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Abstract
Westudypattern formation inmagnetic compoundsnear thehelimagnetic/ferromagnetic
transition point in case of Dirichlet boundary conditions on the spin field. The energy
functional is a continuum approximation of a J1 − J3 model and was recently derived
in Cicalese et al. (SIAM J Math Anal 51: 4848–4893, 2019). It contains two param-
eters, one measuring the incompatibility of the boundary conditions and the other
measuring the cost of changes between different chiralities. We prove the scaling law
of the minimal energy in terms of these two parameters. The constructions from the
upper bound indicate that in some regimes branching-type patterns form close to the
boundary of the sample.

Keywords Microstructure · Energy scaling · Chirality transitions · Frustrated spin
system

Mathematics Subject Classification 49J40 · 82B21 · 82B24

1 Introduction

We study a continuum variational problem that arises from a statistical mechanics
description of magnetic compounds and describes pattern formation in case of incom-
patible boundary conditions. We prove a scaling law for the minimal energy in terms
of the problem parameters. Such scaling results have proven useful in a huge vari-
ety of singularly perturbed non-(quasi-)convex models for pattern forming systems
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where explicit minimizers cannot be easily determined analytically or numerically,
see, e.g., (Kohn 2007) for some examples. Pattern formation is then often related to
competing terms in the energy functional, favoring rather uniform or highly oscillatory
structures, respectively. The proofs of the scaling laws often involve branching-type
constructions where structures oscillate on refining scales near the boundary, among
many others see for instance the scaling laws in Kohn andMüller (1994), Conti (2000,
2006), Capella and Otto (2009, 2012), Chan and Conti (2015), Knüpfer et al. (2013),
Bella and Goldman (2015), Conti and Zwicknagl (2016), Conti et al. (2020), Rüland
and Tribuzio (2022)) for martensitic microstructure, (Kohn and Wirth 2014, 2016)
for compliance minimization, (Choksi et al. 2004, 2008; Conti et al. 2016) for type-
I-superconductors, (Ben Belgacem et al. 2002; Bella and Kohn 2014; Bourne et al.
2017; Conti et al. 2005) for compressed thin elastic films, (Conti and Ortiz 2016;
Conti and Zwicknagl 2016) for dislocation patterns, and (Brancolini and Wirth 2017;
Brancolini et al. 2018) for transport networks.

We point out that in particular a variety of magnetization patterns (including
branching structures) have been successfully explained via scaling laws of contin-
uummicromagnetic energies, see, e.g., Choksi and Kohn (1998), Choksi et al. (1998),
Dabade et al. (2019), DeSimone et al. (2006a), DeSimone et al. (2006b), Knüpfer and
Muratov (2011), Otto and Steiner (2010), Otto and Viehmann (2010), Venkatraman
et al. (2020)). While these models typically contain local and non-local terms, we will
focus on a purely local model that arises - at least heuristically - from a frustrated
spin system, see Diep (2013), Diep (2015) for the general context and Cicalese and
Solombrino (2015), Cicalese et al. (2019) for the specific setting considered here.
Precisely, starting from a 2-dimensional square lattice εZ2 with lattice width ε > 0,
we consider spin fields v : εZ2 → S1 and a configurational energy of the form (also
called J1 − J3-model)

Eε(v) := −α
∑

|i− j |=1

v(εi) · v( jε) +
∑

|i− j |=2

v(εi) · v( jε)

with some positive parameter α > 0, where the summation is taken over indices
i, j ∈ Z

2 ∩ 1
ε
�. While the first term favors nearest neighbors to have aligned spins,

the second term favors next-to-nearest neighbors (horizontally and vertically) to have
opposite spins. Note that the model considered here does not take into account diag-
onal interactions, for a recent analysis in that case see (Cicalese et al. 2021) and the
references therein. Depending on the size of the parameter α, different minimizers
arise. Precisely, the analysis in Cicalese and Solombrino (2015), Cicalese et al. (2019)
shows that (at least locally) the energy is minimized by ferromagnetic configurations,
i.e., constant spin fields, if α ≥ 4, while for small α < 4, the energy is minimized
by helimagnetic configurations, i.e., spin fields in which spins rotate at a fixed angle
φ = ± arccos(α/4) between horizontal and vertical nearest neighbors, respectively.
Such helical structures have recently been observed experimentally, see, e.g., Schoen-
herr et al. 2018; Uchida et al. 2006.
Of particular interest is the transition pointα ↗ 4where the ground state changes from
a helimagnetic to a ferromagnetic structure. Mathematically, an asymptotic analysis
in the sense of �-convergence in this transition regime in the limit of vanishing lattice
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spacing has been performed inCicalese et al. (2019). In the sequel,we briefly sketch the
idea as outlined there, for details and references seeCicalese et al. (2019).Heuristically,
it can be shown that the appropriately rescaled normalized energy Eε − min Eε can
be rewritten in terms of an appropriately rescaled version u of the angular lifting ũ,
given by v = (cos ũ, sin ũ), as an energy of the form

Iτ (u) =
∫

τ
(
| ∂1∂1u |2 + | ∂2∂2u |2

)
+ 1

τ

(
(1− | ∂1u |2)2 + (1− | ∂2u |2)2

)
dx

(1)

with τ =
√
2ε√
4−α

. Here, the preferred derivatives ∂1u = ±1 and ∂2u = ±1 are the
order parameters describing the chiralities, i.e., they correspond to helical structures
rotating clockwise (−1) and counterclockwise (+1) between horizontally and verti-
cally adjacent spins, respectively. We note that this is a heuristic simplification where
in particular discrete derivatives are approximated by continuous ones and we assume
that there are no vortices in the spin field. However, the rigorous analysis of Cicalese
et al. (2019), Cicalese and Solombrino (2015) supports such a perspective, at least in
certain parameter regimes. Roughly speaking, by the classicalModica–Mortola result,
one expects that the functional Iτ converges in the sense of convergence as τ → 0 to
a functional that is finite only on fields ∇u ∈ BV satisfying the differential inclusion
∇u ∈ {(±1,±1)}, see Cicalese et al. (2019) for the rigorous derivation. A respective
rigorous result in terms of �-convergence in the regime τ → τ0 ∈ (0,∞), relating the
discrete J1− J3-spin model with boundary conditions to a continuum functional of the
form (1) holds also true (seeCicalese and Solombrino 2015 for a one-dimensional local
result and Ginster et al. (in preparation) for the two-dimensional setting considered
here).
While the analysis in Cicalese et al. (2019) focuses on the local behavior, we study
the system under Dirichlet boundary conditions on the spin field. More precisely, we
start from the continuum model (1) on a square domain � = (0, 1)2, and derive the
scaling law of the minimal energy among configurations satisfying affine boundary
conditions u(0, y) = (1−2θ)y at the left boundary.Here, the parameter θ ∈ (0, 1/2) is
a compatibility parameter, where for θ = 0, the boundary condition is compatible with
the helical structures (±1, 1), θ = 1/2 corresponds to a ferromagnetic configuration
(at least in vertical direction), and θ ∈ (0, 1/2) indicates that the spin field on the
boundary rotates in vertical direction with an angle that is smaller than the optimal
angle φ = arccos(α/4).
For the ease of notation, we present the proof of the scaling law for a slightly simplified
functional, namely

Jσ (u) :=
∫

(0,1)2
dist2 (∇u, {(±1,±1)}) dL2 + σ | D2u | ((0, 1)2)
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Fig. 1 Left: The four preferred gradients can be combined so that the corresponding function is zero outside
the rotated square. Right: Rescaled versions of the rotated square can be used to cover (0, 1)2 so that the
resulting function u satisfies u = 0 on ∂(0, 1)2 and ∇u ∈ {(±1, ±1)} a.e

with affine boundary conditions on one boundary. Precisely, we show that there are
two scaling regimes for the minimal energy,

min
u(0,y)=(1−2θ)y

Jσ (u) ∼ min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

The second scaling is attained, for example, by the affine functions u(x, y) =
(1 − 2θ)y ± x , while the first one, which is relevant for small σ , is attained by a
branching-type construction. It turns out that in contrast to many other branching-type
constructions, the length scale on which patterns form, depends only on the compat-
ibility parameter θ but not on σ . Also, our upper bound construction does not show
equi-partition of energy but indicates that the surface term plays a major role. We note
that the second scaling implies that minimizers in this regime just fail to have gradients
in BV, see Rüland et al. (2019).
Let us briefly comment on the differences of Jσ compared to Iτ . First, the double-
well potential penalizing deviations from the preferred gradients (±1,±1) is different.
However, the main difference lies in the growth for large arguments which play no
role in our estimates, and we can easily transfer our results to the original double-
well potential, see Sect. 4.2. Next, the higher-order term in Iτ does not control the full
Hessian but only the two diagonal components. This also does not influence the scaling
properties, see Remark 3. Finally, we work in Jσ with a BV-type regularization while
Iτ contains a quadratic regularization term. As is well known for related problems
(see, e.g., Schreiber 1994; Zwicknagl 2014) this usually does not qualitatively change
the scaling regimes of the minimal energy, see also Remark 2.

The functional Jσ is a four-gradient functional, and hence formally lies “in between”
very well-studied problems, namely scalar models for martensitic microstructures
(preferred gradients (1,±1)), see, e.g., Kohn and Müller (1992), Kohn and Müller
(1994), and the Aviles–Giga functional (preferred gradients in S1), see, e.g., Aviles
et al. (1987). While for the two-gradient problem, the minimal energy scales as
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min{σ 2/3θ2/3, θ2} (this follows by a change of variables1 directly e.g. from Zwick-
nagl 2014), the minimal energy for the Aviles–Giga functional in our setting is 0.2

Thus the scaling we prove here for the four-gradient setting indeed lies “in between.”
However, while any test function for the two-gradient problem yields a test function
for Jσ , this functional has much more flexibility which comes from the high compati-
bility of the four gradients, see Fig. 1. Roughly speaking, this allows to construct test
functions with low energy by covering the domain with building blocks using only
the preferred gradients in the spirit of a simplified convex integration for differential
inclusions, see, e.g., Conti (2008), Müller and Šverák (1999), Pompe (2010), Rüland
et al. (2018), Rüland et al. (2020), Rüland and Tribuzio (2022). This relation will
be explored in Sect. 5. We remark that a similar functional with corresponding four
preferred magnetizations, in which patterns form due to non-local terms, has been
studied in Dabade et al. (2019), Venkatraman et al. (2020).
The rest of the article is structured as follows: After briefly collecting the notation in
Sect. 2, themain resultwill be proven in Sect. 3.We state the energy scaling law, discuss
the regimes and prove the upper bound in Sect. 3.1 and the lower bound in Sect. 3.2. In
Sect. 4, several generalizations are considered, including p-growth, different double-
well potentials, boundary conditions on the full boundary, and rectangles. Finally, in
Sect. 5, consequences for solutions of the related differential inclusion as derived in
Cicalese et al. (2019) are collected.

2 Notation and Preliminaries

We will write C or c for generic constants that may change from line to line but do
not depend on the problem parameters. The notation ci with an index i indicates that
these are fixed constants which do not change within a proof. We write log to denote
the natural logarithm. For the ease of notation, we always identify vectors with their
transposes.
For a measurable set B ⊂ R

n with n = 1, 2, we use the notation | B | or Ln(B) to
denote its n-dimensional Lebesgue measure.
For σ > 0 and θ ∈ (0, 1/2], we set

Aθ :=
{
u ∈ W 1,2((0, 1)2) : ∇u ∈ BV ((0, 1)2), u(0, x2) = (1 − 2θ)x2

}
,

and consider the functional Eσ,θ : Aθ → [0,∞) by

Eσ,θ (u) =
∫

(0,1)2
dist2(∇u, K ) dx + σ | D2u | (�)

where

K := {(±1,±1)} .

1 Set v(x, y) = 1
2 (u(x, y) − x − (1 − 2θ)y).

2 Take u(x, y) = (1 − 2θ)y + 2(θ(1 − θ))1/2x .
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The expression | D2u | (�) in the second term of the functional Eσ,θ denotes the
total variation of the vector measure D2u. Note that u ∈ Aθ in particular implies that
u ∈ W 1,1((0, 1)2) and ∇u ∈ BV . Hence, u has a continuous representative on the
closed square [0, 1]2, see, e.g., (Conti and Ortiz 2016, Lemma 9). We will always
identify such functions with their continuous representatives.
For a Borel set B ⊂ R

2 and u ∈ W 1,2(B) with ∇u ∈ BV , we use the notation
Eσ,θ (u; B) for the energy on B, i.e.,

Eσ,θ (u; B) =
∫

B
dist2(∇u, K ) dx + σ | D2u | (B). (5)

3 Energy Scaling on the Square (0, 1)2

Our main result is the following scaling law for the minimal energy.

Theorem 1 There exists a constant CT > 0 such that for all σ > 0 and all θ ∈ (0, 1
2 ],

1

CT
min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
≤ min

u∈Aθ

Eσ,θ (u)

≤ CT min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

We will prove the upper bound in Proposition 2 and the lower bound in Proposition 3.

Remark 1 We note some properties of the scaling regimes in Theorem 1.

(i) If σ ≥ θ2 then

σ

( | log σ |
| log θ | + 1

)
≥ σ ≥ θ2.

(ii) If σ ∈ [θk+1, θk) for some k ∈ N, then

σk ≤ σ(k + 1) ≤ σ

( | log σ |
| log θ | + 1

)
≤ σ(k + 2) ≤ 3σk.

3.1 The Upper Bound

In this section, we provide test functions to prove the upper bound in Theorem 1.
Before we start the proof, let us briefly explain the heuristics of the construction of
the test function in the regime σ < θ2 in which the affine function does not yield the
optimal scaling. Instead, we provide a branching construction which (up to a small
interpolation layer) only uses the four preferred gradients. In particular, in the y-
variable the function is a saw-tooth function with slope±1, where the volume fraction
of slope+1 is 1−θ and of slope−1 is θ tomatch the slope 1−2θ = (1−θ)·1+θ ·(−1)
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on the boundary, see Fig. 2. If we assume that ∂1u = ±1, we observe that from the
boundary condition, we have | u(x, y)− (1−2θ)y |≤ x . On the other hand, assuming
that ∂2u(x, y) = ±1, one obtains that the number of jumps of the y-derivative on
the slice {x} × (0, 1) is of order θ

x , see Fig. 4. Following these estimates, we present
a self-similar construction that refines in the k-th step from x ≈ θk approximately
θ−k+1 jumps of the y-derivative into approximately θ−k jumps at x ≈ θk+1. If θ = 1

m
for some m ∈ N (i.e., θ−k ∈ N) this can be done in an exact manner, see Fig. 2,
for other θ a modification is needed leading to slightly more complicated branching
patterns, see Fig. 3. Moreover, we note that although other branching constructions
are in principle possible, the construction presented below yields in every construction
step an approximate balance between the occurring horizontal and vertical interfaces.
The proof of the lower bound (see Sect. 3.2) indicates that this is essential for a function
providing the optimal scaling.

Proposition 2 There exists a constantCU > 0 such that for allσ > 0andall θ ∈ (0, 1
2 ]

there exists u ∈ Aθ such that

Eσ,θ (u) ≤ CU min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

Proof Step 1: Preparation. We first note that the affine function uaff(x, y) = (1 −
2θ)y + x satisfies

Eσ,θ (uaff) ≤ 4θ2.

In view of Remark 1(i), it hence suffices to consider the case σ < θ2 and to construct

a function u such that Eσ,θ (u) ≤ CUσ
( |log σ |

|log θ | + 1
)
with a constantCU chosen below.

Let k ∈ N be such that θk+1 ≤ σ < θk . To simplify notation, set

m := �1
θ
� <

1

θ
+ 1 and δ := 1

m
≤ θ.

We note that we always have 1/δ ∈ N and δ = 1/m > θ/(θ + 1), and hence

δθ − (θ − δ) = δ(θ + 1) − θ>0.

We point out that many of the expressions below simplify if θ−1 ∈ N since then δ = θ .
For an illustration of the construction described in the next steps for θ = 1

3 see Fig. 2
(the case θ = 1/2 is sketched in Fig. 6).
Finally, we fix some N ∈ N to be chosen later (see (14)).

Step 2: Construction of the building block.
As in many branching constructions (see, e.g., Kohn and Müller 1994), we first con-
struct an auxiliary function that acts as a building block for the construction of u. For
the ease of notation, we describe an admissible function via its gradient field. By the
boundary condition u(0, x2) = (1 − 2θ)x2, this uniquely determines the function u.

123
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Precisely, we define V : (δθ, θ ] × R → R
2 as the function which is 1-periodic in

y-direction and satisfies the following (see Fig. 3):

(i) If (x, y) ∈ [δθ, θ ] × [1 − δ, 1) then

V (x, y) =

⎧
⎪⎨

⎪⎩

(−1,−1) if y ≥ 1 − δ − (x − θ) and x ≥ δθ + θ − δ,

(1,−1) if y ≥ 1 − δθ and x ≤ δθ + θ − δ,

(1, 1) else.

(ii) If (x, y) ∈ [δθ, θ ] × [1 − 2δ, 1 − δ) then

V (x, y) =

⎧
⎪⎨

⎪⎩

(1,−1) if y ≥ max{1 − (1 + θ)δ, 1 − θ + (x − θ)},
(1, 1) if y ≤ 1 − (1 + θ)δ and δθ ≤ x ≤ 2θ − δ − δθ,

(−1, 1) else.

(iii) If (x, y) ∈ [δθ, θ ] × [(� − 1)δ, �δ) for 1 ≤ � ≤ 1
δ

− 2 then

V (x, y) =

⎧
⎪⎨

⎪⎩

(1,−1) if y ≥ max{(� − θ)δ, (� − θ)δ + x − (δθ + θ − δ + (� − 1)δθ)},
(1, 1) if y ≤ (� − θ)δ and x ≤ δθ + θ − δ + (� − 1)δθ,

(−1, 1) else.

Note that V is curl-free on (δθ, θ)×R as it is piecewise constant and ν ‖ (V− − V+)

on its jump set JV , where ν is the measure-theoretic normal to JV , see also Fig. 3.
Consequently, V is a gradient field on (δθ, θ) × R, and additionally,

V (x, y) ∈ K for almost all (x, y), and

| DV | ((δθ, θ) × (0, 1)) ≤ 2(1 − δ)θm (
√
2 + 2) ≤ 8mθ ≤ 16.

We will use in the next step that for the second component V (2) of V , we have

V (2)(θ, y) = V (2)(δθ, δy) for all y ∈ R. (8)

Step 3: Branching construction.
We now set VN : (δN θ, 1) × (0, 1) → R

2 for the fixed number N ∈ N by

VN (x, y) =

⎧
⎪⎨

⎪⎩

(1,−1) if x ≥ θ and y ≥ 1 − θ,

(1, 1) if x ≥ θ and y ≤ 1 − θ,

V (δ−k+1x, δ−k+1y) if x ∈ [δkθ, δk−1θ) for some 1 ≤ k ≤ N .

We note that VN is curl-free as ν ‖ (V−
N − V+

N ) on JVN , where ν is the measure-
theoretic normal to JVN , see also (8) and Fig. 3. Moreover, VN (x, y) ∈ K for almost
all (x, y)∈ (δN θ, 1), and

| DVN |
(
(δN θ, 1) × (0, 1)

)
≤ (16 + 2)N + 2 ≤ 20N . (9)
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Let ũN : (δN θ, 1) × (0, 1) → R be a potential, i.e., ∇ũN = VN , such that
ũN (δN θ, 0) = 0. Then notice that (see Fig. 4)

|ũ(δN θ, y) − (1 − 2θ)y| ≤ δN2θ. (10)

Finally, we interpolate linearly in x to satisfy the boundary condition, and eventually
define uN : (0, 1)2 → R by

uN (x, y) =
{
ũN (x, y) if x ≥ δN θ,

(1 − 2θ)y + δ−N θ−1x
(
ũN (δN θ, y) − (1 − 2θ)y

)
else.

(11)

Step 4: Estimate for the energy.
By (11) and (10), we have for a.e. (x, y) ∈ (0, δN θ) × (0, 1) that

| ∂1uN (x, y) | ≤ 2 and | ∂2uN (x, y) |
≤ (1 − 2θ)+ | ∂2ũN (δN θ, y) − (1 − 2θ) |≤ 3.

In particular, we have

∫

(0,1)2
dist(∇uN , K )2 dxdy ≤ 5δN θ. (12)

Next, by (9), and since L1
({
y ∈ (0, 1) : ∂2uN (δN θ, y) = 1

}) = 1 − θ and
L1

({
y ∈ (0, 1) : ∂2uN (δN θ, y) = −1

}) = θ , we have

| D2uN | ((0, 1)2)

≤ 20N+ | D2uN | ((0, δN θ ] × (0, 1))

≤ 20N + δN θ |∂2∂2uN (δN θ, ·)|((0, 1)) + 2
∫ 1

0
| ∂2ũN (δN θ, y) − (1 − 2θ) | dy

≤ 20N + δN θ2δ−N + 2((1 − θ)2θ + (2 − 2θ)θ)

≤ 20N + 10θ ≤ 30N . (13)

Now fix

N :=
⌈
log σ

θ

log δ

⌉
. (14)

123



   20 Page 10 of 36 Journal of Nonlinear Science            (2023) 33:20 

Fig. 2 Sketch of the construction
for θ = 1/3 and N = 4. The
regions of the four different
gradients are color-coded as in
Fig. 1

Since 0 < σ < θ2 < 1 we have
log σ

θ

log δ
> 0 and consequently N ≥ 1. Combining (12)

and (13) and using that | log δ |≥| log θ |, we obtain

Eσ,θ (uN ) ≤ 5θδN + 30σN ≤ 5θδ
log σ

θ
log δ + 30σ

(
log σ

θ

log δ
+ 1

)

≤ 5σ + 30σ

(
log σ

log δ
+ 1

)

≤ 5σ + 30σ

( | log σ |
| log θ | + 1

)
.

This concludes the proof of the upper bound with CU :=35. ��

Remark 2 If we replace the BV-type regularization σ | D2u | by the smoother one
σ 2

∫
�
(D2u)2 dL2, we can use slight modifications of the above-constructed test func-

tions to obtain the same upper bound on the energy scaling. Clearly, the function
u = (1 − 2θ)y ± x produces again an energy of order θ2. Hence, it remains to
consider the branching regime σ < θ2. Starting with the branching construction
uN : (0, 1)2 → R (N chosen as in (14)) which we can extend in y-direction so that
∇uN is 1-periodic, we set

ũ(x, y) :=
{
uN (x − 2σ, y) if x ∈ (2σ, 1),

(1 − 2θ)y if x ∈ (0, 2σ)

and smooth this function with a symmetric mollifier of support Bσ (0). For the
smoothed function a straightforward computation shows that one can estimate the
term σ 2

∫
�
(D2u)2 dL2, up to a constant, by σN . On the other hand, in addition to

the region (0, 4σ) × (0, 1) (outside of (0, 3σ) × (0, 1) we have ∇ũ ∈ K) the gradient
of the mollified function agrees with one of the preferred gradients except for a tube
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Fig. 3 Left: Gradient field V of the building block described in Step 2 for θ = 2/5 and m = 3. Note that
the left region of size θ − δ is not needed in the construction but is rather added for the sake of an easier
notation in the proof. On the other hand, due to Proposition 3 deleting this region from the construction
cannot lead to an improved energy scaling. Right: The corresponding branching construction for N = 3

Fig. 4 Sketch of the function u(δkθ, ·) for δ = θ = 1
3 and k = 0, 1, 2, 3

with width 2σ around the jump set of J∇ũ . Thus, we can estimate the second term in
the energy, up to a constant, by σN + 4σ . Recalling the computation at the end of the
proof of Proposition 2 leads to the claimed energy scaling.

123
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3.2 The Lower Bound

In this section, we prove the ansatz-free lower bound in Theorem 1. Precisely, we
show the following statement.

Proposition 3 There exists a constant CL > 0 such that for all σ > 0, all θ ∈ (0, 1
2 ],

and all u ∈ Aθ

Eσ,θ (u) ≥ CL min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

Remark 3 A careful inspection of the upcoming proof shows that the same lower
bound holds true even if the term σ | D2u | (�) is replaced by the term
σ(| ∂1∂1u | (�)+ | ∂2∂2u | (�)).

Proof The proof is split in several steps. By Lemma 4, for fixed θ0 ∈ (0, 1/2], there
exists a constant cA > 0 such that for all θ ∈ [θ0, 1/2], all σ > 0 and all u ∈ Aθ ,

Eσ,θ (u) ≥ cA min {σ(| log σ | +1), 1} .

On the other hand, Corollary 7 shows that there exist θ0 ∈ (0, 1/2], k0 ∈ N with
k0 ≥ 2 and cB > 0 (depending only on k0) such that for all σ > 0 and all θ ∈ (0, θ0],
we have

min
u∈Aθ

Eσ,θ (u) ≥ cB

{
min{σ, θ2} if σ ≥ θk0 ,

kσ if σ ∈ [θk+1, θk)for some k0 ≤ k.
(15)

Note that by Remark 1, this indeed implies the assertion:

(i) If σ ≥ 1 then

min
u∈Aθ

Eσ,θ (u) ≥ cB min{σ, θ2} = cBθ2 ≥ cB min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

(ii) If σ ∈ [θ�+1, θ�) for some 0 ≤ �<k0 then by Remark 1(ii), we have

(k0 + 2)σ ≥ (� + 2)σ ≥ σ

( | log σ |
| log θ | + 1

)
,

and consequently, by (15),

min
u∈Aθ

Eσ,θ (u) ≥ cB
k0 + 2

k0 + 2
min{σ, θ2} ≥ cB

k0 + 2
min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

(iii) If σ ∈ (θk+1, θk) for some 2 ≤ k0 ≤ k then again by Remark 1(ii), we have

2kσ ≥ (k + 2)σ ≥ σ

( | log σ |
| log θ | + 1

)
≥ min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
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and consequently, by (15),

min
u∈Aθ

Eσ,θ (u) ≥ cBkσ ≥ cB
2

min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

Hence, choosing cL = min{cA, cB
k0+2 } concludes the proof. ��

As outlined above, we will prove the lower bound (15) separately for large and small
θ , respectively. We build on some techniques that have been used for example in
the derivation of scaling laws for martensitic microstructures, see, e.g., Conti (2006),
Conti et al. (2017), Conti et al. (2020), Zwicknagl (2014).

Lemma 4 Let θ0 ∈ (0, 1/2]. There exists a constant cA > 0 (depending only on θ0)
such that for all σ > 0, all θ ∈ [θ0, 1/2], and all u ∈ Aθ

Eσ,θ (u) ≥ cA min {σ (|log σ | + 1) , 1} .

Proof Let u be an admissible function such that

Eσ,θ (u) ≤ min{σ(| log σ | +1), 1}. (16)

(Otherwisewe are done.)Note that there existmeasurable functionsρx , ρy : (0, 1)2 →
{±1} such that almost everywhere in (0, 1)2 it holds

min{| ∂1u − 1 |, | ∂1u + 1 |} =| ∂1u + ρx | and

min{| ∂2u − 1 |, | ∂2u + 1 |} =| ∂2u + ρy | .

Step 1: Comparison of u on vertical slices to the boundary data
For almost every x ∈ (0, 1) and almost every y ∈ (0, 1) we have by the fundamental
theorem of calculus that

u(x, y) − (1 − 2θ)y = u(x, y) − u(0, y)

=
∫ x

0
∂1u(t, y) dt

=
∫ x

0
(∂1u(t, y) + ρx (t, y)) dt −

∫ x

0
ρx (t, y) dt .

Consequently, it holds for almost every x ∈ (0, 1) that

∫ 1

0
| u(x, y) − (1 − 2θ)y | dy ≤

∫ 1

0

∫ x

0
| ∂1u(t, y) + ρx (t, y) | dt dy + x

≤ x
1
2

(∫ 1

0

∫ x

0
| ∂1u(t, y) + ρx (t, y) |2 dt dy

) 1
2

+ x

≤ x
1
2 Eσ,θ (u)

1
2 + x .
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Step 2: A lower bound on the energy on many vertical slices.
We fix a constant

0 < c1 ≤ θ30

4 · 64 · 722 . (17)

Let x̃ ∈ (0, 1) be such that

1. | ∂2∂2u | ({x̃} × (0, 1)) ≤ c1
x̃ , and

2.
∫ 1
0 min{| ∂2u(x̃, s) − 1 |, | ∂2u(x̃, s) + 1 |}2 ds ≤ θ20

12 .

We claim that this implies that x̃ ≤ c1
θ0
min {σ (| log σ | +1) , 1} or x̃ ≥ 2c1

θ0
, so that

in particular for almost all x̃ ∈ ( c1
θ0
min {σ (| log σ | +1) , 1} , 2c1

θ0
) at least one of the

two properties fails. Note that by (17), this is an interval of length at least c1
θ0

that is
completely contained in (0, 1).
To see the claim, we proceed similarly to Conti et al. (2017) and subdivide the interval
(0, 1) into the three subsets

M1 := {y ∈ (0, 1) : ∂2u(x̃, y) ≥ 1 − θ0} ,

M2 := {y ∈ (0, 1) : ∂2u(x̃, y) ≤ −1 + θ0} ,

and M3 := {y ∈ (0, 1) : −1 + θ0 < ∂2u(x̃, y) < 1 − θ0} .

Since the three sets form a partition of the interval (0, 1), one of them has measure at
least 1

3 . From property 2. it follows immediately that | M3 |≤ 1
12 < 1

3 .
We consider the remaining two cases separately.

(a) Consider first the case that | M1 |≥ 1
3 . By the coarea formula, we have (using

property 1.)

∫ 1−θ0

1− 3θ0
2

H0(∂{y∈ (0, 1) : ∂2u(x̃, y) > s}) ds

≤
∫

R

H0(∂{y∈ (0, 1) : ∂2u(x̃, y) > s}) ds

= | ∂2∂2u(x̃, ·) | (0, 1) ≤ c1
x̃

.

Therefore, there is some s ∈ (1 − 3θ0
2 , 1 − θ0) such that H0(∂{y ∈ (0, 1) :

∂2u(x̃, y) > s}) ≤ 2c1
θ0 x̃

. Since |{y : ∂2u(x̃, y) > s}| ≥| M1 |≥ 1
3 , there exists a

family of disjoint open intervals (Ik)Kk=1 such that

K ≤
⌈
2c1
θ0 x̃

⌉
,

K∑

k=1

| Ik |≥ 1

3
and

K⋃

k=1

Ik ⊆ {y ∈ (0, 1) : ∂2u(x̃, y) ≥ s} .
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On each interval Ik , we have ∂2u(x̃, ·) ≥ 1− 3θ0
2 , which implies that for all y ∈ Ik

(recall that 1 − 3θ0
2 = 1 − 2θ0 + θ0/2 ≥ 1 − 2θ + θ0/2)

|u(x̃, y) − (1 − 2θ)y| =
∣∣∣∣u(x̃, 0) +

∫ y

0
(∂2u(x̃, t) − (1 − 2θ)) dt

∣∣∣∣

≥
∣∣∣∣|u(x̃, 0)| −

∣∣∣∣
∫ y

0
(∂2u(x̃, t) − (1 − 2θ)) dt

∣∣∣∣

∣∣∣∣

≥ min
α∈R|α − θ0

2
y|,

and hence

∫

Ik
| u(x̃, y) − (1 − 2θ)y | dy ≥ min

α∈R

∫

Ik
|α − θ0

2
y| dy

= 2
θ0

2

∫ |Ik |/2

0
y dy = θ0

8
| Ik |2 . (18)

Summing estimate (18) over k and using Step 1 yields by assumption (16)

K∑

k=1

θ0

8
| Ik |2 ≤

∫ 1

0
|u(x̃, y) − (1 − 2θ)y| dy ≤ x̃

1
2 Eσ,θ (u)

1
2 + x̃

≤ x̃
1
2 min{σ(| log σ | +1), 1} 1

2 + x̃ . (19)

There are two possibilities: If K = 1 ≥ 2c1
θ0 x̃

then x̃ ≥ 2c1
θ0
. Otherwise, we have

1<K ≤
⌈
2c1
θ0 x̃

⌉
≤ 4c1

θ0 x̃
and from

∑K
k=1 | Ik |≥ 1

3 we deduce by convexity and (19)

that

θ20

72
· x̃

4c1
≤ θ0

8

K

(3K )2
≤

K∑

k=1

θ0

8
| Ik |2≤ x̃

1
2 min{σ(| log σ | +1), 1} 1

2 + x̃ .

(20)

Note that for t ≥ 4·64·722·c21
θ40

min{σ(| log σ | +1), 1},

t−1/2 min{σ(| log σ | +1), 1}1/2 + 1 ≤ θ20

8 · 72·c1 ,

which implies that (20) can only hold for x̃<
4·64·722c21

θ40
min{σ(| log σ | +1), 1}.

Note that
4·64·722·c21

θ40
≤ c1

θ0
which concludes the proof of the claim in this case.
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(b) Consider now the case | M2 |≥ 1
3 . We proceed along the lines of (a), and find that

there is some t ∈ (−1,−1+θ0) such thatH0(∂{y ∈ (0, 1) : ∂2u(x̃, ·) < t}) ≤ c1
θ0 x̃

.

Consequently, there exists a family of disjoint open intervals (Ik)Kk=1 such that

K ≤
⌈

c1
θ0 x̃

⌉
,

K∑

k=1

| Ik |≥ 1

3
and

K⋃

k=1

Ik ⊆ {y ∈ (0, 1) : ∂2u(x̃, y) ≤ t} .

In this case, we obtain that in each interval Ik ,

∫

Ik
| u(x̃, y) − (1 − 2θ)y | dy ≥ min

α∈R

∫

Ik
|α − (1 − θ0)y| dy

= 1 − θ0

4
| Ik |2≥ θ0

8
| Ik |2,

and the rest follows as in case (a).

Step 3. Conclusion.

By Step 2, for almost all x̃ ∈ ( c1
θ0
min {σ (| log σ | +1) , 1} , 2c1

θ0
) at least one of the

properties 1. or 2. is not true. Consequently,

Eσ,θ (u) ≥
∫ 2c1

θ0

c1
θ0

min{σ(|log σ |+1),1}
min

{
σc1
x

,
θ20

12

}
dx . (21)

We now consider two cases separately.

(i) If σ ≤ 1
2 then we find for x ≥ c1

θ0
min{σ(| log σ | +1), 1} = c1

θ0
σ(| log σ | +1)

that

σc1
x

≤ σc1θ0
c1σ(| log σ | +1)

≤ θ0.

Hence, min{σc1
x ,

θ20
12 } ≥ θ0

12
σc1
x for all x ∈ ( c1

θ0
min {σ (| log σ | +1) , 1} , 2c1

θ0
), and

since log(| log σ | +1) ≤ max
{ 9
10 log(2),

3
4 | log(σ ) |}, we deduce from (21)

Eσ,θ (u) ≥ θ0

12

∫ 2c1
θ0

c1
θ0

σ(|log σ |+1)

σc1
x

dx = θ0

12
c1σ (log(2) − log (σ (| log σ | +1)))

≥ θ0

12
c1σ

(
1

10
log(2) + 1

4
| log(σ ) |

)
≥ θ0c1

12

log(2)

10
σ (| log(σ ) | +1) ,

(23)

which concludes the proof in this case.
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(ii) If σ > 1/2, we have for all x ≤ 2c1
θ0

that σc1
x ≥ σθ0

2 ≥ θ0
4 ≥ θ20

12 , and hence

Eσ,θ (u) ≥
∫ 2c1

θ0

c1
θ0

θ20

12
= c1θ0

12
. (24)

If we choose cA := θ0c1
12

log(2)
10 , the assertion follows from (23) and (24). ��

The proof of the lower bound in the case θ � 1 is split into two lemmata which
combined lead to the estimate in Corollary 7. We start with a general estimate which
will be relevant for the lower bound only if σ ≥ θ32.

Lemma 5 There exists c(1)
B > 0 such that for all θ ∈ (0, 1/2], all σ > 0, and all

u ∈ Aθ , we have

Eσ,θ (u) ≥ c(1)
B min{θ2, σ }.

Proof Letu be an admissible function such that Eσ,θ (u) ≤ 1
2·242 min{θ2, σ } (otherwise

there is nothing to prove).
Step 1: Choice of representative vertical and horizontal slices.
By Fubini and slicing, we find x̃ ∈ ( 34 , 1) satisfying

∫ 1

0
min {| ∂2u(x̃, t) − 1 |, | ∂2u(x̃, y) + 1 |}2 dy + σ |∂2∂2u(x̃, ·)|(0, 1)

≤ 4

(∫ 1

3/4

∫ 1

0
min{| ∂2u(x, y) − 1 |, | ∂2u(x, y) + 1 |}2 dy dx

+ σ |D2u|((3/4, 1) × (0, 1))

)

≤ 4Eσ,θ (u) ≤ 2

242
min{θ2, σ }. (25)

Similarly, there are y1 ∈ (1/8, 1/4) and y2 ∈ (3/4, 7/8) such that

∫ 1

0
min {| ∂1u(x, y1) − 1 |, | ∂1u(x, y1) + 1 |}2 dx + σ |∂1∂1u(·, y1)|(0, 1)

≤ 4

242
min{θ2, σ } and

∫ 1

0
min {| ∂1u(x, y2) − 1 |, | ∂1u(x, y2) + 1 |}2 dx + σ |∂1∂1u(·, y2)|(0, 1)

≤ 4

242
min{θ2, σ }. (26)
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Step 2: Partial derivatives do not jump between the wells on the chosen slices.
By the coarea formula,

∫ 1/2

−1/2
H0 (∂ {x ∈ (0, 1) : ∂1u(x, yi ) > s}) ds ≤ |∂1∂1u(·, yi )|(0, 1) for i = 1, 2.

Hence, there exists s̃ ∈ (− 1
2 ,

1
2 ) such that

H0(∂{x : ∂1u(x, y1) > s̃}) + H0(∂{x : ∂1u(x, y2) > s̃})
≤ |∂1∂1u(·, y1)| ((0, 1)) + |∂1∂1u(·, y2)|(0, 1) ≤ 8

242
< 1,

and therefore

H0(∂{x : ∂1u(x, y1) > s̃}) = H0(∂{x : ∂1u(x, y2) > s̃}) = 0.

In particular, we have for i = 1, 2 either ∂1u(x, yi ) ≥ s̃ for almost every x ∈ (0, 1) or
∂1u(x, yi ) ≤ s̃ for almost every x ∈ (0, 1). Without loss of generality, we may assume
that

∂1u(x, y1) ≥ s̃ for almost every x ∈ (0, 1), (27)

the other case can be treated analogously. Note that we will consider the two possibil-
ities for y2 separately in the sequel.
Proceeding analogously, we also find some t̃ ∈ (− 3

4 ,− 1
2 ) such that

H0 (∂{y∈ (0, 1) : ∂2u(x̃, y) > t̃}) = 0. (28)

Step 3: A lower bound for the energy.
By (27), for almost every x ∈ (0, 1) we have ∂1u(x, y1) ≥ s̃ > −1/2, which implies
that

|∂1u(x, y1) − 1| < 3|∂1u(x, y1) + 1|.

Hence, by Hölder’s inequality, we have for every x ∈ (0, 1), using the choice of y1
(see (26))

∣∣∣∣
∫ x

0
∂1u(t, y1) dt − x

∣∣∣∣
2

≤
(∫ x

0
|∂1u(t, y1) − 1| dt

)2

≤
∫ x

0
| ∂1u(t, y1) − 1 |2 dt

≤ 9
∫ x

0
min {| ∂1u(t, y1) − 1 |, | ∂1u(t, y1) + 1 |}2 dt

≤
(

θ

4

)2

.
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Consequently, by the fundamental theorem of calculus,

(u(x, y1) − u(0, y1)) − x =
∫ x

0
∂1u(t, y1) dt − x ∈

(
−θ

4
,
θ

4

)
. (29)

We proceed similarly for y2 where we consider the two cases from Step 2 separately.
If ∂1u(x, y2) ≥ s̃ for almost every x ∈ (0, 1) then as above for y1,

(u(x, y2) − u(0, y2)) − x ∈
(

−θ

4
,
θ

4

)
for all x ∈ (0, 1).

In the other case, i.e., if ∂1u(x, y2) ≤ s̃ for almost every x ∈ (0, 1) then we find
similarly

(u(x, y2) − u(0, y2)) + x ∈
(

−θ

4
,
θ

4

)
for all x ∈ (0, 1).

We consider the two cases separately.
Case 1: Suppose that u(x, y2) − u(0, y2) − x ∈ (− θ

4 , θ
4 ) for all x ∈ (0, 1).

Recalling (29), in this case, we have that x − θ
4 < u(x, yi ) − u(0, yi ) < x + θ

4 for
i ∈ {1, 2}. Hence, using y2 − y1 ≥ 1

2 and the boundary condition at x = 0, we obtain

(1 − 3θ)(y2 − y1)

≤ (1 − 2θ)(y2 − y1) − 1

2
θ = u(0, y2) − u(0, y1) − θ

2

= u(x, y2) − (u(x, y2) − u(0, y2)) − θ

4
− u(x, y1) + (u(x, y1) − u(0, y1)) − θ

4
≤ u(x, y2) − u(x, y1)

= u(0, y2) + (u(x, y2) − u(0, y2)) − u(0, y1) − (u(x, y1) − u(0, y1))

≤ (1 − 2θ)(y2 − y1) + θ

2
≤ (1 − θ)(y2 − y1),

which implies that

−1

2
≤ 1 − 3θ ≤ u(x, y2) − u(x, y1)

y2 − y1
≤ 1 − θ for all x ∈ (0, 1), (30)

and hence in particular

∣∣∣∣
u(x, y2) − u(x, y1)

y2 − y1
− 1

∣∣∣∣ ≥ θ for all x ∈ (0, 1).

We now consider x̃ as chosen in Step 1. Using the lower bound in (30) we deduce
from (28) that for almost all y ∈ (0, 1) we have ∂2u(x̃, y) > t̃ > − 3

4 , and hence for
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almost all y ∈ (0, 1)

| ∂2u(x̃, y) − 1 |≤ 7min{| ∂2u(x̃, y) − 1 |, | ∂2u(x̃, y) + 1 |}.

Putting things together, we obtain by Hölder’s inequality (recall that | y2− y1 |≥ 1/2),
using (25) in the last step,

θ2 ≤
∣∣∣∣
u(x̃, y2) − u(x̃, y1)

y2 − y1
− 1

∣∣∣∣
2

=
∣∣∣∣

1

y2 − y1

∫ y2

y1
∂2u(x̃, y) dy − 1

∣∣∣∣
2

≤ 1

y2 − y1

∫ y2

y1
| ∂2u(x̃, y) − 1 |2 dy ≤ 2

∫ 1

0
| ∂2u(x̃, y) − 1 |2 dy

≤ 98
∫ 1

0
min{| ∂2u(x̃, y) − 1 |, | ∂2u(x̃, y) + 1 |}2 dy ≤ 392Eσ,θ (u). (31)

This concludes the proof of the lower bound in this case if cB ≤ 1
392 .

Case 2: Suppose that u(x, y2) − u(0, y2) + x ∈ (− θ
4 , θ

4 ) for all x ∈ (0, 1).
In this case, we have (recall (29))

x − θ

4
< u(x, y1) − u(0, y1) < x + θ

4
and − x − θ

4
< u(x, y2)

− u(0, y2) < −x + θ

4
.

Proceeding similarly to Case 1, we apply this with x = x̃ , and we obtain using that
x̃ ∈ (3/4, 1), 3

4 ≥ y2 − y1 ≥ 1/2, and the boundary condition at x = 0,

(−3 − 3θ)(y2 − y1)

≤ (1 − 2θ)(y2 − y1) − 2 − θ

2
≤ (1 − 2θ)(y2 − y1) − 2x̃ − θ

2
≤ u(0, y2) − u(0, y1) + (u(x̃, y2) − u(0, y2)) − (u(x̃, y1) − u(0, y1))

= u(x̃, y2) − u(x̃, y1)

≤ (1 − 2θ)(y2 − y1) − 2x̃ + θ

2
≤ (1 − 2θ)(y2 − y1) − 3

2
+ θ

2
≤ (−1 − θ)(y2 − y1).

This yields in particular

−3 − 3θ ≤ u(x̃, y2) − u(x̃, y1)

y2 − y1
≤ −1 − θ ≤ t̃,

and we deduce from (28) that ∂2u(x̃, y) ≤ t̃ for almost all y ∈ (0, 1). Thus,

| ∂2u(x̃, y) + 1 |= min{| ∂2u(x̃, y) − 1 |, | ∂2u(x̃, y) + 1 |} for almost all y ∈ (0, 1).
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Since

∣∣∣∣
u(x̃, y2) − u(x̃, y1)

y2 − y1
+ 1

∣∣∣∣ ≥ θ,

the claimed lower bound on Eσ,θ (u) follows as in (31) (with an even better constant).
This concludes the proof of the lemma. ��

Lemma 6 There exists a constant c(2)
B > 0 with the following property. For all θ ∈

(0, 1/2] and all σ ∈ (0, θk) for some k ∈ N with k ≥ 32, we have

Eσ,θ (u) ≥ c(2)
B kσ.

Proof It suffices to consider σ ∈ [θk+1, θk) for some k ≥ 32. Let u ∈ Aθ be such that
Eσ,θ (u) ≤ kσ (otherwise there is nothing to prove). Let K = � k

8�. We fix c2 := 1
2000 .

Step 1: Choice of representative vertical slices and reduction to auxiliary statement.
By Fubini’s theorem and standard slicing arguments we can find points xi ∈
( 12θ

2i , 3
2θ

2i ), i = 1, . . . , K , such that u(xi , ·) ∈ H1(0, 1), ∂2u(xi , ·) ∈ BV (0, 1)
and

∫ 1

0
min{| ∂2u(xi , y) − 1 |, | ∂2u(xi , y) + 1 |}2 dy + σ | ∂2∂2u(xi , ·) | (0, 1)

≤ θ−2i Eσ,θ

(
u, (

1

2
θ2i ,

3

2
θ2i ) × (0, 1)

)
.

For an illustration, see Fig. 5. Note that by the assumption θ ≤ 1/2, the intervals
( 12θ

2i , 3
2θ

2i ) for 1 = 1, . . . , K are pairwise disjoint and contained in (0, 1).
In the subsequent steps, we will prove the following result: There exists a constant
c3 > 0 (not depending on σ and θ ) such that for each 1 ≤ i ≤ K − 1 we have (recall
that we chose c2 above)

∫ 1

0
min{| ∂2u(xi , y) − 1 |, | ∂2u(xi , y) + 1 |}2dy + σ | ∂2∂2u(xi , ·) | (0, 1) ≥ c2θ

−2iσ (32)

or

Eσ,θ (u; (xi+1, xi ) × (0, 1)) ≥ c3σ. (33)
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Note that this indeed implies the assertion since (using the choice of xi )

Eσ,θ (u) ≥ 1

2

K−1∑

i=1

(
Eσ,θ (u, (

1

2
θ2i ,

3

2
θ2i ) × (0, 1)) + Eσ,θ (u, (xi+1, xi ) × (0, 1))

)

≥ 1

2

K−1∑

i=1

(
θ2i

∫ 1

0
min{| ∂2u(xi , y) − 1 |, | ∂2u(xi , y) + 1 |}2 dy

+ θ2iσ | ∂2∂2u(xi , ·) | (0, 1) + Eσ,θ (u, (xi+1, xi ) × (0, 1))

)

≥ 1

2

K−1∑

i=1

min{c2, c3}σ ≥ min{c2, c3}
32

kσ.

Therefore, from now on, we fix some 1 ≤ i ≤ K − 1 and assume that (32) does not
hold, i.e., we have

∫ 1

0
min{| ∂2u(xi , y) − 1 |, | ∂2u(xi , y) + 1 |}2 dy + σ | ∂2∂2u(xi , ·) | (0, 1) ≤ c2θ

−2iσ (34)

In the rest of the proof, we will show that (33) holds for a constant c3 > 0 chosen
below.

Step 2: Choice of a large representative portion with an almost constant derivative.
We note that inequality (34) implies that | ∂2∂2u(xi , ·) | (0, 1) ≤ c2θ−2i and

∫ 1

0
min{| ∂2u(xi , y) − 1 |, | ∂2u(xi , y) + 1 |}2 dy

≤ c2θ
−2iσ

≤ c2θ
−2K+k ≤ c2θ

3. (35)

We proceed similarly to the proof of Lemma 5. By the choice of c2, the set

P1 :={y ∈ (0, 1) :∂2u(xi , y) ∈ (−1 + θ, 1 − θ) or ∂2u(xi , y) ≤ −1 − θ

or ∂2u(xi , y) ≥ 1 + θ}

has measure (much) less than 1/3. Next we show that also the set P1 := {y ∈ (0, 1) :
−1 − θ ≤ ∂2u(xi , y) ≤ −1 + θ} has measure less than 1/3. For a contradiction, let
us assume that L1(P1) ≥ 1/3. We find y2, y1 ∈ (0, 1) such that y2 − y1 ≥ 1− 1

12 and
for j = 1, 2

∫ 1

0
min{| ∂1u(x, y j ) − 1 |, | ∂1u(x, y j ) + 1 |}2 dx ≤ 24Eσ,θ (u).
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Then we estimate, using that Eσ,θ (u) ≤ kσ ≤ θ2,

∫ y2

y1
∂2u(xi , t) dt = u(xi , y2) − u(xi , y1)

≥ u(0, y2) − u(0, y1) − 2xi − 2x
1
2
i

(
24Eσ,θ (u)

) 1
2

≥ (1 − 2θ)(1 − 1

12
) − 3θ2 − 2

(
36θ4

) 1
2
.

Since L1 ((y2, y1) ∩ P1) ≥ L1(P1) − L1 ((0, 1) \ (y1, y2)) ≥ 1
3 − 1

12 , we have for
θ0 ≤ 1

16

∫

(y2,y1)∩{∂2u(xi ,·)≥0}
∂2u(xi , t) dt

≥ (1 − 2θ)(1 − 1

12
) − 3θ2 − 12θ2 − (−1 + θ)(

1

3
− 1

12
)

≥ 14

12
− 1

16

(
2 + 3

16
+ 3

4
+ 1

4

)

≥ 9

10
. (36)

On the other hand, we have by (35) and the choice of c2

∫

(y2,y1)∩{∂2u(xi ,·)≥0}
∂2u(xi , t) dt

≤
(∫

(y2,y1)∩{∂2u(xi ,·)≥0}
(∂2u(xi , t) − 1)2 dt

) 1
2 + | {∂2u(xi , ·) ≥ 0} |

≤ c2
1
2 θ + 2

3
< 0.67. (37)

Combining (36) and (37) yields a contradiction. Consequently, the set

P2 := {y ∈ (0, 1) : 1 − θ ≤ ∂2u(xi , y) ≤ 1 + θ}

has measure at least 1/3. Hence, using the coarea formula, we derive that there exists
θ̃ ∈ (θ, 3/2θ) such that Ai = {∂2u(xi , ·) ∈ (1 − θ̃ , 1 + θ̃ )} is of finite perimeter and
such that

L1(Ai ) ≥ 1

3
and H0(∂∗Ai ) ≤ 2c2θ

−2i−1.

Let us now consider the disjoint intervals Il = ( l
9c2

θ2i+1,
(l+1)
9c2

θ2i+1) for l ∈ N0. For

θ0 so small that c2θ
−3
0 ≥ 2 it follows that at least c2

2 θ−2i−1 of those intervals are (up
to a set of measure 0) contained in Ai . Indeed, by volume considerations the number
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of intervals Il intersecting Ai is larger than 3c2θ−2i−1. In addition, the number of
intervals that contain a point of ∂∗Ai is bounded by the number of points in ∂∗Ai .
Eventually, there might be an interval intersecting Ai , which does not contain a point
from ∂∗Ai but is not fully contained in (0, 1). Hence, the number of intervals that are
fully contained in Ai is at least 3c2θ−2i−1 −c22θ−2i−1 −1 ≥ c2

2 θ−2i−1. In particular,
we can find an interval Il̄ ⊆ Ai such that

Eσ,θ (u; (0, 1) × Il̄) ≤ 40L1(Il̄) Eσ,θ (u)

and Eσ,θ (u; (xi+1, xi ) × Il̄) ≤ 40L1(Il̄) Eσ,θ (u; (xi+1, xi ) × (0, 1)) (38)

Step 3: Estimate on horizontal difference quotients between {xi } × (0, 1) and
{xi+1} × (0, 1).
Let us write Il̄ = (al̄ , bl̄) and estimate for t ∈ (al̄ , al̄+ | Il̄ | /2)

|u(xi , t+ | Il̄ | /2) − u(xi , t) − u(xi+1, t+ | Il̄ | /2) + u(xi+1, t)|
≥ |u(xi , t+ | Il̄ | /2) − u(xi , t) − (1 − 2θ) | Il̄ | /2| − |u(xi+1, t) − (1 − 2θ)t |

− |u(xi+1, t+ | Il̄ | /2) − (1 − 2θ)(t+ | Il̄ | /2)|. (39)

By the definition of Ai and Il̄ , we find for the first term of the right-hand side (using
θ̃ ∈ (θ, 3/2θ))

|u(xi , t+ | Il̄ | /2) − u(xi , t) − (1 − 2θ) | Il̄ | /2| dt ≥ | Il̄ | θ

4
.

For the second term, we follow the argument of Step 1 in the proof of Lemma 4 and
find for almost every t ∈ (al̄ , al̄+ | Il̄ | /2)

|u(xi+1, t) − (1 − 2θ)t |
= |u(xi+1, t) − u(0, t)|

≤ x
1
2
i+1

(∫ 1

0
min{| ∂1u(s, t) − 1 |, | ∂1u(s, t) + 1 |}2 ds

) 1
2

ds + xi+1.

The third term in (39) can be treated similarly. Putting things together, (39) yields for
almost every t

|u(xi , t+ | Il̄ | /2) − u(xi , t) − u(xi+1, t+ | Il̄ | /2) + u(xi+1, t)|

≥ | Il̄ | θ

4
− 2xi+1 − x

1
2
i+1

(∫ 1

0
min{| ∂1u(s, t) − 1 |, | ∂1u(s, t) + 1 |}2 ds

) 1
2

− x
1
2
i+1

(∫ 1

0
min{| ∂1u(s, t + | Il̄ |

2
) − 1 |, | ∂1u(s, t + | Il̄ |

2
) + 1 |}2 ds

) 1
2

.

(40)
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On the other hand, we may estimate similarly to above for almost every t

|u(xi , t+ | Il̄ | /2) − u(xi , t) − u(xi+1, t+ | Il̄ | /2) + u(xi+1, t)|
≤ |u(xi , t+ | Il̄ | /2) − u(xi , t) − (1 − 2θ) | Il̄ | /2|

+ |u(xi+1, t+ | Il̄ | /2) − u(xi+1, t) − (1 − 2θ) | Il̄ | /2|

≤ 2θ |Il̄ | + 2xi+1 + x
1
2
i+1

(∫ 1

0
min{| ∂1u(s, t) − 1 |, | ∂1u(s, t) + 1 |}2 ds

) 1
2

+ x
1
2
i+1

(∫ 1

0
min{| ∂1u(s, t + | Il |

2
) − 1 |, | ∂1u(s, t + | Il |

2
) + 1 |}2 ds

) 1
2

.

(41)

Next, we notice that by the choice of Il̄ (see (38))

∫ al̄+|Il̄ |/2

al̄

∫ 1

0
min{| ∂1u(s, t) − 1 |, | ∂1u(s, t) + 1 |}2 ds dt

≤ Eσ,θ (u; (0, 1) × Il̄) ≤ 40 | Il̄ | Eσ,θ (u) and
∫ al̄+|Il̄ |/2

al̄

∫ 1

0
min{| ∂1u(s, t+ | Il̄ | /2) − 1 |, | ∂1u(s, t+ | Il̄ | /2) + 1 |}2 ds

≤ Eσ,θ (u; (0, 1) × Il̄) ≤ 40 | Il̄ | Eσ,θ (u).

Hence, there exists a subset of (al̄ , al̄+ | Il̄ | /2) whose measure is at least 1
4 | Il̄ |

such that for all its elements t it holds

∫ 1

0
min{| ∂1u(s, t) − 1 |, | ∂1u(s, t) + 1 |}2 ds ≤ 320Eσ,θ (u) and

∫ 1

0
min{| ∂1u(s, t + | Il̄ |

2
) − 1 |, | ∂1u(s, t + | Il̄ |

2
) + 1 |}2 ds ≤ 320 Eσ,θ (u).

(42)

Next, we note that it holds by assumption that (recall that σ < θk , k ≥ 32, i ≤ k
8 , and

θ ≤ 1
2 )

Eσ,θ (u) ≤ kσ ≤ kθk ≤ θ
k
2 ≤ θ2i+2.
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Hence, for all the t from above we obtain from (40) and (42)

| u(xi , t+ | Il̄ | /2) − u(xi , t) − u(xi+1, t+ | Il̄ | /2) + u(xi+1, t) |
≥ | Il̄ | θ

4
− 2xi+1 − 2x

1
2
i+1

√
320

√
Eσ,θ (u)

≥ 1

36c2
θ2i+2 − 3θ2i+2 − 2

√
480θ2i+2

≥ θ2i+2(50 − 3 − 22)

≥ θ2i+2. (43)

On the other hand, we obtain similarly for the same t ∈ Il̄ from (41) and (42)

|u(xi , t+ | Il̄ | /2) − u(xi , t) − u(xi+1, t+ | Il̄ | /2) + u(xi+1, t)|
≤ 2θ

1

9c2
θ2i+1 + 2xi+1 + 2x

1
2
i+1

√
320Eσ,θ (u)

≤ (500 + 3 + 2
√
480)θ2i+2. (44)

By definition of xi and xi+1 we have 1
8θ

2i ≤ xi − xi+1 ≤ 3
2θ

2i . Together with (43)
and (44) this yields for the t ∈ Il̄ from above that

2

3
θ2 ≤

∣∣∣∣
u(xi , t+ | Il̄ | /2) − u(xi+1, t+ | Il̄ | /2)

xi − xi+1
− u(xi , t) − u(xi+1, t)

xi − xi+1

∣∣∣∣

≤ 8(500 + 3 + 2
√
480)θ2. (45)

We now choose θ0 ∈ (0, 1/2] small enough such that 8(500+ 3+ 2
√
480)θ20 ≤ 1/2.

Hence, roughly speaking, at most one of the difference quotients occurring in (45) can
be close (at the order of θ2) to {±1}. Precisely, summarizing the results of this step,
there is a universal constant c4 > 0 and a subset of Il̄ whose measure is at least 1

4 | Il̄ |
such that for all t in this subset it holds

∣∣∣∣

∣∣∣∣
u(xi , t) − u(xi+1, t)

xi − xi+1

∣∣∣∣ − 1

∣∣∣∣ ≥ c4θ
2.

Step 4: Conclusion of estimate (33).
Let us now assume that for a point t from Step 2 it holds | ∂1∂1u(·, t) | (xi+1, xi ) < 1

2 .
Then we may assume without loss of generality for almost all s ∈ (xi+1, xi ) that
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| ∂1u(s, t) − 1 |≤ 3min{| ∂1u(s, t) − 1 |, | ∂1u(s, t) + 1 |} and thus

∫ xi

xi+1

min{| ∂1u(s, t) − 1 |, | ∂1u(s, t) + 1 |}2 ds

≥ 1

9

∫ xi

xi+1

| ∂1u(s, t) − 1 |2 ds

≥ 1

9(xi − xi+1)

(∫ xi

xi+1

∂1u(s, t) − 1 ds

)2

= 1

9
(xi − xi+1)

(
u(xi , t) − u(xi+1, t)

xi − xi+1
− 1

)2

≥ c42

72
θ2iθ4

≥ c42

72
σ.

For the last estimate, we used again that 2i +4 ≤ k
4 +4 ≤ k as k ≥ 32. Consequently,

Eσ,θ (u, (xi+1, xi ) × Il̄) ≥ σ | Il̄ | min{ 1

72
c4

2,
1

4
}.

This concludes the proof of (33) for θ0 ≤ min
{

3
√
c2/2, 1/16,

√
1

16(500+3+2
√
480)

}

with c3 ≤ min{ 1
72c4

2, 1
4 }, and hence the assertion is proven. ��

Combining the estimates of Lemma 5 and 6, we obtain the following lower bound.

Corollary 7 There exist cB > 0, k0 ∈ N, and θ0 ∈ (0, 1/2] such that for all θ ∈ (0, θ0],
all σ > 0 and all u ∈ Aθ ,

Eσ,θ (u) ≥ cB

{
min{θ2, σ } if σ ≥ θk0 ,

kσ if σ ∈ [θk+1, θk) for some k0 ≤ k.

4 Generalizations of the Scaling Result

4.1 General p

We consider for 1 ≤ p < ∞ the energy Eσ,θ : Aθ → [0,∞)

E p
σ,θ (u) =

∫

(0,1)2
dist p(∇u, K ) dx + σ | D2u | (�).
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Fig. 5 In the proof of the lower bound representative vertical slices (dashed lines) at xi (xi+1) are chosen
in a neighborhood around θ2i (green) (θ2i+2 (red)). On a representative vertical slice {xi }× (0, 1) intervals
{xi }× Il (vertical blue line) are identified in which u is almost affine. Then difference quotients of u between
xi+1 and xi are estimated along horizontal lines (horizontal blue line)

Corollary 8 Let p ∈ (1,∞). There exists a constant C > 0 such that for all σ > 0
and all θ ∈ (0, 1

2 ],

1

C
min

{
σ

( | log σ |
| log θ | + 1

)
, θ p

}
≤ min

u∈Aθ

E p
σ,θ (u) ≤ C min

{
σ

( | log σ |
| log θ | + 1

)
, θ p

}
.

Proof Fix p ∈ (1,∞). For an upper bound one can use the constructions for p = 2
from Proposition 2. Clearly, the function u(x, y) = (1−2θ)y± x produces an energy
of order θ p. On the other hand, it can be seen from the proof of Proposition 2 that the
function constructed via branching uN satisfies ∇uN ∈ K except for an interpolation
region of size θN on which it holds | ∇uN |≤ 5. Hence, one obtains again

∫

(0,1)2
dist(∇uN , K )p dxdy ≤ CθN .

and | D2uN | ((0, 1)2) ≤ CN . Setting N = �|log σ |
|log θ | � yields as in the proof of

Proposition 2, E p
σ,θ (uN ) ≤ Cσ

( |log σ |
|log θ | + 1

)
.

The lower bounds can be shown analogously to the case p = 2. ��
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Fig. 6 Left: Sketch of the function uN as constructed in Proposition 2 for θ = 1
2 and N = 4. The regions

of constant gradients are color-coded, the ruled region indicates the necessary interpolation to meet the
boundary values. For larger N the gradient of uN is only changed in the interpolation region. Right: Sketch
of the function u = limN→∞ uN as discussed in the proof of Corollary 10

4.2 Classical Double-Well Potential

We define the function W : R2 → R, W (x, y) = (1 − x2)2 + (1 − y2)2, and the
energy Fσ,θ : Aθ → [0,∞),

Fσ,θ (u) =
∫

(0,1)2
W (∂1u, ∂2u) dx + σ | D2u | (�).

The following corollary shows that the scaling law for min Eσ,θ and min Fσ,θ are
the same.

Corollary 9 There exists a constant C > 0 such that for all σ > 0 and all θ ∈ (0, 1
2 ]

it holds

1

C
min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
≤ min

u∈Aθ

Fσ,θ (u) ≤ C min

{
σ

( | log σ |
| log θ | + 1

)
, θ2

}
.

Proof First note that

W (x, y) = (1 − x)2(1 + x)2 + (1 − y)2(1 + y)2 ≥ dist((x, y), K )2.

Consequently, inf Eσ,θ ≤ inf Fσ,θ and the lower bound follows from Theorem 1.
Again, it can be easily checked that the competitors from the proof of Proposition 2

produce a corresponding upper bound for min Fσ,θ . ��

4.3 Boundary Conditions onWhole Boundary

In this section we show that in the symmetric case θ = 1
2 , we can replace the boundary

condition u(0, ·) = 0 by the more restrictive boundary condition u = 0 on ∂(0, 1)2.
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Fig. 7 Sketch of a competitor
such that u = 0 on ∂(0, 1)2. The
construction is obtained by
subdividing the square (0, 1)2

through diagonals into four
triangles. On each of those
triangles, a version of the
construction sketched in Fig. 6 is
used

Corollary 10 Let σ > 0. Then there exists u ∈ W 1,∞((0, 1)2) such that u = 0 on
∂(0, 1)2 such that

Eσ,1/2 ≤ C min{1, σ (| log σ | +1)}.

Proof Clearly u = 0 meets the more restrictive boundary conditions and satisfies
Eσ,1/2(u) = 2.

In the branching regime, σ < 1/4, we recall that in the proof of Proposition 2 we
constructed functions uN such that uN (0, ·) = 0 and Eσ,1/2(uN ) ≤ C(σN + 2−N ),
see Fig. 6. It is easy to see that the limit u = lim uN exists in L1, c.f. the proof of
Proposition 12. The function u belongs toW 1,∞((0, 1)2) and satisfies∇u ∈ K almost
everywhere and u(0, ·) = 0. Moreover, u(x, x) = u(x, 1− x) = 0 for all 0 ≤ x ≤ 1

2 .
In addition, ∇u ∈ BVloc((0, 1)2) with | D∇u | ((2−N , 1 − 2−N )2) ≤ CN . Then
define ũ : (0, 1)2 → R in the following way: For (x, y) ∈ (2−N , 1 − 2−N )2 we set

ũ(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x, y) if x ≤ y ≤ 1 − x,

u(1 − x, y) if 1 − x ≤ y ≤ x,

u(y, x) if y ≤ x ≤ 1 − y,

u(1 − y, 1 − x) if 1 − y ≤ x ≤ y.

One checks that | ũ(x, y) |≤ 2−N for all (x, y) ∈ ∂(2−N , 1 − 2−N )2. Then one
interpolates on (0, 1)2 \ (2−N , 1 − 2−N )2 so that ũ = 0 on ∂(0, 1)2. See Fig. 7 for an
illustration of ũ. The energy estimates on the interpolation layer are analogous to the
computations in the proof of Proposition 2. Choosing as in Proposition 2 N ≈| log σ |
leads to Eσ,1/2(ũ) ≤ Cσ(| log σ | +1). ��
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4.4 Scaling Law on Rectangles

Proposition 11 There is a constant C > 0 with the following property: For L > 0
consider the rectangle �L := (0, L) × (0, 1) and set

A(L)
θ :=

{
u ∈ W 1,2(�L) : ∇u ∈ BV (�L), u(0, y) = (1 − 2θ)y

}
.

We define

s(L, θ, σ ) :=

⎧
⎪⎪⎨

⎪⎪⎩

min
{
Lθ2, σ

( |log σ |
|log θ | + 1

)}
if L ≥ θ

min
{
Lθ2, σ

(
1 + log(L/σ)

|log θ |
)}

if σ ≤ L < θ

Lθ2 if L ≤ min{θ, σ }.

Then for all σ , L > 0 and θ ∈ (0, 1/2),

1

C
s(L, θ, σ ) ≤ min

u∈A(L)
θ

Eσ,θ (u;�L) ≤ Cs(L, θ, σ ),

where we use the notation Eσ,θ (u;�L) as defined in (5).

Proof UpperBound.Theaffine functionu(x, y) = (1−2θ)y satisfies Eσ,θ (u; ((0, L)×
(0, 1)) ≤ Lθ2. This in particular concludes the proof of the upper bound if L ≤
min{θ, σ }.
For the other two regimes, we use the test function uN : (0, 1)2 → R constructed in
the proof of Proposition 2 and note that

uN (θ, y) =
{

α + y if y ∈ (0, 1 − θ)

α + (2 − 2θ) − y if y ∈ (1 − θ, 1)

for some value α ∈ R. We now define the auxiliary function u : (0,∞)× (0, 1) → R

via

u(x, y) :=

⎧
⎪⎨

⎪⎩

uN (x, y) if x ∈ (0, θ), y ∈ (0, 1)

α + y − (x − θ) if x ∈ (θ,∞), y ∈ (0,min{1, x + 1 − 2θ})
α + (2 − 2θ) − y + (x − θ) if x ∈ (θ, 2θ), y ∈ (x + 1 − 2θ, 1).

Note that this construction resembles the truncated branching construction used for
martensitic microstructures (Conti and Zwicknagl 2016; Conti et al. 2020; Zwicknagl
2014). We claim that restrictions of the so-defined function u yield the respective
energy scalings. We consider the cases from the definition of s(L, θ, σ ) separately.

(i) If L ≥ θ then by Proposition 2 we have

Eσ,θ (u;�L) ≤ Eσ,θ (uN ;�θ) + σ + σθ
√
2 ≤ cσ

( | log σ |
| log θ | + 1

)
.
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(ii) If σ ≤ L < θ then there exists m ∈ N such that δm+1 ≤ L/θ < δm , where
δ = 1

�θ−1� ≤ θ as in the proof of Proposition 2. We note that m <
|log L/θ |
|log δ| ≤

|log σ/θ |
|log δ| ≤ N with N ∈ N as defined in the proof of Proposition 2, see (14).We

estimate using the computations from the proof of Proposition 2

Eσ,θ (u; (0, L) × (0, 1))

≤ Eσ,θ (uN ; (0, θδm) × (0, 1)) ≤ c
(
θδN + σ(N − m)

)

≤ cσ

(
1 + | log σ/θ |

| log δ | − | log L/θ |
| log δ |

)
≤ cσ

(
1 + log(L/σ)

| log θ |
)

.

Lower bound. Step 1: L ≥ 1. In this case, the proof follows from the lower bound for
Eσ,θ on (0, 1)2. We will from now on focus on the case L < 1.

Step 2: σ ≥ θ
k0
0 . An argument along the lines of the proof of Lemma 5 shows that

for all admissible functions u,

Eσ,θ (u,�L) ≥ cmin{Lθ2, σ }.

This in particular concludes the proof of the lower bound in the case L < min{θ, σ }.
Step 3: L ∈ [θ, 1). In this case, the proof of the lower bound follows as for L = 1.

More precisely, for large θ ≥ θ0 both, θ and L are of order one, and we can proceed
similarly to the proof of Lemma 4 to obtain a lower bound Eσ,θ (u;�L) ≥ cmin{σ(|
log σ | +1), 1}. For σ ≥ θk for some k ≥ 33, we can directly use Lemma 6 since this
proof uses only the energy on a domain that is contained in (0, θ) × (0, 1) ⊆ �L .

Step 4: L ∈ [σ, θ). First note that by the argument in step 2 it always holds
Eσ,θ (u,�L) ≥ cmin{Lθ2, σ }. This shows the desired lower bound as long as
log(L/σ)
|log θ | ≤ 33.

Ifσ ∈ [θk+1, θk) for some k and L ∈ [θm+1, θm) for somem ∈ N such that k−m ≥ 32
define K := ⌊ k−m

8

⌋
. Then one can find for i = 1, . . . , K points xi ∈ ( 12 Lθ2i , 3

2 Lθ2i )

such that u(xi , ·) ∈ H1(0, 1), ∂2u(xi , ·) ∈ BV (0, 1) and

∫ 1

0
min{| ∂2u(xi , y) − 1 |, | ∂2u(xi , y) + 1 |}2 dy + σ | ∂2∂2u(xi , ·) | (0, 1)

≤ L−1θ−2i Eσ,θ

(
u, (

1

2
Lθ2i ,

3

2
Lθ2i × (0, 1)

)
.

With this notation a lower bound can then be proven with minor modifications along
the lines of part (B) in the proof of Proposition 3. ��

5 Regularity of Solutions to the Differential Inclusion

Refining the construction in the proof of Proposition 2, yields a solution to the differen-
tial inclusion problem derived in Cicalese et al. (2019) subject to boundary conditions.
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While our scaling shows that the resulting gradient is not in BV (cf. also Rüland et al.
2019), we can in the spirit of Rüland et al. (2018), Rüland et al. (2019), Rüland et al.
(2020) exploit regularity properties of it.

Proposition 12 There exists a function u ∈ W 1,∞((0, 1)2) such that u(0, y) = (1 −
2θ)y, ∇u ∈ K almost everywhere, and ∇u ∈ Ws,q for all 0 < s < 1 and q ∈ (1,∞)

such that 1
q > s. Moreover, ∇u ∈ BVloc((0, 1)2) and consequently dimH(Ju) = 1.

Proof Fix s ∈ (0, 1) and q ∈ (1,∞) such that 1
q > s. Then there exists p ∈ (1,∞)

such that 1
q = 1−s

p + s.

Now, recall the branching construction of the function uN : (0, 1)2 → R in the
proof of Proposition 2, see Fig. 6. In particular, we note that for all N ∈ N we have

(i) uN (0, y) = (1 − 2θ)y in L1(0, 1),
(ii) ∇uN ∈ K for almost all x ∈ (θN , 1) × (0, 1),
(iii) if M > N then ∇uM = ∇uN for almost every x ∈ (θN , 1) × (0, 1),
(iv) ‖uN+1 − uN‖L1 ≤ CθN ,
(v) ‖∇uN‖L∞ ≤ C ,
(vi) ‖∇uN‖BV ≤ CN ,
(vii) ‖∇uN − ∇uN+1‖L p ≤ CθN ,
(viii) ‖∇uN − ∇uN+1‖BV ≤ C .

First note for M > N that by (iv)

‖uM − uN‖L1 ≤
M−1∑

k=N

‖uk+1 − uk‖L1 ≤ C
∞∑

k=N

θN .

Hence, (uN )N forms a Cauchy sequence in L1. Similarly, one shows using (vii) that
(∇uN )N is Cauchy in L p. Consequently, (uN )N is a Cauchy sequence in W 1,1 and
converges strongly inW 1,1 to some u ∈ W 1,1((0, 1)2). As the trace is continuous with
respect to strong convergence in W 1,1 we obtain from (i) that u(0, y) = (1− 2θ)y in
L1(0, 1). Moreover, it follows from (ii) and (iii) that∇u ∈ K . In particular, u ∈ W 1,∞.

Next, we apply an interpolation inequality between L p and BV , see (Rüland et al.
2018, Corollary 2.1) to ∇uN+1 − ∇uN which yields using (v), (vii) and (viii)

‖∇uN+1 − ∇uN‖Ws,q ≤ C‖∇uN+1 − ∇uN‖1−s
L p ‖∇uN+1 − ∇uN‖sBV ≤ Cθ(1−s)N .

Hence, we obtain for M > N that

‖∇uM − ∇uN‖Ws,q ≤
M−1∑

k=N

‖∇uk+1 − ∇uk‖Ws,q ≤ C
∞∑

k=N

(
θ1−s

)k

In particular, (∇uN )N is a Cauchy sequence in Ws,q . Its limit is already identified
to be ∇u. Consequently, ∇u ∈ Ws,q . Eventually, we remark that (iii) and (vi) imply
that (∇uN )N is bounded in BVloc((0, 1)2). By BV -compactness, it follows ∇u ∈
BVloc((0, 1)2). It remains to show that dimH(J∇u) = 1. Since ∇u ∈ BVloc((0, 1)2),
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we have for s > 1 thatHs(J∇u) ≤ ∑
k Hs(J∇u ∩ (1/k, 1− 1/k)2) = 0. On the other

hand, it follows from the energy scaling result Theorem 1 for that H1(J∇u) = +∞
which implies dimH(J∇u) ≥ 1. ��
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