⊂ R

n×n is a discrete set. By setting
uε(x) := ε−1u(εx), χε(x) := χ(εx), we obtain

Eε(u, χ) = εn E1(uε, χε) and Eε(χ) = εn E1(χε).

Indeed, the total variation scales like εn−1, namely |Dχ |(Rn) = εn−1|Dχε |(Rn).
Moreover, Eel(u, χ) = εn Eel(uε, χε), and therefore Eel(χ) = εn Eel(χε), follows by
a standard change of variables.

The previous observations justify the following definitions

Ê(u, χ) := E1(u, χ) and Ê(χ) := E1(χ). (11)

As a consequence, in what follows we study the scaling behaviour of

Ê(V ) := inf{Ê(χ) : |supp(χ)| = V } (12)

for different choices of the set K . Undoing the above rescaling, we then obtain the full
volume and ε-scaling by using the relation

Ê(V ) = ε−n Eε(ε
nV ). (13)

2.3 Small-Volume Regime

A common point for all the following choices of K is the behaviour of the scaled
energy Ê(V ) when V ≤ 1.

In this case, the lower bound is a consequence of the isoperimetric inequality, that
is

Ê(χ) � Hn−1(∂ supp(χ)) � V
n−1
n .

Remark 2.2 The inequality above holds for every V > 0 and provides an a priori
lower bound for the total energy. In particular, we will use it in the sequel to infer a
uniform lower bound for the energy in the large-volume regime. More precisely, if
V > 1, the above argument always yields that Ê(χ) � 1.

For the upper bound we can take e.g. u to be equal to Ax in a ball of radius r , for
some A ∈ K , thenmatching the zero boundary conditions thanks to a cut-off argument

on B2r \ Br with r = V
1
n . Thus, by taking e.g. χ = AχB2r ,

Ê(u, χ) � V + V
n−1
n � V

n−1
n

in this regime of V .
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Hence, there exist two constants C2 > C1 > 0 depending on n and K such that for
every V ≤ 1 we have

C1V
n−1
n ≤ Ê(V ) ≤ C2V

n−1
n . (14)

From (13) we obtain the corresponding scaling law for Eε(V )

C1εV
n−1
n ≤ Eε(V ) ≤ C2εV

n−1
n (15)

for every V ≤ εn .

2.4 Elastic Energy and Fourier Multipliers

In deducing the lower scaling bounds and in order to effectively explore the effects
of anisotropy, in this article we will often work in frequency space. Therefore, it is
convenient to express the elastic energy in terms of the Fourier transform. To fix
notation, for f ∈ L1(Rn), we define

f̂ (k) := F f (k) := (2π)−
n
2

∫

Rn

e−ik·x f (x)dx,

and use the usual extension argument to also define this for f ∈ L2(Rn). The result
below is the analogue of Rüland and Tribuzio (2022, Lemma 4.1) in the case of the
full space Fourier transform.

Lemma 2.3 Let Eel be as in (2) and χ ∈ BV (Rn; K0). Then, there holds

Eel(χ) ≥
n∑
j=1

∑
� �= j

∫
Rn

k2�
|k|2 |χ̂ j, j |2dk. (16)

Proof By Plancherel’s theorem, the elastic energy can be expressed as

Eel(u, χ) =
∫
Rn

|û ⊗ ik − χ̂ |2dk. (17)

Using that

inf
u∈H1(Rn;Rn)

∫
Rn

|∇u − χ |2dx ≥ inf
u∈Ḣ1(Rn;Rn)

∫
Rn

|∇u − χ |2dx,

we compute the Euler–Lagrange equation associated to the minimization problem

inf
u∈Ḣ1(Rn;Rn)

∫
Rn

|∇u − χ |2dx
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on the frequency space, that is

(û ⊗ ik)k = χ̂k, k ∈ R
n .

This is solved by û j = −i
k j
|k|2 χ̂ j, j which, inserted in (17), yields the desired result. 
�

We next introduce some notation. For 0 < μ < 1 and μ′ > 0, we define

C j,μ,μ′ =
{
k ∈ R

n :
∑
� �= j

k2� ≤ μ2|k|2, |k| ≤ μ′}.

Correspondingly, we associate Fourier multipliers χ j,μ,μ′(D) (viewed as oper-
ators) to these truncated cones: To this end, we first define χ j,μ,μ′ to be positive
C∞(Rn \ {0}) functions on the Fourier side such that χ j,μ,μ′(k) = 1 for k ∈ C j,μ,μ′
and χ j,μ,μ′(k) = 0 for k ∈ R

n \ C j,2μ,2μ′ , satisfying decay conditions as in
Marcinkiewicz’smultiplier theorem, see for instanceGrafakos (2008,Corollary 6.2.5).
Given these functions, we then define the Fourier multipliers by their action on
f ∈ C∞

c (Rn) by setting χ j,μ,μ′(D) f := F−1(χ j,μ,μ′ F f ), where χ j,μ,μ′ F f
denotes the usual multiplication of functions.

2.5 Estimates in the Frequency Space

The following two results are the corresponding versions of those in Rüland and
Tribuzio (2021, Sect. 4) adapted to the case of the continuous Fourier transform (rather
than Fourier series). They encode a first frequency localization using elastic and sur-
face energies (Lemma 2.4) and an iteration of this through a commutator argument
(Lemma 2.5). The proofs can be obtained by the ones fromRüland and Tribuzio (2021)
by just replacing sums with integrals. We therefore omit the repetition of these proofs.

Lemma 2.4 (Lemma 4.5, Rüland and Tribuzio 2021) Let n ≥ 2 and K be fixed. Let
χ ∈ BV (Rn; K0), let Eel(χ) be as in (2) and Esurf(χ) := |Dχ |(Rn). Then there
exists a constant C > 0 depending on n and K such that for every 0 < μ < 1,μ2 > 0
there holds

n∑
j=1

‖χ j, j − χ j,μ,μ2(D)χ j, j‖2L2 ≤ C
(
μ−2Eel(χ) + μ−1

2 Esurf(χ)
)
.

Lemma 2.5 (Corollary 4.9, Rüland and Tribuzio 2021) Let K , n and χ be as in the
statement of Lemma 2.4. Let � ∈ {1, . . . , n} and let g be a polynomial such that for
some λ j ∈ R, j ∈ {1, . . . , n} there holds

χ�,� = g
(∑

j �=�

λ jχ j, j

)
.

Let 0 < μ < 1, μ′, μ′′ > 0 and μ̃ = Mμμ′′ for some constant M > 1 depending on
the degree of g. Then for every γ ∈ (0, 1) there exists a constant C > 0 depending on
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n, g, K and γ such that there holds

‖χ�,� − χ�,μ,μ̃(D)χ�,�‖2L2 ≤ C
∑
j �=�

|λ j |ψγ

(‖χ j, j − χ j,μ,μ′′(D)χ j, j‖2L2

)

+C‖χ�,� − χ�,μ,μ′(D)χ�,�‖2L2 ,

where ψγ (z) = max{z, z1−γ }.
Let us comment on Lemma 2.5: We view this as a “commutator” bound, in that we

roughly commute the Fourier multiplier
k2�
|k|2 from the energy (16) and the polynomial

g from Lemma 2.5. It is this nonlinear relation which is crucially exploited in our
arguments below and allows us to bootstrap the energy estimates in a quantitative way.
Inwhat followswewill apply Lemma 2.5 for the derivation of lower bounds for higher-
order laminates. Here we will always apply the result with 0 < μ̃ ≤ μ′′ ≤ μ′ < 1 in
order to improve on the possible region of Fourier space concentration.

We conclude this section by giving the following control of low frequencies.

Lemma 2.6 Let ϕ ∈ L2(Rn) ∩ L1(Rn), 0 < μ < 1, μ′ > 0 and let j ∈ {1, . . . , n}.
Then, there exists a constant C > 0 depending on n such that

∫
C j,μ,μ′

|ϕ̂|2dk ≤ C‖ϕ‖2L1(μ
′)nμn−1.

Proof The argument follows from the L1-L∞ bound for the Fourier transform. Indeed,

∫
C j,μ,μ′

|ϕ̂|2dk ≤
(
sup
k∈Rn

|ϕ̂|
)2∣∣C j,μ,μ′

∣∣ ≤ C‖ϕ‖2L1(μ
′)nμn−1.


�

3 First-Order Laminates: The 1+1-Well Case

We start our discussion of the outlined nucleation results by considering the simplest
situation possible, i.e. #K = 1. A more general version of this problem has been stud-
ied in Knüpfer and Kohn (2011), in the context of geometrically linearized elasticity.

We translate the results from Knüpfer and Kohn (2011) into our context.

Theorem 5 (Theorem 2.1, Knüpfer and Kohn 2011) Let K = {A} for some A ∈
diag(n,R) with rank(A) = 1 and let Ê(V ) be as in (12). Then there exist two positive
constants C2 > C1 > 0 depending on K and n such that for every V > 0 there holds

C1r̂(V ) ≤ Ê(V ) ≤ C2r̂(V ), where r̂(V ) =
{
V

n−1
n V ≤ 1,

V
2n−2
2n−1 V ≥ 1.
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Proof As in Knüpfer and Kohn (2011) the proof of this result consists of two parts:
An upper bound and a lower bound. The upper bound construction from Knüpfer
and Kohn (2011) does not make use of gauge invariance but only the presence of a
rank-one connection between the two phases. As a consequence, it also works in our
context with essentially no modification.

The proof of the lower bound inKnüpfer andKohn (2011) consists of two steps: The
derivation of a localized lower bound estimate (Knüpfer and Kohn 2011 (Proposition
3.1)) stating that if little of the minority phase and only small perimeter is present,
then a good lower bound estimate holds true. Translated to our context, it reads:

Claim 3.1 Let R > 0 and let χ ∈ BV (Rn; K0). Then there exist universal constants
cn, α > 0 (depending only on the dimension n ∈ N) such that if

‖χ‖L1(BR) ≤ cn R
n and |Dχ |(BR) ≤ cn R

n−1, (18)

then

inf
u∈H1(Rn;Rn)

∫
BR

|∇u − χ |2dx ≥ cn R
−n‖χ‖2L1(BαR)

.

Exploiting this, the full lower bound is proved by a covering argument. Since there
is no difference in the covering argument, we only discuss Knüpfer and Kohn (2011,
Proposition 3.1) which in turn relies on Knüpfer and Kohn (2011, Lemma 3.2), its
two-dimensional analogue. For convenience of the reader and for completeness, we
retrace the main ideas of the proof of Knüpfer and Kohn (2011, Lemma 3.2), being
more specific in the parts that differ in our context.
Ideas of the proof of Claim 3.1 for n = 2: Without loss of generality we consider
A = e1 ⊗ e1 and R = 1. Further, as in Knüpfer and Kohn (2011) we fix α = 1

5 .
Following Knüpfer and Kohn (2011), we now argue by contradiction, that is letting
μ := ‖χ‖L1(Bα) we assume that for every c2 > 0 such that (18) holds there exists
u ∈ H1(R2;R2) such that

‖∂1u1 − χ1,1‖L2(B1) + ‖∂2u2‖L2(B1) + ‖∂2u1‖L2(B1) + ‖∂1u2‖L2(B1) ≤ c2μ. (19)

We split the argument leading to the contraction into several steps.
Steps 1 and 2: We consider three rectangles Q(i) = [

l(i)1 , l(i)2

] × [−h, h] with

l(i)1 < l(i)2 , l(i)2 = l(i+1)
1 such that l(3)2 − l(1)1 , 2h ≤ 1 and

Q(2) ⊃ Bα, Q(i) ⊂ B3α, i ∈ {1, 2, 3}.

We also denote I (i)
1 = [l(i)1 , l(i)2 ], i ∈ {1, 2, 3}, I1 = [l(1)1 , l(3)2 ] and I2 = [−h, h].

Up to small translations of Q(i) exploiting (18) and the fact that c2 can be chosen to
be arbitrarily small one proves ‖χ‖L1(∂Q(i)), |Dχ |(∂Q(i)) = 0. This, combined with
(19), implies also that

∫
∂Q(i)

|∇u|2 =
∫

∂Q(i)
|∇u − χ |2 ≤ c2μ. (20)
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Moreover, by possibly passing from u1 to u1 − 〈u1〉I1×{h} we may assume that
〈u1〉I1×{h} = 0. Here and in the rest of the proof, with a slight abuse of notation, we
write 〈u1〉I×{y} = 1

|I |
∫
I u1(t, y)dt and 〈u1〉I×J = 1

|I ||J |
∫
I×J u1(t, s)dtds for every

interval I , J ⊂ R and y ∈ R.
Steps 3 and 4:We show that u1 is close to zero in mean inside Q(i) for i ∈ {1, 2, 3}.

We begin by proving that u1 is close to 0 on the horizontal boundaries of Q(i). Indeed
for every x ∈ I (i)

1 , by the fundamental theorem of calculus, Hölder’s inequality and
(20)

|u1(x,±h) − 〈u1〉I (i)
1 ×{±h}| ≤ ‖∂1u1‖L2(I (i)

1 ×{±h}) ≤ c2μ. (21)

Moreover,

|〈u1〉I (i)
1 ×{h} − 〈u1〉I (i)

1 ×{−h}| ≤
∫
I (i)
1

∫ h

−h
|∂2u1(x, t)|dtdx ≤ ‖∂2u1‖L2(I (i)

1 ×I2)
≤ c2μ.

Due to our normalization 〈u1〉I1×{h} = 0 and (21), we thus obtain that

‖u1‖L∞(I (i)
1 ×{±h}) ≤ 2c2μ.

Combined with the off-diagonal bounds in (19) this yields

|〈u1〉Q(i) | ≤ 3c2μ, i ∈ {1, 2, 3}. (22)

Step 5: Finally, let x∗
1 ∈ I (1)

1 be such that 〈u1〉Q(1) = 1
|I2|

∫
I2
u1(x∗

1 , t)dt . Then,

using that u1(x1, x2) = u1(x∗
1 , x2) +

x1∫
x∗
1

∂1u1(t, x2)dt , we have

〈u1〉Q(3) = 〈u1〉Q(1) +
〈 ∫ ·

x∗
1

∂1u1(t, ·)dt
〉
Q3

≥ 〈u1〉Q(1) + 1

|I2|μ +
〈 ∫ ·

x∗
1

∂1u1(t, ·) − χ(t, ·)dt
〉
Q(3)

,

where in the last step we have used that I (2)
1 ⊂ (x∗

1 , x1) for every x1 ∈ I (3)
1 and that

Q(2) ⊃ Bα . The inequality above yields from (19) by taking c2 small enough, that

〈u1〉Q(3) − 〈u1〉Q(1) ≥
( 1

|I2| − c2
)
μ.

This contradicts (22) by further reducing c2 if needed, and the claim is proved. 
�
The remainder of the argument for Theorem 1 then follows as in Knüpfer and Kohn

(2011). 
�
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4 First-Order Laminates: The 2+1-Wells Case

In this section, we discuss the proof of Theorem 2, i.e. the setting in which

K = {A, B}, with A =
(−λ 0

0 0

)
, B =

(
1 − λ 0
0 0

)
(23)

for some λ ∈ (0, 1) fixed, with “austenite” given by the zero matrix.
In this setting, after the normalization outlined above,we seek to prove the following

bounds:

Theorem 6 Let Ê(V ) be as in (12) and let K be as in (23). Then there exist two positive
constants C2 > C1 > 0 depending on K such that for every V > 0 there holds

C1r̂(V ) ≤ Ê(V ) ≤ C2r̂(V ), where r̂(V ) =
{
V

1
2 if V ≤ 1,

V
3
5 if V > 1.

Rescaling this as in (13) then implies the claim of Theorem 2.
In order to infer these bounds, we argue in two steps: First, in Proposition 4.1 we

deduce lower bounds. Next, in Proposition 4.2, we provide an upper bound construc-
tion. Combining these observationswith the small volume estimates fromSect. 2.3 and
the normalization arguments from Sect. 2.2 then implies the claim from Theorems 2
and 6.

4.1 Lower Bounds

In deducing the lower bounds, we first seek to prove the following proposition:

Proposition 4.1 Let Ê(V ) be as in (12) and let K be as in (23). Then for every V > 1
there holds

Ê(V ) � V 3/5. (24)

Proof Let 0 < μ < 1, μ2 > 0 be two constants which are to be determined below.
We estimate as follows by means of Lemmas 2.4 and 2.6:

min{λ2, (1 − λ)2}V ≤ ‖χ1,1‖2L2 ≤ ‖χ1,μ,μ2(D)χ1,1‖2L2 + ‖χ1,1 − χ1,μ,μ2(D)χ1,1‖2L2

≤ C max{λ2, (1 − λ)2}μ2
2μV 2 + Cμ−2Eel(χ) + Cμ−1

2 Esurf(χ)

≤ C max{λ2, (1 − λ)2}μ2
2μV 2 + C(μ−2 + μ−1

2 )Ê(χ).

With the choice μ = 1
2C min

{
λ2

(1−λ)2
,

(1−λ)2

λ2

}
1

μ2
2V

we obtain

min{λ2, (1 − λ)2}V ≤ C ′(μ4
2V

2 + μ−1
2 )Ê(χ),
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for some C ′ > 0. We further optimize the right hand side in μ2 which yields μ2 ∼
V− 2

5 . Inserting this into the estimate and rearranging then yields the claim. 
�

4.2 Upper Bounds

We now deal with an upper bound construction. For this we present two types of
constructions: One directly using branchings in thin long domains aligned with the
direction of lamination, the other exploiting the flexibility of the domain more effec-
tively by working in diamond- or lens-shaped domains. Since the latter are also
observed in experiments (Niemann et al. 2017; Schwabe et al. 2021; Tan and Huibin
1990), we present the diamond-shaped constructions (see Fig. 3) in the main body
of the text and postpone the rectangular ones to the appendix. Diamond-shaped con-
structions which in addition incorporate additional determinant constraints have been
used in Conti (2008).

Proposition 4.2 Let Ê(u, χ) be as in (11), let K be as in (23) and let V > 1 be given.
Then there exist a compact, connected set 
 ⊂ R

2 with Lipschitz boundary, |
| = V ,
u ∈ W 1,∞

0 (
;R2) and χ ∈ BV (R2; K0) with supp(χ) = 
 such that

Ê(u, χ) � V
3
5 .

Proof Given H > L > 1, we take the rhombus


 = conv
({

(0, 0),
(
λL,

H

2

)
,
(
λL,−H

2

)
, (L, 0)

})
.

Consider u : R2 → R
2 with u2 ≡ 0 and u1 defined by integration in order to attain

zero boundary condition on ∂
 and having ∂1u1 = 1 − λ in 
 ∩ (
(0, λL) × R

)
and

∂1u1 = −λ in 
 ∩ (
(λL, L) × R

)
, that is

u1(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − λ)
(
x1 − 2λL

H
|x2|

)
2λL
H |x2| ≤ x1 ≤ λL,

λ
(

− x1 − 2(1 − λ)L

H
|x2| + L

)
λL ≤ x1 ≤ L − 2(1−λ)L

H |x2|,
0 otherwise.

In particular, u ∈ W 1,∞
0 (
;R2). Let χ ∈ BV (R2; K0) be the projection of ∇u onto

K0. Noticing that ∂1u1 ≡ χ1,1, we obtain

Eel(u, χ) =
∫




|∂2u1|2dx ≤ L3

2H
and Esurf(χ) ≤ H + 2

√
H2

4
+ L2.

Hence,

Ê(u, χ) � L3

H
+ H ,
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Fig. 3 The graph of (the
non-trivial component of) a
two-dimensional inclusion
which attains the upper bound.
Different colors represent
different phases, black lines are
the jump set of the
phase-indicator function; on
dashed lines the gradient jumps
inside the same phase

and by an optimization argument we obtain L ∼ H
2
3 which implies V ∼ H

5
3 , and the

result follows. 
�

Remark 4.3 Note that the lower bound of Proposition 4.1 is ansatz-free and therefore
does not give any information on optimal structures for u and χ . On the other side,
the upper bound of Proposition 4.2 provides some information in that direction. In
particular, we know that we can achieve the optimal energy scaling with structures

supported in “thin” domains of height V
3
5 and width V

2
5 . We however expect that the

analysis of the optimal shape requires a more detailed study of the Euler–Lagrange
equations associated with our energies.

4.3 Proof of Corollary 1.1

Finally, we provide the proof of Corollary 1.1 which allows us to generalize the
previous scaling law to arbitrary dimensions.

Proof of Corollary 1.1 We split the proof into two steps:
Step 1: Lower bounds. The results in the small volume regimes directly follow from

the isoperimetric considerations from Sect. 2.3. In the case V > 1 (in the normalized
setting), retracing the proof of Proposition 4.1 in dimension n, we derive

V � μn−1μn
2V

2 + (μ−2 + μ−1
2 )Ê(χ)

yielding, after optimization, the choices μ ∼ V− 1
3n−1 , μ2 ∼ V− 2

3n−1 and the lower
bound

V
3n−3
3n−1 � Ê(χ).

Step 2: Upper bounds. Again we first provide a lens-shaped construction for the
upper bound analogously as done in the two-dimensional case in the proof of Propo-
sition 4.2. A second argument in a thin rectangle is included in the appendix. Our
n-dimensional construction consists of a diamond-shaped inclusion whose lamination
direction is “very thin” with respect to the others. For the sake of simplicity, we first
consider the special case K = {±e1 ⊗ e1} ⊂ R

n×n from which we recover the case
from the corollary by carrying out a change of variables at the end of the proof.
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For H > L > 1 consider the domain


 = conv
({

± L

2
e1,

{
± H

2
e j

}n
j=2

})
.

We consider u : Rn → R
n with u j ≡ 0 for j ∈ {2, . . . , n} and

u1(x) =
{

|x1| + L
H (|x2| + · · · + |xn|) − L

2 x ∈ 
,

0 otherwise.

Notice that u ∈ W 1,∞
0 (
;Rn) with ‖∇u‖L∞ � 1. Let χ denote the projection of

∇u onto K0. Then we have χ = e1 ⊗e1 on
∩ (
(0,+∞)×R

n−1
)
and χ = −e1 ⊗e1

on 
 ∩ (
(−∞, 0) × R

n−1
)
. Hence,

Eel(u, χ) � |
| L
2

H2 � L3Hn−3 and Esurf(χ) � Hn−1.

This implies that Ê(u, χ) � L3Hn−3 + Hn−1. Optimizing this we get L ∼ H
2
3

which yields the desired result from the volume constraint.
Now we return to the general case. Given K be as in the statement, we consider the

Lipschitz map φ(x1, x2, . . . , xn) = (φ1(x1), x2, . . . , xn) with

φ1(t) =
{

λt t < 0

(1 − λ)t t ≥ 0
,

and define ũ(x) := u(φ(x)) and χ̃(x) := χ(φ(x))∇φ(x), where u and χ are the
functions defined in the first part of the proof above. Then, χ̃ ∈ K0, the inclusion
domain is


̃ = supp(χ̃) = conv
({

− L

2λ
e1,

L

2(1 − λ)
e1,

{
± H

2
e j

}n
j=2

})
,

ũ ∈ W 1,∞
0 (
̃;Rn) and there holds

Ê(ũ, χ̃) ≤ max{λ−1, (1 − λ)−1}Ê(u, χ).

Hence the result follows. 
�
Remark 4.4 Theorem 2 and Corollary 1.1 can be stated in a slightly more general
way, that is replacing K with K̃ = {A, B} ⊂ R

n×n such that rank(A − B) = 1, and
0 = λA + (1 − λ)B for some λ ∈ (0, 1). The only matrices complying with such
linear constraints have the following structure: A = (1 − λ)a ⊗ ν, B = −λa ⊗ ν

with a, ν ∈ R
n \ {0} and |ν| = 1. Then, the same scaling results can be obtained by a

simple change of variable.
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Indeed, let Ra, Rν ∈ SO(n) be the rotations such that Raa = |a|e1 and
Rνν = e1. For every χ ∈ BV (R2; K̃ ∪ {0}) and u ∈ H1(R2;R2) we define
ũ(x) := 1

|a| Rau(R−1
ν x) and χ̃(x) := 1

|a| Raχ(R−1
ν x)R−1

ν . Hence, by the fact that

Ra(a ⊗ ν)R−1
ν = |a|e1 ⊗ e1, χ̃ ∈ BV (R2; K0), u ∈ H1(R2;R2), and the following

two equalities hold

Eel(u, χ) = 1

|a|2 Eel(ũ, χ̃), Esurf(χ) = 1

|a| Esurf(χ̃).

Eventually, denoting with Ẽε the minimum problem in (4) corresponding to K̃ we
conclude that

C̃1Eε(V ) ≤ Ẽε(V ) ≤ C̃2Eε(V ),

with C̃2 ≥ C̃1 > 0 being constants depending on K̃ .

5 A Second-Order Laminate: An Example of a 4+1-Wells Case

We next proceed to the analysis of second-order laminates. In this section, it is our
main objective to prove the claim of Theorem 3. We recall that in this setting, in
particular, the zero matrix belongs to Klc and can be obtained as

1

2

(1
3
A1 + 2

3
A2

)
+ 1

2

(1
3
A3 + 2

3
A4

)
= 0,

that is the zero matrix is a second-order laminate of K . A convenient way to write the
elastic energy is the following

Eel(u, χ) =
∫
R2

∣∣∣∇u − χ1A1 − χ2A2 − χ3A3 − χ4A4

∣∣∣2dx

with χ j ∈ BV (R2; {0, 1}) and χ1 + χ2 + χ3 + χ4 ≤ 1. In terms of the phase
indicator χ , we have χ = ∑4

j=1 χ j A j , hence χ1,1 = −χ1 − χ2 + χ3 + χ4 and
χ2,2 = −2χ1 + χ2 + 2χ3 − χ4.

With this notation we can write the first diagonal component in terms of the second
diagonal component as follows

χ1,1 = g(χ2,2), (25)

where g is a polynomial of degree 3. The choice of g is not unique and it can be made
explicit e.g. by interpolation. An example of such a polynomial is g(t) = 1

2 t
3 − 3

2 t .
Notice that the condition g(0) = 0 ensures that (25) is globally satisfied, in particular
also outside the inclusion domain. As before, by rescaling and the small volume energy
bounds from Sect. 2, it suffices to prove the following result:
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Theorem 7 Let Ê(V ) be as in (12) and let K be as in (6). Then, there exist two positive
constants C2 > C1 > 0 depending on K such that for every V > 0 there holds

C1r̂(V ) ≤ Ê(V ) ≤ C2r̂(V ), where r̂(V ) =
{
V

1
2 if V ≤ 1,

V
5
7 if V > 1.

As above, we split this into two steps: In Proposition 5.1 we first deduce corre-
sponding lower bounds and in Proposition 5.2 we provide matching upper bounds.
Using the considerations from Sects. 2.2 and 2.3 then implies the desired claim of
Theorem 7.

5.1 Lower Bounds

We first give a lower bound for the large inclusion regime.

Proposition 5.1 Let Ê(V ) be as in (12), and let K be as in (6). Then for every V > 1
there holds

Ê(V ) � V
5
7 . (26)

Proof Let 0 < μ,μ2 < 1 be constants to be determined and let μ3 = Mμμ2 for
some M > 1 depending on g. We begin by observing that

V = ‖χ1,1‖2L2 ≤ 2‖χ1,μ,μ3(D)χ1,1‖2L2 + 2‖χ1,1 − χ1,μ,μ3(D)χ1,1‖2L2 . (27)

By virtue of Lemma 2.6, we control the first term on the right-hand side of (27) by

‖χ1,μ,μ3(D)χ1,1‖2L2 ≤ Cμμ2
3V

2. (28)

Applying Lemma 2.5 with μ′ = μ′′ = μ2 thanks to relation (25) we also get

‖χ1,1 − χ1,μ,μ3(D)χ1,1‖2L2 ≤ C‖χ1,1 − χ1,μ,μ2(D)χ1,1‖2L2

+ Cγ ψγ

(‖χ2,2 − χ2,μ,μ2(D)χ2,2‖2L2

)
,

which, by Lemma 2.4 and the facts that z ≤ ψγ (z) and ψγ (δz) ≤ δψγ (z) for every
z > 0 and δ > 1, can be further reduced to

‖χ1,1 − χ1,μ,μ3(D)χ1,1‖2L2 ≤ Cγ (μ−2 + μ−1
2 )ψγ

(
Ê(χ)

)
. (29)

Gathering (27)–(29) we then arrive at

V ≤ Cμμ2
3V

2 + Cγ (μ−2 + μ−1
2 )ψγ

(
Ê(χ)

)
.
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Now, recalling that μ3 ∼ μμ2, we choose μ2 such that μ3μ2
2V

2 ∼ V , that is μ2 ∼
V− 1

2 μ− 3
2 . Such a choice yields

V ≤ Cγ (μ−2 + V
1
2 μ

3
2 )ψγ

(
Ê(χ)

)
,

where we have possibly increased the constant Cγ . Optimizing we choose μ ∼ V− 1
7

and therefore obtain that

V ≤ Cγ V
2
7 ψγ

(
Ê(χ)

)
,

which implies

V
5
7 � ψγ

(
Ê(χ)

)
. (30)

From the condition V > 1 and Remark 2.2 we have Ê(χ) � 1. As a consequence,
ψγ

(
Ê(χ)

)
� Ê(χ), and (30) implies the desired lower bound. 
�

5.2 Upper Bounds

We next turn to an upper bound construction in the large volume regime for which we
show a matching upper bound.

Proposition 5.2 Let Ê(u, χ) be as in (11), let K be as in (6) and let V > 1 be given.
Then there exist 
 ⊂ R

2 compact, connected, with Lipschitz boundary and |
| = V ,
u ∈ W 1,∞

0 (
;R2) and χ ∈ BV (R2; K0) with supp(χ) = 
 such that

Ê(u, χ) � V
5
7 .

As above, we again present two possible proofs of this result: A construction in
a thin rectangle with double branching (given in Section A.3 in the Appendix) and
a construction in a thin diamond/lens with simple branching. The latter exploits the
more flexible domain geometry by consisting of a lens/diamond shape. We highlight
that the self-similar argument exploited for building the geometry of the construction
below takes its inspiration from those used in Kohn and Wirth (2016), Knüpfer et al.
(2013).

Proof of Proposition 5.2 by means of a construction with a lens-type shape. For H >

2L > 1 we consider the rhombus


 = conv
({(

− L

2
, 0

)
,
(
0,

H

2

)
,
(
0,−H

2

)
,
(
0,

L

2

)})
.

As a first step we consider the construction given in Proposition 4.2 with gradients

B1 = 1

3
A1 + 2

3
A2 and B2 = 1

3
A3 + 2

3
A4.
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This corresponds to the macroscopic deformation. This macroscopic deformation
will be replaced by a microscopic deformation which is achieved by a construction of
fine scale oscillations between phases A1 and A2 on the left part of the domain and
between A3 and A4 on the right part. We work in several steps.

Step 1: Definition of amacroscopic state.We considerw to be obtained analogously
as in the proof of Proposition 4.2 with K replaced by the set {B1, B2}, that is w =
(w1, 0) with

w1(x1, x2) =
{

− L
2 + |x1| + L

H |x2| x ∈ 
,

0 otherwise.

The function w will play the role of a macroscopic state. We highlight that the
construction from Proposition 4.2 does not give deformations exactly equal to B1, B2
but involves slight perturbations of these (which are of the form ± L

H e1 ⊗ e2, see the
discussion in Step 4 below).

Step 2: Branching building block. We now define a single tree of a branching
construction on a general rectangle R := [0, �] × [0, h] with � > 4h. By applying
Rüland and Tribuzio (2021, Lemma 3.2) with inverted roles of x1 and x2 and with
N = 1, we obtain v j,R ∈ W 1,∞(R;R2) such that v j,R = Bj x on ∂R and

Ê(v j,R, χ j,R) � h3

�
+ �, (31)

where χ j,R is the projection of ∇v j,R onto the set {A1, A2} or {A3, A4} if j = 1 or 2
respectively. Note that, by translation invariance, the same construction (still matching
Bj x at the boundary) can be obtained in rectangles x + R for any x ∈ R

2.
Step 3: Subdivision of the domains into rectangles. We subdivide the domain 


into rectangles having the same ratio between width and height. The correct ratio will
be then obtained in Step 5 via optimization. We work in the triangular subdomain
T = conv

({
(− L

2 , 0), (0, H
2 ), (0, 0)

})
recovering the full subdivision symmetrically.

We fix 0 < r < H
2 a parameter to be determined later. We cut T into horizontal

slices at height h j , with h0 = 0, h1 = r and h j+1 > h j . In each of these slices we
consider the maximal rectangle contained in T , that is

R j := [−� j , 0] × [h j , h j + r j ],
with r j := h j+1 − h j , � j := sup{� : (−�, h j+1) ∈ T }. (32)

We choose r j so that the rectangles R j have the same ratio between width and height.
Solving recursively r j = r

�0
� j , we find

r j = r
(
1 − 2

H
r
) j

and � j = L

2

(
1 − 2

H
r
) j+1

.

We make this subdivision for 0 ≤ j ≤ j0, with j0 being the largest index such that
h j0 < H−L

2 . In the end, we also define T0 = ⋃ j0
j=0 R j (see Fig. 4).
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Fig. 4 Subdivision of T into
rectangles R j . The shaded
region is T \ T0

Step 4: Definition of u. We define u to be a fine-scale branching oscillation inside
R j and being equal to the macroscopic statew on T \T0. To do so, we slightly modify
the functions obtained in Step 2 with an affine perturbation in order to match the
macroscopic state w at ∂R j (which is close to an affine function with gradient B1 or
B2 but is not exactly equal to one these, see the comment in Step 1 above). Thus, for
every x ∈ T we define

u(x) =
{

v1,R j (x) + ( L
H x2 − L

2 , 0
)

x ∈ R j , 0 ≤ j ≤ j0,

w(x) otherwise.

Reasoning symmetrically we obtain a construction on the whole domain 
. As
usual we will denote with χ the projection of ∇u onto K0.

Step 5: Energetic cost and optimization of parameters.By symmetry we can restrict
to computing the total energy on T . Splitting the contributions on R j and T \ T0 we
obtain
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Ê(u, χ) �
∫
T \T0

dist2(∇w, K0)dx + |Dχ |(T \ T0)

+
j0∑
j=0

( ∫
R j

dist2
(
∇v1,R j + L

H
e1 ⊗ e2, K0

)
dx + |Dχ1,R j |(R j )

)
.

(33)
We study the two contributions on the right-hand side of (33) separately, starting from
the energy contribution in T \ T0.

The term |Dχ |(T \T0) is proportional to the perimeter of
, hence |Dχ |(T \T0) �
H .We now need to control themeasure of T \T0. This consists of the union of triangles
of (orthogonal) sides r j and L

H r j for j ∈ {0, . . . , j0} and one of (orthogonal) sides
H
2 − h j0+1 and L

H ( H2 − h j0+1) (see Fig. 4). Recalling that, by definition of h j0 ,
H
2 − h j0+1 ≤ L

2 , we obtain the following estimate

|T \ T0| � r2
L

H

∑
j≥0

(
1 − 2

H
r
)2 j + L3

H
� r L + L3

H
.

From this and the fact that dist(∇w, K0) � 1, we obtain

∫
T \T0

dist2(∇w, K0)dx + |Dχ |(T \ T0) � r L + L3

H
+ H . (34)

We analyze the energy contributions originating from the rectangles R j in (33). Since
the matrix L

H e1 ⊗ e2 does not affect the projection of ∇v1,R j onto K0, from (31) for
every j we have

∫
R j

dist2
(
∇v1,R j + L

H
e1 ⊗ e2, K0

)
dx + |Dχ1,R j |(R j ) �

r3j
� j

+ |R j | L
2

H2 + � j .

By summing over j we obtain

j0∑
j=0

( ∫
R j

dist2
(
∇v1,R j + L

H
e1 ⊗ e2, K0

)
dx + |Dχ1,R j |(R j )

)

�
∑
j≥0

(r3
L

(
1 − 2

H
r
)2 j + L

(
1 − 2

H
r
) j) + |T | L

2

H2 � r2
H

L
+ HL

r
+ L3

H
.

(35)

Inserting (34) and (35) into (33) we infer that

Ê(u, χ) � r L + H + L3

H
+ r2

H

L
+ HL

r
. (36)
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Fig. 5 The matrix set K defined
in (37): In blue the set K (1) \ K ,
in red K (2) \ K (1)

Optimizing the expression above in r and H we get r ∼ L
2
3 and H ∼ L

4
3 . Notice that

the choice r ∼ L
2
3 is compatible with the condition � > 4h on rectangles R of Step 2

(which for R = R j corresponds to � j > 4r j ) and therefore the construction above is

well-defined. The relation HL ∼ V yields L ∼ V
3
7 , H ∼ V

4
7 , and the result follows.


�

5.3 A Three-Dimensional Analogue

An interesting three-dimensional modification of the previous setting is the following:
We consider K = {A1, A2, A3, A4} ⊂ R

3×3 with

A1 =
⎛
⎝−1 0 0

0 −2 0
0 0 0

⎞
⎠ , A2 =

⎛
⎝−1 0 0

0 1 0
0 0 0

⎞
⎠ , A3 =

⎛
⎝1 0 0
0 0 0
0 0 2

⎞
⎠ , A4 =

⎛
⎝1 0 0
0 0 0
0 0 −1

⎞
⎠ . (37)

First-order laminates are the segments K (1) = conv(A1, A2) ∪ conv(A3, A4),
whereas the second-order laminates consist of

K (2) \ K (1) =
⎧⎨
⎩

⎛
⎝μ 0 0
0 0 0
0 0 0

⎞
⎠ : |μ| < 1

⎫⎬
⎭

which in particular contains 0, as can be seen in Fig. 5.
In this case we have χ1,1 = −χ1 − χ2 + χ3 + χ4, χ2,2 = −2χ1 + χ2 and χ3,3 =

2χ3 − χ4, and therefore we have the nonlinear relation

χ1,1 = g(χ2,2 + χ3,3) (38)

with g a polynomial. Because of the structure of the wells, we can choose g to be the
same polynomial as in (25).
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For this setting, working analogously as done for the two-dimensional case, we
have the following lower scaling bounds.

Proposition 5.3 Let Ê(V ) be as in (12) and let K be as in (37). Then there exists a
positive constant C > 0 depending on K such that for every V > 0 there holds

Cr̂(V ) ≤ Ê(V ), where r̂(V ) =
{
V

2
3 if V ≤ 1,

V
9
11 if V > 1.

(39)

Moreover, for every ε > 0 there holds

Crε(V ) ≤ Eε(V ), where rε(V ) =
{

εV
2
3 if V ≤ ε3,

ε
6
11 V

9
11 if V > ε3.

(40)

We remark that the lower scaling bound in (39) and (40) is the same as the one
obtained in Knüpfer et al. (2013) in the case of nucleation for the geometrically
linearized cubic-to-tetragonal phase transition. In the geometrically linearized cubic-
to-tetragonal phase transition the zero matrix also is a second-order laminate. The
geometrically linearized cubic-to-tetragonal phase transition includes a geometrically
linearized version of frame-indifference and thus Skew(3)-invariance. While our sim-
plified model does not include this, it is rich enough to provide the same lower bound
scaling behaviour. It could thus serve as a model problem in which one can possibly
study finer properties of this phase transformation.

We expect that upper-bound constructions matching the lower-scaling bounds can
be obtained working analogously as in Knüpfer et al. (2013, Sect. 6). Since this is not
the main goal of our work we omit to study it.

Proof The lower bound is proved analogously as done in the two-dimensional case. Let
0 < μ < 1, μ2, μ3 > 0 be as in the proof of Proposition 5.1. From Lemmas 2.4–2.6
and relation (25) we have

V ≤ Cμ2μ3
3V

2 + Cγ (μ−2 + μ−1
2 )ψγ

(
Ê(χ)

)
.

Again, from Remark 2.2 Ê(χ) � 1. Thus, by fixing γ , from the inequality above we
obtain

V � μ2μ3
3V

2 + (μ−2 + μ−1
2 )Ê(χ).

Since μ3 ∼ μμ2, we choose μ2 sufficiently small such that μ5μ3
2V

2 ∼ V , that is

μ2 ∼ V− 1
3 μ− 5

3 . This implies

V � (μ−2 + V
1
3 μ

5
3 )Ê(χ).

Optimizing, we choose μ ∼ V− 1
11 and therefore obtain

V � V
2
11 Ê(χ),
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which gives the claim.
As above, the ε-scaling behaviour follows by rescaling as in Sect. 2.2. 
�

6 A Third-Order Laminate: The 8+1-Wells Case

In this section, we provide the proof of Proposition 1.2. As in the previous sections, it
suffices to deduce the non-dimensionalized bounds. These read as follows:

Proposition 6.1 Let Ê(V ) be as in (12) and let K be as in (7). Then, there exists a
positive constant C > 0 depending on K such that for every V > 0 it holds

Ê(V ) ≥ Cr̂(V ), where r̂(V ) =
{
V

2
3 , V ≤ 1,

V
6
7 , V > 1.

The main idea of the argument consists in using that χ1,1 determines χ2,2, χ3,3
and that χ2,2 determines χ3,3. Thus, an iterated commutator estimate as in Sect. 2 is
possible, and an optimization argument yields the lower bound.

Proof We argue in several steps. As a preliminary observation, we note that it suffices
to prove the bounds for V > 1 since the small volume setting is a direct consequence
of the isoperimetric inequality, see Sect. 2.3.

Step 1: First energy bounds. From Lemma 2.4 we directly obtain that for μ2, μ ∈
(0, 1) to be fixed it holds that

3∑
j=1

‖χ j, j − χ j,μ,μ2(D)χ j, j‖2L2 ≤ C(μ−2Eel(χ) + μ−1
2 Esurf(χ)). (41)

Step 2: χ1,1 determines χ2,2 and χ3,3. From the structure of the wells, we observe
that χ2,2 = f1,2(χ1,1) and χ3,3 = f1,3(χ1,1) for some polynomials f1,2, f1,3 (see
Remark 6.2 for an explicit example). As a consequence, we may invoke Lemma 2.5
which, combined with (41), yields that for 0 < μ3 = Mμμ2 < μ2 and for j ∈ {2, 3}
(where we have possibly reduced the value of μ if needed), it holds that

‖χ j, j − χ j,μ,μ3(D)χ j, j‖2L2 ≤ Cψγ

(‖χ1,1 − χ1,μ,μ2(D)χ1,1‖2L2

)
+ C(μ−2Eel(χ) + μ−1

2 Esurf(χ)).

Moreover, due to Remark 2.2 and analogously as in the proof of Proposition 5.1,
we may drop the function ψγ , which yields, again from (41), that

‖χ j, j − χ j,μ,μ3(D)χ j, j‖2L2 ≤ C(μ−2Eel(χ) + μ−1
2 Esurf(χ)), j ∈ {2, 3}. (42)

Step 3: χ2,2 determines χ3,3. Using that χ3,3 = f2,3(χ2,2) with f2,3 a polynomial
(see Remark 6.2), we again invoke Lemma 2.5 with μ′ = μ2, μ′′ = μ3 and μ̃ = μ4.
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Hence, for 0 < μ4 = Mμμ3 < μ3 this yields the bounds

‖χ3,3 − χ3,μ,μ4(D)χ3,3‖2L2 ≤ Cψγ

(‖χ2,2 − χ2,μ,μ3(D)χ2,2‖2L2

)
+ C(μ−2Eel(χ) + μ−1

2 Esurf(χ))

≤ 2C(μ−2Eel(χ) + μ−1
2 Esurf(χ)),

where the last inequality is a consequence of (42).
Step 4: Optimization and conclusion.With the bounds from the previous steps, we

conclude that

V = ‖χ33‖2L2

≤ 2(‖χ3,μ,μ4(D)χ3,3‖2L2 + ‖χ3,3 − χ3,μ,μ4(D)χ3,3‖2L2)

� μ2μ3
4V

2 + (μ−1
2 + μ−2)Ê(χ) ∼ μ2(μ2μ2)

3V 2 + (μ−1
2 + μ−2)Ê(χ).

(43)

Absorbing the first right-hand contribution from (43) into the left-hand side, we choose

μ2 ∼ μ− 8
3 V− 1

3 . As a consequence, inserting this back into (43), we arrive at

V = ‖χ3,3‖2L2 � (μ
8
3 V

1
3 + μ−2)Ê(χ).

Choosing μ ∼ V− 1
14 , we obtain that

V � V
1
7 Ê(χ),

which yields the claim. 
�

Remark 6.2 We provide examples of nonlinear polynomials such that

χ2,2 = f1,2(χ1,1), χ3,3 = f1,3(χ1,1), χ3,3 = f2,3(χ2,2). (44)

These can be found for instance by interpolation. Hence, defining the numerical con-
stants a = 1344, b = 1440, c = 576, d = 5040, the polynomials

f1,2(t) = −1

a
t8 + 11

b
t6 + 83

c
t4 − 5801

d
t2,

f1,3(t) = 5
(1
a
t8 − 31

b
t6 + 101

c
t4 − 1787

d
t2

)
,

f2,3(t) = 5

12
t4 − 17

12
t2,

comply with (44).
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7 An Infinite-Order Laminate: Setting for the Tartar case

As a last but not least example, we turn to the proof of Theorem 4. Here the phase
indicator χ has the form

χ =
(−χ1 + χ3 − 3χ2 + 3χ4 0

0 −3χ1 + 3χ3 + χ2 − χ4

)

with χ j ∈ BV (R2; {0, 1})with χ1+χ2+χ3+χ4 ≤ 1. For this structure of the energy
wells each component χ j, j determines the other by a nonlinear polynomial relation

χ1,1 = f (χ2,2) and χ2,2 = g(χ1,1). (45)

This is a consequence of the rank-one-incompatibility of K , for a detailed treatment
see Rüland and Tribuzio (2022).

After non-dimensionalization it suffices to prove the following estimates:

Theorem 8 Let Ê(V ) be as in (12) and let K be as in (8). Then there exist four positive
constants C (1) > C (2) > 0, C2 > C1 > 0 depending on K such that for every V > 0
there holds

C1r̂
(1)(V ) ≤ Ê(V ) ≤ C2r̂

(2)(V ), where r̂ ( j)(V ) =
⎧⎨
⎩
V

1
2 if V ≤ 1,

V exp(−C( j)(log(V ))
1
2 ) if V > 1.

(46)

Similarly as in the previous sections, we split this into an upper bound construction
and lower bound estimates which we provide in the next subsections.

7.1 Upper Bounds

We begin by providing an upper bound construction:

Proposition 7.1 Let Ê(u, χ) be as in (11) and let K be as in (8). Let V > 1 be given
and let 
 = [0, L] × [0, H ] with H ≤ L and HL = V . There are two universal
constants 0 < c < 1, C > 0 such that for every L, H as above for which

L exp
( − C(log(L))

1
2
)

< cH , (47)

holds, there exist u ∈ W 1,∞
0 (
;R2) and χ ∈ BV (R2; K0) with supp(χ) = 
 such

that

Ê(u, χ) � V exp
( − C (2)(log(V ))

1
2
)

for every constant 0 < C (2) ≤ (log(2))
1
2 .
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The argument for this relies on a quantitative (in the volume) analysis of the con-
structions from Chipot (1999), Rüland and Tribuzio (2022), Winter (1997).

Proof Let r > 0 be a parameter to be determined, depending on L and H and com-
plying with

r < c0H , for some universal constant c0 < 1. (48)

For such r we define the following construction: Consider r j > 0 for j ∈ N, j ≥ 2,
such that r j+1 < r j and r2 < r . Here, we assume that r j can be expressed in terms
of r . Let ur ,k be obtained via the k-th-order lamination construction defined in Step
1 of the proof of Winter (1997, Theorem 3.1) (see also Rüland and Tribuzio 2022,
Sect. 2). Using the notation of Rüland and Tribuzio (2022) we also take χr ,k to be the
projection of ∇ur ,k onto K0. In Winter (1997) (equation at page 17 with ε = 1) it is
proved that

Ê(ur ,k, χr ,k) � LH
( 1

2k
+ r

L
+

k∑
j=2

2− j r j
r j−1

+ 2− j 1

rk

)
. (49)

The same estimate can be found by reworking the lines of Rüland and Tribuzio
(2022) as well. A good choice for the length scales r j comes from an optimization

procedure; by imposing r
L ∼ r j

r j−1
we get r j ∼ r j

L j−1 . With this choice (49) reduces to

Ê(ur ,k, χr ,k) � H
(
L2−k + r + Lkr−k).

Optimizing r in termsof k and L leads to r ∼ L
k

k+1 .A further optimization argument

in k implies 2k ∼ L
1

k+1 , which is nontrivial since L > 1. This finally results in the

choice k ∼ log(L)
1
2 .

In order to obtain information on the constant C (2), we let u := ur̂ ,k̂ and χ := χr̂ ,k̂
with

k̂ + 1 = �c1(log(L))
1
2 � and r̂ = c2L

k̂
k̂+1 ≤ c2L exp

( − c−1
1 (log(L))

1
2
)
,

for some constants c1, c2 > 0.Weobserve that condition (47) implies (48) if c < c−1
2 c0

and C ≤ c−1
1 .

After optimization, since Lk̂r̂−k̂ = r̂ we have

Ê(u, χ) � H(r̂ + L2−k̂) � HL
(
exp

( − c1 log(2)(log(L))
1
2
) + exp

( − c−1
1 (log(L))

1
2
))

.

By the arbitrary choice of the constant c1 in the definition of k̂, a final optimization of

the right-hand side implies c1 = (log(2))− 1
2 from which we conclude the result. 
�

Remark 7.2 We highlight that the condition (47) can be viewed as a geometric infor-
mation on the inclusion domains, in the sense that (scaling) optimal realizations of the
type discussed above cannot be too thin.
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Remark 7.3 (Towards a better constant) In the case of a fixed domain with V ∼ 1 in
Winter (1997) an upper scaling bound of form

Eε(V ) � exp
( − σ | log(ε)| 12 )

with σ ∈ (0, (2 log(2))
1
2 )was proved. This was possible thanks to a finer optimization

argument on the length scales r j with respect to the one performed in the proof above.
We believe that reworking our construction in the same way would imply the upper

bound of Proposition 7.1 to be true for every 0 < C (2) < (2 log(2))
1
2 . Nonetheless,

this may not be the optimal range of C (2), since iterated branching-type constructions
produce intermediate steps that have smaller (in terms of scaling) energy than (49). It
thus remains an interesting problem to determine the optimal constants C (1),C (2) in
the subalgebraic scaling law from Proposition 7.1.

7.2 Lower Bounds

We complement the upper bound construction with an ansatz-free lower bound esti-
mate.

Proposition 7.4 Let Ê(V ) be as in (12) and let K be as in (8). Then for every V > 1
there holds

Ê(V ) � V exp
( − C (1)(log(V ))

1
2
)
,

for some constant C (1) > (2 log(96))
1
2 .

Proof As inRüland andTribuzio (2022),we first observe that since theχ1,1 component
determines the χ2,2 component and vice versa by (45), we can iterate the commutator
bounds of Lemma 2.5. This yields that there exists a constant C > 0 such that for any
m ∈ 2N it holds that

V � ‖(χ1,μ,μm (D) + χ2,μ,μm+1(D))χ‖2L2 + ‖χ1,μ,μm (D)χ1,1 − χ1,1‖2L2

+ ‖χ2,μ,μm+1(D)χ2,2 − χ2,2‖2L2

� μμ2
mV

2 + Cm(μ−2 + μ−1
2 )Ê(χ),

where 0 < μ,μ2 < 1 are parameters to be determined and μm := cmμm−2μ2 <

μm−1 for some constant c > 1. Here we have already used that, by the assumption
that V ≥ 1 and Remark 2.2, we do not have losses due to the fact that Ê(χ) � 1. In
particular, we may consider the commutator with some γ fixed and still the leading
term is the linear one. From definition of μm we have

V � c2mμ2m−3μ2
2V

2 + Cm(μ−2 + μ−1
2 )Ê(χ).
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From V ∼ c2mμ2m−3μ2
2V

2 we infer μ2 ∼ V− 1
2 c−mμ− 2m−3

2 which gives

V � Cm
0 (μ−2 + μ

2m−3
2 V

1
2 )Ê(χ)

with C0 > Cc. An optimization, i.e. the choice μ ∼ V− 1
2m+1 , leads to

V � Cm
0 V

2
2m+1 Ê(χ).

Optimizing the right-hand side by takingm ∈ 2N such thatCm
0 ∼ V

2
2m+1 , which gives

m ∼ (log(C0))
− 1

2 (log(V ))
1
2 , we obtain

V exp(−2(log(C0))
1
2 log(V )

1
2 ) � Ê(χ).

In the end, in order to obtain information on the constant C (1) we make use of
estimates on the constants C and c that have been obtained in Rüland and Tribuzio
(2022). To be precise, since we can choose f and g in formula (45) to be polynomials
of degree 3 from Rüland and Tribuzio (2022, formulas (30) and (34)), the above
argument remains valid for c = 12. Moreover, constant C above is made explicit in
Rüland and Tribuzio (2022, formula (35)), in particular C > 8. Hence, the proof is
complete. 
�

8 Conclusion

Finally, concluding our article, we briefly summarize our main findings. Seeking to
contribute to an improved understanding of the complexity of microstructures in
non-convex, highly anisotropic, nonlocal, vectorial singular perturbation problems
as arising, for instance, in the modelling of nucleation phenomena in shape-memory
alloys, in this article

• we have identified non-convex, highly anisotropic models (in the form of the sets
K0) in which the complexity of the associated scaling law is determined by the
order of lamination of the parent phase with respect to the nucleating phase;

• to this end, in proving lower bounds, we have made systematic use of commutator
bounds and “nonlinear structural properties” of the sets K0;

• andhave illustrated that—while being strongly simplified in that frame-indifference
and the associated gauges are neglected—in interesting situations (e.g. as outlined
in Proposition 5.3) ourmodels recover scaling lawswhich had been earlier deduced
in the physically relevant settings with gauges.

We emphasize that, in particular, these simplified models may thus be considered
as interesting substitutes for some more realistic models with gauges. Thus, one may
hope to possibly infer interesting, finer information on the more complex models by
further studying these simplified substitutes.

In addition to these observations, let us however reiterate that for general nucleation
problems the order of lamination is not the only parameter determining the scaling
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law behaviour. For instance, we expect rather different behaviour for the “stair-case
laminates” from Conti et al. (2005) and Rüland and Tribuzio (2021). We further hope
that the ideas from the present article are also of interest in settings of geometrically
linearized elasticity and that the systematic commutator estimates may also play a
useful role in such a more complicated context.
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Appendix A. Branching Constructions in Rectangular Domains

In this section we present branching constructions as alternatives to the diamond-
shaped constructions from Propositions 4.2 and 5.2 and step 2 of the proof of
Corollary 1.1.

A.1. A Branching Construction for the Upper Bound fromTheorem 6

We begin by presenting the branching construction for the upper bound from Theo-
rem 6. To do so we refer to Rüland and Tribuzio (2021, Lemma 3.2) which in turn
reworks (Chan and Conti 2015, Lemma 2.3):

Alternative proof of Proposition 4.2 Given H > L > 1 consider the rectangle 
 =
[0, L] × [0, H ] and consider the construction given by Rüland and Tribuzio (2021,
Lemma 3.2) for the domain 
 and corresponding to N = � 4L

H � , where �·� denotes
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the upper integer-part. For a better understanding, we recall that N represents the
number of changes of phase of the zeroth generation of the branching construction.
From formula (19) of Rüland and Tribuzio (2021, Lemma 3.2) with p = 2 and ε = 1
we get

Ê(u, χ) ≤ C
( L3

H
+ H

)
, (50)

where χ is the projection of ∇u onto K0 and C > 0 is a positive constant depending
on K . Notice also that 1 ≤ N ≤ 4 and thus its contribution in (19) of Rüland and
Tribuzio (2021, Lemma 3.2) is absorbed by the constant C in the inequality above. By

an optimization argument we obtain L ∼ H
2
3 which implies V = H

5
3 and the result

follows. 
�

A.2 A Branching Construction for the Upper Bound from Corollary 1.1

We complement the higher-dimensional lens-shaped upper bound construction from
the proof of Corollary 1.1 with the corresponding branching construction.

Alternative proof of the upper bound construction from Corollary 1.1 We follow a sim-
ilar construction as in the first-order outer laminate from Rüland and Tribuzio (2021,
Proposition 6.3). Let u : R2 → R

2 be the functions introduced in the alternative proof
of Proposition 4.2 in the previous Sect. A.1. Then, we consider
 = [0, L]×[0, H ]n−1

and define ũ(x1, x2, . . . , xn) = (u(x1, ρ(x2, . . . , xn)), 0, . . . , 0) with

ρ(x2, . . . , xn) = max
2≤ j≤n−1

{∣∣∣x j − H

2

∣∣∣
}

+ H

2
,

and let χ̃ be the projection of ∇ũ onto K0. Hence (50) gives

Ê(ũ, χ̃) �
( L3

H
+ H

)
Hn−2.

By optimization we obtain that L ∼ H
2
3 . Hence, the constraint LHn−1 = V yields

H ∼ V
3

3n−1 and thus the desired result. 
�

A.3 A Branching Construction for the Upper Bound fromTheorem 7

In addition to the lens-shaped construction from the proof of Theorem 7 which was
presented in the main body of the text, an alternative upper bound construction for
Theorem 7 can be realized by a double branching construction, where the coarsest
oscillation happens a number of times of the order of one. The construction retraces
the steps of Rüland and Tribuzio (2021, Sect. 5) keeping track of H and L (that are
constants there).

Proof of Proposition 5.2 bymeans of a double branching construction As a first step we
consider the construction given in the alternative proof of Proposition 4.2 in Sect. A.1.
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In particular, as in the alternative proof of Proposition 4.2 in Sect. A.1, we apply
the construction from Rüland and Tribuzio (2021, Lemma 3.2) with the following
gradients

B1 = 1

3
A1 + 2

3
A2 and B2 = 1

3
A3 + 2

3
A4

(i.e. where in the notation from Rüland and Tribuzio (2021, Lemma 3.2) {A, B} =
{B1, B2}). We denote this macroscopic construction with ũ and χ̃ .

As in the aforementioned proof, the number of oscillations of the zeroth generation
of the branching construction (loosely speaking the number of “trees”) is 1 ≤ N ≤ 4.
Thus, without loss of generality, we assume that we have only one tree of branching,
i.e., N = 1.

We briefly describe the construction for the sake of clarity of exposition: again
consider 
 = [0, L] × [0, H ] with H > L > 1. This domain is subdivided in 2 j

identical cells equal (up to horizontal translation) to [0, � j ]×[h j , h j+1] for every j ≥ 0
corresponding to the generation. This process stops when j is such that � j > h j , then
using a cut-off argument tomatch the austenite phase. Here � j = L2− j and h j = H

2 θ j

for some θ ∈ ( 14 ,
1
2 ). In each cell ũ is defined by Rüland and Tribuzio (2021, Lemma

3.1) with A = B1 and B = B2.
Now we build u and χ replacing ũ and χ̃ with a branching construction, having

gradients A1, A2 on {χ̃ = B1} and A3, A4 on {χ̃ = B2}, respectively. For each
generation the set {χ̃ = B1} consists (up to translation) of R j ∪ ϕ(R j ) where

R j =
[
0,

� j

4

]
× [0, h j ] and ϕ(x1, x2) =

(� j x2
4h j

, x2
)
.

In each rectangle R j we apply Rüland and Tribuzio (2021, Lemma 3.2) with p = 2
and ε = 1 (inverting the roles of x1 and x2); its energy contribution is

(2θ3) j
H3

N 2
j L

+ 2− j LN j .

The shear gives an additional elastic energy term of order (
� j
h j

)2h j� j thus, the contri-
bution in R j ∪ ϕ(R j ) is

(2θ3) j
H3

N 2
j L

+ 2− j LN j + �3j

h j
.

Werefer the interested reader toRüland andTribuzio (2021) for details, in particular,
see the first formula above (43) on page 29 there.Anoptimization argument gives N j ∼
HL− 2

3 (θ2
2
3 ) j . The construction on {χ̃ = B2} is completely analogous. Multiplying

by the number of cells 2 j at the j th refinement generation and summing over j we
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infer

Ê(u, χ) �
∞∑
j=0

(θ2
2
3 ) j (HL

1
3 ) + (θ−12−2) j

L3

H
� HL

1
3 + L3

H
.

By another optimization argument we choose L ∼ H
3
4 which implies (from the

volume constraint) that L ∼ V
3
7 , H ∼ V

4
7 , and the result follows. 
�
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