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Abstract
We consider Morrey’s open question whether rank-one convexity already implies
quasiconvexity in the planar case. For some specific families of energies, there are
precise conditions known under which rank-one convexity even implies polyconvex-
ity. We will extend some of these findings to the more general family of energies
W :GL+(n) → R with an additive volumetric-isochoric split, i.e.

W (F) = Wiso(F) + Wvol(det F) = ˜Wiso

(

F√
det F

)

+ Wvol(det F) ,

which is the natural finite extension of isotropic linear elasticity. Our approach is based
on a condition for rank-one convexity which was recently derived from the classical
two-dimensional criterion by Knowles and Sternberg and consists of a family of one-
dimensional coupled differential inequalities.We identify a number of “least” rank-one
convex energies and, in particular, show that for planar volumetric-isochorically split
energies with a concave volumetric part, the question of whether rank-one convexity
implies quasiconvexity can be reduced to the open question of whether the rank-one
convex energy function

W +
magic(F) = λmax

λmin
− log

λmax

λmin
+ log det F = λmax

λmin
+ 2 log λmin
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is quasiconvex. In addition, we demonstrate that under affine boundary conditions,
W +

magic(F) allows for non-trivial inhomogeneous deformations with the same energy
level as the homogeneous solution, and show a surprising connection to the work of
Burkholder and Iwaniec in the field of complex analysis.

Keywords Nonlinear elasticity · Hyperelasticity · Planar elasticity · Rank-one
convexity · Quasiconvexity · Ellipticity · Legendre–Hadamard condition · Isotropy ·
Volumetric-isochoric split

Mathematics Subject Classification 74B20 · 74A10 · 26B25

1 Introduction

One of the major open problems in the calculus of variations is Morrey’s problem
in the planar case. The open question is whether or not rank-one convexity implies
quasiconvexity.Morrey (1952, 2009) conjectured that this is not the case in general and
indeed the result by Šverák (1992b) settles the question for the case n ≥ 3. On the other
hand, in the one-dimensional case, all four notions of convexity are equivalent. For the
last nearly thirty years, impressive progress on the problem has been made (Kawohl
andSweers 1990;Harris et al. 2018; Faraco andSzekelyhidi 2008; Pedregal andSverak
1998; Sebestyen and Szekelyhidi 2015; Müller 1999) without, however, leading to a
full solution.While researchers coming from the area of nonlinear elasticity in general
seem to believe thatMorrey’s conjecture is true also in the planar case, i.e. that rank-one
convexity does not imply quasiconvexity, researchers with a background in conformal
and quasiconformal analysis (Astala et al. 2008) tend to believe in the truth of the
opposite implication (Iwaniec 1982). In conformal analysis, this conclusion would
imply a number of far-reaching conjectures which are themselves deemed reasonable
at present.

Nonlinear elasticity is concerned with energies W defined on the group of matrices
with positive determinant GL+(n) = {

F ∈ R
n×n| det F > 0

}

, while the general case
of Morrey’s question considers scalar functions W defined on the linear space Rn×n .
It is conceivable that the answer to the planar Morrey’s conjecture depends on whether
one focuses on GL+(2) or R2×2. Assuming that an example for Morrey’s conjecture
in GL+(2) can be found, it is also not immediately clear how such an example might
be generalized to the R2×2-case (although it is tempting to believe that this is always
possible). The precise statement ofMorrey’s conjecture also depends on the invariance
properties one requires for the energy W and the domain of definition. Different
versions of Morrey’s conjecture include the following, all of which currently remain
open:

Morrey I: Let W : Rn×n → R (with no further invariance requirement). If W is
rank-one convex, then W is not necessarily quasiconvex. For n ≥ 3 (W
being continuous), this statement on the class of all real-valued functions
as originally considered by Morrey (1952) has been conclusively settled
by Sverak’s famous counterexample (Šverák 1992b).
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Morrey II: Let W : R2×2 → R be continuous and left/right-SO(2) invariant (objec-
tive and hemitropic). If W is rank-one convex, then W is not necessarily
quasiconvex.

Morrey III: Let W : GL+(2) → R be left-SO(2) invariant (objective, frame-
indifferent) and right-O(2) invariant (isotropic). If W is rank-one convex,
then W is not necessarily quasiconvex.

Morrey IV: Let W : R2×2 → R be left-SO(2) invariant (objective, frame-indifferent)
and right-O(2) invariant (isotropic). If W is rank-one convex, then W is
not necessarily quasiconvex.

Morrey V: Let W : GL+(2) → R and W (F) → ∞ as det F → 0 be left/right-SO(2)
invariant (objective and hemitropic). If W is rank-one convex, then W is
not necessarily quasiconvex.

Astala et al. (2012) and their groups try to disprove Morrey II to prove various con-
jectures in the context of complex analysis. It is conceivable, however, that Morrey II
is false, while Morrey III is true. Similarly, Morrey III may also be false with Morrey
II being true. There is no clear connection between the two statements: in Morrey III
the domain of definition is smaller, but then rank-one convexity needs only to hold
true on a smaller set as compared to Morrey II. The role of invariance requirements
(isotropic versus hemitropic) or general anisotropy is also open.
The restriction toGL+(2) and isotropy inMorrey III is advantageous because the check
of rank-one convexity can be based on a version of Knowles/Sternberg conditions
(Knowles and Sternberg 1976, 1978) operating only on the representation of the
elastic energy in terms of singular values. The rank-one convexity condition on R2×2

was also completely settled by Hamburger (1987), Aubert (1995). Nevertheless, it
seems that one has to choose a favourable representation first and then use an adapted
criterion.Quasiconvexity on the other hand is notoriously difficult to prove or disprove.
A straightforward sufficient condition is Sir John Ball’s polyconvexity condition (Ball
1976). One of the advantages of polyconvexity is that it is both suitable for GL+(2)
and R

2×2 and that there are sharp characterizations of polyconvexity in the GL+(2)
and isotropic case (Dacorogna 2008; Šilhavý 1997; Mielke 2005).
Apparently, even for n ≥ 3, there is no isotropic example to Morrey I to be found
in the literature. A common method to approach Morrey’s conjecture is to discuss a
specific family of energies, e.g. purely volumetric or isochoric energies (cf. Sects. 2.1
and 2.2), to find an often simple relation between the different notions of convexity.We
will extend these findings to a much more involved class of energies with an additive
volumetric-isochoric split (2.1) and follow the concept of “least” rank-one convex
energies, i.e. functions that are as weakly rank-one convex as possible, to serve as
canonical candidates. Focusing on energies with a concave volumetric part we show
that the rank-one convex function

W +
magic(F) = λmax

λmin
− log

λmax
λmin

+ log det F

= λmax
λmin

+ 2 log λmin
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with λmax ≥ λmin > 0 as the ordered singular values of the deformation gradient
F = ∇ϕ suffices as the sole candidate for this class of functions. The question of qua-
siconvexity for W +

magic(F) closes Morrey’s conjecture for all volumetric-isochorically
split energies with a concave volumetric part, cf. Theorem 4.1, giving the following
alternatives:

• If W +
magic is not quasiconvex, then Morrey’s conjecture III is true.

• If W +
magic is quasiconvex, then no example of Morrey’s conjecture III can be found

in the class of volumetric-isochoric split energies with a concave volumetric part,
i.e. in this class, rank-one convexity equals quasiconvexity.1

In a sequel of this work (Voss et al. 2021a) we will numerically investigate the
quasiconvexity of W +

magic(F).

1.1 Basic Definitions of Convexity Properties

Definition 1.1 The energy function W : Rn×n → R ∪ {+∞} is quasiconvex if and
only if

∫

�

W (F0 + ∇ϑ(x)) dx ≥
∫

�

W (F0) dx = |�| · W (F0)

for all F0 ∈ R
n×n, ϑ ⊂ W 1,∞

0 (�;Rn) (1.1)

for any domain� ⊂ R
n withLebesguemeasure |�|. The energy is strictly quasiconvex

if inequality (1.1) is strict.

While quasiconvexity is sufficient to ensure weak lower semi-continuity of the energy
functional, it has the simple disadvantage of being almost impossible to prove or
disprove. This led to the introduction of sufficient and necessary conditions for qua-
siconvexity.

Definition 1.2 The energy function W : Rn×n → R∪{+∞} is polyconvex if and only
if there exists a convex function P : Rm(n) → R ∪ {+∞} with

W (F) = P
(

F, adj2(F), · · · , adjn(F)
)

for all F ∈ R
n×n (1.2)

with adji (F) ∈ R
n×n as the matrix of the determinants of all i × i−minors of F and

m(n) := ∑n
i=1

(n
i

)2. The energy is strictly polyconvex if there exists a representation
P which is strictly convex.

In particular, for the planar case n = 2, the energy W : R2×2 → R ∪ {+∞} is
polyconvex if and only if there exists a convex mapping P : R2×2 × R ∼= R

5 →
R ∪ {+∞} with

W (F) = P(F, det F) for all F ∈ R
2×2 .

1 Since we show that W+
magic is not polyconvex, rank-one convexity does not equal polyconvexity in this

case, in contrast to the classes of purely volumetric (Dacorogna 2008) and purely isochoric (Martin et al.
2017) energies and for functions defined on SL(2) (Ghiba et al. 2018).
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Whereas polyconvexity provides a sufficient criterion for quasiconvexity, rank-one
convexity is introduced as a necessary condition.

Definition 1.3 The energy W : Rn×n → R∪ {+∞} is rank-one convex if and only if

W (t F1 + (1 − t) F2) ≤ t W (F1) + (1 − t) W (F2) for

rank(F1 − F2) = 1 , t ∈ (0, 1) (1.3)

If the energy is two times differentiable, global rank-one convexity is equivalent to the
Legendre–Hadamard ellipticity condition

D2W (F).(ξ ⊗ η, ξ ⊗ η) ≥ 0 for all F ∈ R
n×n, ξ, η ∈ R

n (1.4)

which expresses the ellipticity of the Euler–Lagrange equations Div DW (∇ϕ) = 0
associated to the variational problem

I (ϕ) =
∫

�

W (∇ϕ(x)) dx → min (1.5)

The energy is strictly rank-one convex if inequality (1.3) is strict.

Overall, for any W : Rn×n → R ∪ {+∞} we have the well known hierarchy (Ball
1976; Dacorogna 2008)

polyconvexity ⇒ quasiconvexity ⇒ rank-one convexity. (1.6)

In nonlinear elasticity theory, energy functions are more naturally defined on GL+(n)

instead ofRn×n , since a non-positive determinant of the deformation gradient F = ∇ϕ

would correspond either to an infinite compression (det F = 0) or to a change of
orientation (det F < 0) within the modelled physical body, both of which are deemed
mechanically implausible.

Definition 1.4 A function W : GL+(n) → R is called quasi-/poly-/rank-one convex
if the function

̂W : Rn×n → R ∪ {+∞} , ̂W (F) =
{

W (F) if F ∈ GL+(n) ,

+∞ if F /∈ GL+(n) ,

is quasi-/poly-/rank-one convex. A function W : GL+(n) → R is called convex if
there exists a convex function ̂W : Rn×n → R such that ̂W (F) = W (F) for all
F ∈ GL+(n).

2 The Additive Volumetric-Isochoric Split

Next, we discuss the general family of planar energies W : GL+(2) → R ∪ {∞}
with additive combinations of conformally invariant (isochoric) energies on the one
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hand, and area-dependent (volumetric) energies (also called the additive volumetric-
isochoric split) on the other hand:

W (F) = Wiso(F) + Wvol(det F) = ˜Wiso

(

F√
det F

)

︸ ︷︷ ︸

conformally invariant

+ Wvol(det F)
︸ ︷︷ ︸

purely area-dependent in 2D

.

(2.1)

It is already known that for purely isochoric energies (cf. Sect. 2.2) as well as purely
volumetric energies (cf. Sect. 2.1) rank-one convexity already implies polyconvex-
ity (and thereby quasiconvexity). Thus, it is suggestive to inquire whether the same
conclusion can be reached for additive combinations or not.
The additive volumetric-isochoric split itself is a natural finite extension of isotropic
linear elasticity, i.e.

Wlin(∇u) = μ‖sym∇u‖2 + λ

2
(tr∇u)2 = μ‖devn sym∇u‖2 + κ

2
(tr∇u)2 ,

σ lin = DWlin(∇u) = 2μ devn sym∇u + κ tr(∇u)1. (2.2)

The right-hand side of the energy is automatically additively separated into pure
infinitesimal shape change and infinitesimal volume change of the displacement gradi-
ent ∇u, with a similar additive split of the linear Cauchy stress tensor into a deviatoric
part and a spherical part, depending only on the shape change and volumetric change,
respectively.
This type of energy functions is often used for modeling slightly incompressible mate-
rial behaviour (Ciarlet 1988; Hartmann andNeff 2003; Favrie et al. 2014; Ogden 1978;
Charrier et al. 1988) or when otherwise no detailed information on the actual response
of the material is available (Simo 1988; Gavrilyuk et al. 2016; Ndanou et al. 2017). In
the nonlinear regime, this split is not a fundamental law of nature for isotropic bodies
(as it is in the linear case) but rather introduces a convenient form of the representation
of the energy. Formally, this split can also be generalized to the anisotropic case, where
it shows, however, some severe deficiencies (Federico 2010; Murphy and Rogerson
2018) from a modeling point of view.2

Aprimary application of the volumetric-isochoric split is the adaptation of incompress-
ible hyperelastic models to (slightly) compressible materials in arbitrary dimension
n ≥ 2: For any given isotropic function3 Winc : SL(n) → R, an elastic energy poten-
tial W of the form (2.1) can be constructed by simply setting

W (F) = Winc

(

F
n
√
det F

)

+ f (det F) = Winc
(

̂I1, . . . ,̂In−1
)+ f (det F)

2 For example, a perfect sphere made of an anisotropic material and subject only to all around uniform
pressure would remain spherical for volumetric-isochorically decoupled energies.
3 Here, SL(n) denotes the special linear group, i.e. SL(n) = {

X ∈ R
n×n | det X = 1

}

.
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with an appropriate function f : R+ → R, where ̂I1, . . . ,̂In−1 denote the principal
invariants of F

n√det F
. Common examples of such energy functions include the com-

pressible Neo-Hooke and the compressible Mooney–Rivlin model (Ogden 1983).
A typical example of the volumetric-isochoric format is the geometrically nonlinear
quadratic Hencky energy (Neff et al. 2016; Hencky 1928; Sendova and Walton 2005;
Martin et al. 2019)

WH(F) = μ‖devn log V ‖2 + κ

2
(tr log V )2 , V =

√

F FT ,

τH = 2μ devn log V + κ tr(log V ) · 1 = 2μ log
V

3
√
det V

+ κ log det F · 1
(2.3)

as well as its physically nonlinear extension, the exponentiated Hencky-model (Neff
et al. 2015a; Neff and Ghiba 2016)

WeH = μ

k
ek‖devn log V ‖2 + κ

2̂k
e
̂k(tr log V )2 ,

τeH = 2μek‖ devn log V ‖2 · devn log V + κe
̂k(tr log V )2 tr(log V ) · 1

︸ ︷︷ ︸

=κêk(log det F)2 log det F ·1

, (2.4)

which has been used for stable computation of the inversion of tubes (Nedjar et al.
2018), the modeling of tire-derived material (Montella et al. 2016) or applications
in bio-mechanics (Schroder et al. 2018). It is well known that (2.3) and (2.4) are
overall not rank-one convex (Neff et al. 2015a) and indeed there does not exist any
elastic energy depending on ‖devn log V ‖2, n ≥ 3 that is rank-one convex (Ghiba
et al. 2015a). The situation is, surprisingly, completely different in the planar case:
For n = 2, the energy in Eq. (2.4) is not only rank-one convex, but even polyconvex
(Neff et al. 2015b; Ghiba et al. 2015b) if k ≥ 1

8 .

2.1 Purely Volumetric Energies

For some types of energies W : R2×2 → R, precise conditions are known under
which rank-one convexity implies polyconvexity and therefore quasiconvexity (Müller
1999; Ball 2002). One specific family of energies for which the relation between
rank-one convexity and polyconvexity is already known is that of purely volumetric
energies W (F) = f (det F). This class describes fluid-like material behaviour, i.e.
shape change is not penalized at all.

Lemma 2.1 (Dacorogna (2008)) Let W : GL+(2) → R be of the form W (F) =
f (det F) with f : R+ → R. The following are equivalent:

(i) W is polyconvex,
(ii) W is quasiconvex,
(iii) W is rank-one convex,
(iv) f is convex on (0,∞).
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The same holds for the so-called Hadamard material (Dacorogna 2008; Ball and
Murat 1984; Grabovsky and Truskinovsky 2019; Dantas 2006):

Lemma 2.2 (Dacorogna (2008)) Let W : GL+(n) → R of the form W (F) = ‖F‖α +
f (det F) with f : R+ → R and 1 ≤ α < 2n. The following are equivalent:

(i) W is polyconvex,
(ii) W is quasiconvex,
(iii) W is rank-one convex,
(iv) f is convex on (0,∞).

2.2 Purely Isochoric Energies

In a recent contribution (Martin et al. 2017),wepresent a similar statement for isochoric
energies, also called conformally invariant energies, i.e. functions W : GL+(2) → R

with

W (AF B) = W (F) for all A, B ∈ CSO(2) , (2.5)

where

CSO(2) := R
+ · SO(2) = {a R ∈ GL+(2) | a ∈ (0,∞) , R ∈ SO(2)} (2.6)

denotes the conformal special orthogonal group. This requirement can equivalently
be expressed as

W (R1F) = W (F) = W (F R2) , W (aF) = W (F)

for all R1, R2 ∈ SO(2) , a ∈ (0,∞) , (2.7)

i.e. left- and right-invariance under the special orthogonal group SO(2) and invariance
under scaling. An energy W satisfying W (aF) = W (F) is more commonly known
as isochoric. Following Astala et al. (2008), we introduce the (nonlinear) distortion
function or outer distortion

K : GL+(2) → R , K(F) := 1

2

‖F‖2
det F

= λ21 + λ22

2λ1λ2
= 1

2

(

λ1

λ2
+ λ2

λ1

)

, (2.8)

where ‖ . ‖ denotes the Frobenius matrix norm with ‖F‖2 = ∑2
i, j=1 F2

i j as well as
the linear distortion or (large) dilatation

K (F) : GL+(2) → R , K (F) = |F|2
det F

= λ2max

λminλmax
= λmax

λmin
, (2.9)

where |F| = sup‖ξ‖=1‖Fξ‖R2 = λmax denotes the operator norm (i.e. the largest
singular value) of F .
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Lemma 2.3 (Martin et al. 2017) Let W : GL+(2) → R be conformally invariant.
Then there exist uniquely determined functions g : R+ × R+ → R, h : R+ → R,
̂h : [1,∞) → R and � : [1,∞) → R such that

W (F) = g(λ1, λ2) = h

(

λ1

λ2

)

=̂h(K (F)) = �(K(F)) (2.10)

for all F ∈ GL+(2) with (not necessarily ordered) singular values λ1, λ2. Further-
more,

h(t) = h

(

1

t

)

, g(x, y) = g(y, x) and g(ax, ay) = g(x, y) (2.11)

for all a, t, x, y ∈ (0,∞).

Note that the isotropy requirement (2.11) implies that h is already uniquely determined
by its values on [1,∞). While we do distinguish between λ1, λ2 as the non-ordered
singular values and λmax ≥ λmin as the ordered singular values, we will interchange
h and̂h to simplify some notations here because h(t) =̂h(t) for all t ≥ 1.

Lemma 2.4 (Martin et al. 2017) Let W : GL+(2) → R be conformally invariant,
and let g : R+ × R+ → R, h : R+ → R and � : [1,∞) → R denote the uniquely
determined functions with

W (F) = g(λ1, λ2) = h

(

λ1

λ2

)

= �(K(F))

for all F ∈ GL+(2) with singular values λ1, λ2, where K(F) = 1
2

‖F‖2
det F . Then the

following are equivalent:

(i) W is polyconvex,
(ii) W is quasiconvex,
(iii) W is rank-one convex,
(iv) g is separately convex,
(v) h is convex on (0,∞),
(vi) h is convex and non-decreasing on [1,∞).

3 Least Rank-One Convex Candidates

We aim to discuss Morrey’s conjecture in this setting, i.e.:

• Is every rank-one convex energy with an additive volumetric-isochoric split in 2D
already quasiconvex?

Our approach to this question is based on identifying volumetric-isochorically split
energies which are, in a cetain sense, extremal (Fenchel and Blackett 1953; Šverák
1992a) among the rank-one convex functions. To this end, we consider the set of
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coupled one-dimensional inequalities fromTheorem3.2, which are equivalent to rank-
one convexity, and find those functions for which equality holds in at least one case;
due to this extremal property, we will refer to these functions as “least” rank-one
convex.4 In Sect. 4, this allows us to reduce the above question to a single function for
the case of a convex volumetric part, while mutliple least rank-one convex energies
with a non-convex volumetric part are identified in Sect. 5. A summary of our approach
is shown in Fig. 2 on p. 21.

3.1 Rank-One Convexity

For objective and isotropic planar energies with additive volumetric-isochoric split,
there exists a unique representation (Martin et al. 2017, Lemma 3.1)

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2) , h, f : R+ → R ,

h(t) = h

(

1

t

)

for all t ∈ (0,∞) , (3.1)

where λ1, λ2 > 0 denote the singular values of F and h, f are given real-valued
functions. In view of Lemmas 2.2 and 2.4 it is now tempting to believe that rank-one
convexity conditions on Wiso and Wvol also allow for a sort of split and can be reduced
to separate statements on h and f . However, this is not even the case in planar linear
elasticity, where Wlin from Eq. (2.2) is rank-one convex in the displacement gradient
∇u if and only if μ ≥ 0 and μ + κ ≥ 0. This means that rank-one convexity of Wlin
implies that W lin

iso is rank-one convex, whereas W lin
vol might not be rank-one convex,

since e.g. κ < 0 is allowed. We are therefore prepared to expect some coupling in the
conditions for h and f .
For rank-one convexity on GL+(2), (Knowles and Sternberg 1976, 1978) (see also
Šilhavý 1997, p. 308) established the following important and useful criterion.

Lemma 3.1 (Knowles and Sternberg 1976, 1978, cf. Šilhavý 1997; Parry 1995;
Dacorogna 2001; Šilhavý 1999, 2002; Aubert and Tahraoui 1987; Aubert 1995) Let
W : GL+(2) → R be an objective-isotropic function of class C2 with the repre-
sentation in terms of the singular values of the deformation gradient F given by
W (F) = g(λ1, λ2), where g ∈ C2(R2+,R). Then W is rank-one convex if and only if
the following five conditions are satisfied:

(i) gxx ≥ 0 and gyy ≥ 0 for all x, y ∈ (0,∞) , (separate convexity)

(ii)
xgx − ygy

x − y
≥ 0 for all x, y ∈ (0,∞) , x �= y , (Baker–Ericksen

inequalities)

(iii) gxx − gxy + gx

x
≥ 0 and gyy − gxy + gy

y
≥ 0 for all x, y ∈

(0,∞) , x = y ,

(iv)
√

gxx gyy + gxy + gx − gy

x − y
≥ 0 for all x, y ∈ (0,∞) , x �= y ,

4 We also note that, as will be easy to see, the rank-one convexity of these functions is non-strict everywhere.
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(v)
√

gxx gyy − gxy + gx + gy

x + y
≥ 0 for all x, y ∈ (0,∞) .

Furthermore, if all the above inequalities are strict, then W is strictly rank-one convex.

In a recent contribution (Voss et al. 2021b) we applied the criterion by Knowles
and Sternberg to volumetric-isochorically split energies: using weakened regularity
assumptions (Martin et al. 2020) the following conditions can be established.

Theorem 3.2 (Voss et al. 2021b; Martin et al. 2020) Let W : GL+(2) → R be an
objective-isotropic function with

W (F) = ĝ(λmax, λmin) =̂h

(

λmax
λmin

)

+ f (λmaxλmin) for all F ∈ GL+(2)

and ordered singular values λmax ≥ λmin, where ̂h ∈ C2((1,∞);R) and f ∈
C2(R+;R). We write h : R+ → R with h(t) := ̂h(t) for t ≥ 1 and h(t) := ̂h

( 1
t

)

for
t < 1. Let

h0 = inf
t∈(1,∞)

t2h′′(t) and f0 = inf
z∈(0,∞)

z2 f ′′(z) .

Then W is rank-one convex if and only if

(1) h0 + f0 ≥ 0 , (separate convexity)
(2) h′(t) ≥ 0 , (Baker–Ericksen inequality)

(3)
2t

t − 1
h′(t) − t2h′′(t) + f0 ≥ 0 or a(t) + [b(t) − c(t)] f0 ≥ 0 ,

(4)
2t

t + 1
h′(t) + t2h′′(t) − f0 ≥ 0 or a(t) + [b(t) + c(t)] f0 ≥ 0

for all t > 1, where

a(t) = t2(t2 − 1)h′(t)h′′(t) − 2th′(t)2, b(t) = (t2 + 3)h′(t) + 2t(t2 + 1)h′′(t) ,

c(t) = 4t
(

h′(t) + th′′(t)
)

.

3.2 TheVolumetric Part f(z)

Theorem 3.2 yields:

Lemma 3.3 Let W : GL+(2) → R be a rank-one convex isotropic energy function
with an additive volumetric-isochoric split W (F) = h

(

λ1
λ2

) + f (λ1λ2). Then h is
convex on (0,∞) or f is convex on (0,∞).

Proof The separate convexity condition 1) in Theorem 3.2 implies

h0 + f0 ≥ 0 ⇒ h0 ≥ 0 or f0 ≥ 0

⇐⇒ t2h′′(t) ≥ 0 for all t ∈ (1, ∞) or z2 f ′′(z) ≥ 0 for all z ∈ (0,∞)
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⇐⇒ h′′(t) ≥ 0 for all t ∈ (1,∞) or f ′′(z) ≥ 0 for all z ∈ (0, ∞) .

(3.2)

The invariance property h(t) = h
( 1

t

)

of the isochoric part h yields

h′(t) = d

dt
h(t) = d

dt
h

(

1

t

)

= − 1

t2
h′
(

1

t

)

, (3.3)

h′′(t) = d

dt
h′(t) = d

dt

[

− 1

t2
h′
(

1

t

)]

= 2

t3
h′
(

1

t

)

+ 1

t4
h′′
(

1

t

)

. (3.4)

Thus for arbitrary s ∈ (0, 1) the monotonicity condition 2) in Theorem 3.2 implies
h′′(s) ≥ 0 as well if h′′(t) ≥ 0 for all t ∈ (1,∞). ��
Lemma 3.3 states that rank-one convexity of an energy with a volumetric-isochoric
split always implies the global convexity of h nor f . Thus if neither h or f are
convex, the sum W (F) = h

(

λ1
λ2

) + f (λ1λ2) is not rank-one convex. On the other
hand, if h and f are both convex, the energy is already polyconvex as the sum of two
individual polyconvex energies (cf. Lemmas 2.1 and 2.4). Therefore, for our purpose
it is sufficient to consider the two subclasses

M+ :=
{

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2) | h : (1,∞) → R is convex

}

(3.5)

and

M− :=
{

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2) | f : R+ → R is convex

}

(3.6)

where either f or h are convex. The conditions in Theorem 3.2 contain several dif-
ferent expressions related to the isochoric part h(t), while f0 = inf z∈(0,∞) z2 f ′′(z)
occurs exclusively for the volumetric term. We utilize this observation to reduce the
volumetric parts of the sets M+ and M− to a single function for all least rank-one
convex representatives:

Lemma 3.4 Let W : GL+(2) → R be a two-times differentiable isotropic energy
function with a volumetric-isochoric split

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2)

that is rank-one convex but not quasiconvex. Then there exists a constant c ∈ R so
that the energy

W0(F) := h

(

λ1

λ2

)

+ c log(λ1λ2) (3.7)

is rank-one convex but not quasiconvex, as well.
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Proof Both energies have the same isochoric part, but different volumetric parts. We
set5

c := − f0 = − inf
z∈(0,∞)

z2 f ′′(z) , ˜f (z) := c log(z) . (3.8)

Then

˜f0 = inf
z∈(0,∞)

z2 ˜f ′′(z) = inf
z∈(0,∞)

z2
(

− c

z2

)

= −c = f0 .

Thus the conditions in Theorem 3.2 are identical for both energies and they share the
same rank-one convexity behaviour. Therefore, W0(F) is rank-one convex. Regarding
the quasiconvexity, we consider the difference between the two energies

W ∗(F) := W (F) − W0(F) = f (λ1λ2) − c log(λ1λ2)=: f ∗(λ1λ2) . (3.9)

The energy W ∗(F) is a purely volumetric energy with f ∗
0 = f0 − ˜f0 = 0. Thus

f ∗′′(z) ≥ 0 for all z ∈ (0,∞), i.e. f ∗ is convex and in particularW ∗(F) is quasiconvex
(cf. Lemma 2.1). If W0(F) is quasiconvex, then the sum W (F) = W0(F) + W ∗(F)

of two individual quasiconvex functions is quasiconvex as well, which contradicts the
initial assumption that W (F) is not quasiconvex. ��
Equation (3.9) shows that every rank-one convex function W (F) with a volumetric-
isochoric split can be rewritten as the sum of two individual rank-one convex energies

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2) = h

(

λ1

λ2

)

+ c log(λ1λ2) + f ∗(λ1λ2)

= W0(F) + W ∗(F) . (3.10)

The second part W ∗(F) = f ∗(det F) is a purely volumetric energy, i.e. rank-one
convexity already implies quasiconvexity, while the first part W0(F) maintains the
isochoric part h(t). In other words, Lemma 3.4 states that if there exists a volumetric-
isochorically split energy W (F) that is rank-one convex but not quasiconvex, then
there exists a function W0(F) = h

(

λ1
λ2

)+ c log(λ1λ2) that is rank-one convex but not
quasiconvex as well.

Since multiplying with an arbitrary constant α ∈ R+ has no effect on the convexity
behaviour of the energy function, we can also set c = ±1 without loss of generality.
We reduce the two subclassesM+ andM− of volumetric-isochorically split energies
to two new sets

M∗+ :=
{

W (F) = h

(

λ1

λ2

)

+ log(λ1λ2) | h : (1,∞) → R is convex

}

(3.11)

5 We have f0 = inf
z∈(0,∞)

z2 f ′′(z) ∈ R because of the assumed rank-one convexity of W : GL+(2) → R,

i.e. f0 + h0 ≥ 0.
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and

M∗− :=
{

W (F) = h

(

λ1

λ2

)

− log(λ1λ2) | h : (1,∞) → R is not convex

}

. (3.12)

4 SubclassM+: Convex Isochoric Part

We focus on volumetric-isochorically split energieswhich have a convex isochoric part
h(t) together with a non-convex volumetric part f (det F) = log det F , i.e. W ∈ M∗+.
It is possible to reduce the whole class M∗+ and thereby M+, to a single rank-one
convex representative W +

magic(F) (cf. Theorem 4.1) as the only candidate to check
for quasiconvexity to answer Morrey’s questions for all energies with a volumetric-
isochoric split and a convex isochoric part.
This candidate is found by searching for energy functions that satisfy inequality con-
ditions of Theorem 3.2 by equality. We start with the first inequality which is the most
important condition due to its equivalence to separate convexity:

1) h0 + f0 ≥ 0 , h0 = inf
t∈(1,∞)

t2h′′(t) and f0 = inf
z∈(0,∞)

z2 f ′′(z) .

(4.1)

We consider the case of equality for all t ≥ 1. For every W ∈ M∗+, the volumetric
part is given by f (z) = log z, which implies

f0 = inf
z∈(0,∞)

z2 f ′′(z) = inf
z∈(0,∞)

z2
−1

z2
= −1 ,

and we compute

t2h′′(t) − 1 = 0 ⇐⇒ h′′(t) = 1

t2
⇐⇒ h(t) = − log t + at + b . (4.2)

The constant b ∈ R is negligible regarding any convexity property and thus we set
b = 0. We determine the other constant a ∈ R by testing the remaining convexity
conditions and choose the constant a so that these inequalities are satisfied as non-
strictly as possible to obtain our first least rank-one convex candidate. In this way, the
monotonicity condition 2) of Theorem 3.2 is given by

− 1

t
+ a ≥ 0 for all t ≥ 1 ⇐⇒ a ≥ 1 . (4.3)

Next, condition 3a) of Theorem 3.2,

2t

t − 1

at − 1

t
− t2

1

t2
− 1 ≥ 0 ⇐⇒ 2(a − 1)t

t − 1
≥ 0 for all t ≥ 1 , (4.4)
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is satisfied for all a ≥ 1 while condition 4a) of Theorem 3.2,

2t

t + 1

at − 1

t
+ t2

1

t2
+ 1 ≥ 0 ⇐⇒ 2(a + 1)t

t + 1
≥ 0 for all t ≥ 1 , (4.5)

is satisfied for a ≥ −1. The two remaining conditions 3b) and 4b) of Theo-
rem 3.2 are satisfied for a ≥ 1 and a ≥ 3 − 2

√
2, respectively. Putting all

conditions together, we conclude that the case a = 1 should be considered
optimal and results in a least rank-one convex candidate. Overall, our canoni-
cal candidate is h(t) = t − log t , which corresponds to the energy function

W +
magic(F) := λmax

λmin
− log

λmax
λmin

+ log(det F) = λmax
λmin

+ 2 log λmin . (4.6)

The energy W +
magic(F) satisfies the conditions 1) and 3a) by equality for all t ≥ 1,

conditions 2) and 3b) for t = 1. We show that this function is the single representative
for the energy classM+ regarding the question of quasiconvexity.

Theorem 4.1 The following are equivalent:

(i) There exists a two-times differentiable isotropic energy W : GL+(2) → R with a
volumetric-isochoric split

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2) (4.7)

such that h is convex, i.e. W ∈ M+, and W is rank-one convex but W is not
quasiconvex.

(ii) The rank-one convex function W +
magic(F) : GL+(2) → R with

W +
magic(F) := λmax

λmin
− log

(

λmax
λmin

)

+ log det F (4.8)

with singular values λmax ≥ λmin of F is not quasiconvex.

Proof Using Theorem 3.2, we can directly prove the rank-one convexity of W +
magic.

We calculate

h0 = inf
t∈(1,∞)

t2h′′(t) = inf
t∈(1,∞)

t2
1

t2
= 1 ,

f0 = inf
z∈(0,∞)

z2 f ′′(z) = inf
z∈(0,∞)

z2
(

− 1

z2

)

= −1 ,

1) h0 + f0 = 1 − 1 ≥ 0 , �
2) h′(t) = 1 − 1

t
≥ 0 for all t ≥ 1 , �

3a)
2t

t − 1
h′(t) − t2h′′(t) + f0 = 2t

t − 1

t − 1

t
− 1 − 1 = 0 ≥ 0 , �
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4a)
2t

t + 1
h′(t) + t2h′′(t) − f0 = 2t

t + 1

t − 1

t
+ 1 + 1

= 2
(

t−1
t+1 + 1

)

= 4t
t+1 ≥ 0 �

By definition W +
magic ∈ M+. i.e. (ii) ⇒ ((i). Starting with W (F) from (i), we

use Lemma 3.4 to reduce the class of energies from M+ to M∗+. Thus there exists a
constant c > 0 so that the energy

W0(F) = h

(

λ1

λ2

)

+ c log(λ1λ2)

is rank-one convex but not quasiconvex. Without loss of generality, we set c = 1,
because multiplying with an arbitrary positive constant has no effect on the convexity
behaviour of the energy, and change h accordingly. We consider the difference

W ∗(F) := W0(F) − W +
magic(F) = h(t) − t + log t=:˜h(t) , t = λmax

λmin
, (4.9)

which is a purely isochoric energy. We show that W ∗(F) itself is quasiconvex. For
this, we study the first two conditions of Theorem 3.2 for the rank-one convex energy

W0(F) = W ∗(F) + W +
magic(F) =˜h(t) + t − log t + log det F .

We compute f0 = inf
z∈(0,∞)

z2
−1

z2
= −1 and

(i) h0 + f0 = inf
t∈(1,∞)

t2
(

˜h′′(t) + 1

t2

)

− 1 = ˜h0 ≥ 0 ⇒ ˜h′′(t) ≥ 0 for

all t ∈ (1,∞).
(ii) h′(t) ≥ 0 for all t ≥ 1 and ˜h′(t) = h′(t) − 1 + 1

t for t = 1 it holds ˜h′(1) =
h′(1) − 1 + 1 = h′(1) ≥ 0.

Thus ˜h(t) is convex for all t ≥ 1 and non-decreasing at t = 1. Both together imply
˜h′(t) ≥ ˜h′(1) ≥ 0 for all t ≥ 1, i.e. the mapping t �→ ˜h(t) is non-decreasing on
[1,∞). By Lemma 2.4, the isochoric energy W ∗(F) =˜h

(λmax
λmin

)

is quasiconvex. The

sum of two individual quasiconvex functions is again quasiconvex; hence the non-
quasiconvexity of W0(F) = W ∗(F) + W +

magic(F) requires that W +
magic(F) is already

non-quasiconvex. ��
Remark 4.2 Theorem 4.1 can also be stated as the equivalence between the quasicon-
vexity of W +

magic and the implication

W rank-one convex ⇒ W quasiconvex for all W ∈ M+ ,

i.e. for all energies with an additive volumetric-isochoric split and a convex isochoric
part.
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Due to the use of the ordered singular values λmax ≥ λmin instead of the unsorted
singular values λ1, λ2 of F , the representation h : R+ → R of the isochoric part is
not smooth at t = 1 in general. Nevertheless, for the candidate W +

magic we have

h(t) =
{

t − log t if t ≥ 1 ,
1
t + log t if t ≤ 1 ,

(4.10)

which implies h ∈ C2(R+;R) because

lim
t↘1

h′(t) = lim
t→1

1 − 1

t
= 0 = lim

t→1
− 1

t2
+ 1

t
= lim

t↗1
h′(t) ,

lim
t↘1

h′′(t) = lim
t→1

1

t2
= 1 = lim

t→1

2

t3
− 1

t2
= lim

t↗1
h′′(t) .

Although Theorem 4.1 reduces the question of whetherM+ contains a rank-one con-
vex, non-quasiconvex function to the very particular question of whether W +

magic(F) is
quasiconvex, the latter still remains open at this point (cf. Sect. 6). We note, however,
that the stronger condition of polyconvexity is indeed not satisfied for W +

magic(F)

Lemma 4.3 The energy W +
magic(F) = λmax

λmin
− log

(λmax
λmin

)+ log det F is not polycon-
vex.

Proof Every polyconvex function W : GL+(2) → R must grow at least linear for
det F → 0 (Dacorogna 2008, Cor. 5.9). This can be motivated by the following: If
W (F) is polyconvex, there exists a (not necessarily unique) representation P : R2×2×
R+ → R with W (F) = P(F, det F) which is convex. We consider the hyperplane
attached to P at (1, 1). Convexity in R

2×2 × R+ implies that P is bounded below
from its hyperplane. On the contrary,

lim
λ→0

P(λ1, λ2) = lim
λ→0

W +
magic(λ1) = lim

λ→0

λ

λ
+ 2 log λ = −∞

is unbounded. Thus W +
magic(F) cannot be polyconvex. ��

To summarize, the question whether an energy W ∈ M+ exists which is rank-one con-
vex but not quasiconvex or not, i.e. rank-one convexity always implies quasiconvexity,
can be reduced to the specific question of quasiconvexity of the single energy function
W +

magic(F). In this sense, our candidate represents an extreme point of M+, i.e. it
is the single least rank-one convex function of this subclass. Moreover, our energy
W +

magic(F) is non-polyconvex, which is necessary to serve as a possible example for
Morrey’s conjecture.

5 SubclassM−: Convex Volumetric Part

We continue with volumetric-isochorically split energies which have a non-convex
isochoric part h(t) together with a convex volumetric part f (det F) = − log det F ,
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i.e. W ∈ M∗−. This time, the question of whether an energy W ∈ M− exists which is
rank-one convex but not quasiconvex is much more involved and cannot be reduced
to the matter of quasiconvexity of a single extreme representative. Nevertheless, we
give a few candidates which are analogous to W +

magic ∈ M+.
Again, following the concept of least rank-one convex functions, we are looking for
energies that cannot be split additively into two non-trivial functions which are both
individually rank-one convex. For this, we take the four inequalities of Theorem 3.2
characterizing rank-one convexity and consider the corresponding differential equa-
tions, i.e. energieswhich only fulfill these inequalities conditions by equality.However,
a function does not have to satisfy all four conditions non-strictly to be a least rank-one
convex candidate; recall that the energy W +

magic(F) as the single representative ofM+
satisfies conditions 1) and 3a) by equality for all t ≥ 1 and condition 2) for t = 1 but
is not optimal for the remaining inequalities.
As amethod to find candidates for least rank-one convex functions ofM−, we examine
each condition characterizing rank-one convexity separately and search for equality
for all t ≥ 1. Thus we are capable of finding very interesting energies, e.g. a function
which is nowhere strictly separately convex or satisfies another inequality condition
by equality. However, due to their dependence on t ≥ 1 this approach does not cover
all possible extreme cases of M−. An energy can already be a least rank-one convex
candidate if it satisfies one or more inequality conditions non-strictly for a single
t ≥ 1 and not all t ≥ 1 as described above (cf. Sect. 5.2). Besides, conditions 3) and
4) allow for even more involved combinations because of their internal case-by-case
distinction.

5.1 ObtainingW−
magic

We start with the first inequality of Theorem 3.2, which is themost important condition
due to its equivalence to separate convexity:

1) h0 + f0 ≥ 0 , h0 = inf
t∈(1,∞)

t2h′′(t) and f0 = inf
z∈(0,∞)

z2 f ′′(z) .

(5.1)

We consider the case of equality for all t ≥ 1. For every W ∈ M∗−, the volumetric
part is given by f (z) = − log z, which implies

f0 = inf
z∈(0,∞)

z2 f ′′(z) = inf
z∈(0,∞)

z2
1

z2
= 1 ,

and we compute

t2h′′(t) + 1 = 0 ⇐⇒ h′′(t) = − 1

t2
⇐⇒ h(t) = log t + at + b . (5.2)

The constant b ∈ R is negligible regarding any convexity property and thus we set
b = 0. We determine the other constant a ∈ R by testing the remaining convexity
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conditions and choose the constant a so that these inequalities are satisfied as non-
strictly as possible to obtain our first least rank-one convex candidate. In this way, the
monotonicity condition 2) of Theorem 3.2 is given by

1

t
+ a ≥ 0 for all t ≥ 1 ⇐⇒ a ≥ 0 . (5.3)

Next, condition 3a) of Theorem 3.2,

2t

t − 1

1 + at

t
+ t2

1

t2
+ 1 ≥ 0 ⇐⇒ 2(a + 1)t

t − 1
≥ 0 for all t ≥ 1 , (5.4)

is satisfied for all a ≥ −1 while condition 4a) of Theorem 3.2,

2t

t + 1

1 + at

t
− t2

1

t2
− 1 ≥ 0 ⇐⇒ 2(a − 1)t

t + 1
≥ 0 for all t ≥ 1 , (5.5)

is satisfied for a ≥ 1. The two remaining conditions 3b) and 4b) of Theorem 3.2
are never satisfied for a �= 1. Putting all conditions together, we conclude that the
case a = 1 yields a least rank-one convex function. Overall, our canonical candidate
regarding equality in condition 1) of Theorem 3.2 for all t ≥ 1 is h(t) = t + log t ,
which corresponds to the energy function

W −
magic(F) := λmax

λmin
+ log

λmax
λmin

− log(det F) , (5.6)

an analogous candidate to W +
magic ∈ M+. The energy W −

magic(F) satisfies condition
1), 4a) and 4b) non-strict for all t ≥ 1, conditions 2) in the limit t → ∞ but is not
optimal for the remaining inequalities. Contrary to the discussion in the last section,
where we showed that W +

magic is as the single least rank-one convex candidate for the

energy classM+, the same is not true for W −
magic(F), i.e. it exists several distinct least

rank-one convex energies for the class M−.

5.2 ObtainingWsmooth

We continue with the second condition of Theorem 3.2, which is equivalent to the
Baker–Ericksen inequalities, and consider the limit case

2) h′(t) = 0 for all t ≥ 1. (5.7)

The only solution to this differential equation is the constant function h(t) = c which
provides the purely volumetric energy W (F) = c − log det F . Thus we have no (non-
trivial) least rank-one convex candidate corresponding to the monotonicity condition
2).
Before we continue to work with the more involved conditions 3) and 4), we will
consider an alternative variant to producemore least rank-one convex energies utilizing
the fact that an energy function can be least rank-one convex without satisfying one
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single condition non-strict for all t ∈ (1,∞). Starting with W −
magic(F), we can weaken

the monotonicity condition 2) by waiving the requirement of being nowhere strictly
separately convex. However, we have to ensure that the energy remains non-strictly
separately convex for one t ∈ [1,∞]. Thus we are looking for a new function h(t)
which is less monotone but slightly more convex then the expression t + log t . We
choose the ansatz

h(t) = at + b

t
+ log t , a, b ∈ R (5.8)

and with the first two conditions of Theorem 3.2 we compute

1) h0 + f0 = inf
t∈(0,∞)

t2
(

2b

t3
− 1

t2

)

+ 1 = inf
t∈(0,∞)

4b

t
≥ 0 ⇐⇒ b ≥ 0 ,

2) h′(t) = a − b

t2
+ 1

t
≥ 0 ⇐⇒ a ≥ 0 and b ≤ a + 1 .

We are interested in the limit case b = a + 1 so that h′(1) = 0, i.e. the function
is not strictly monotone for t = 1. The second limit case a = 0 would reestablish
W −

magic(F). Note that the separate convexity condition is only non-strict in the limit
case t → ∞. We evaluate the remaining conditions and choose the remaining constant
a ≥ 0 accordingly. Then

3a)
2t

t − 1

(

a − a + 1

t2
+ 1

t

)

− t2
(

2
a + 1

t3
− 1

t2

)

+ 1 ≥ 0 ⇐⇒
2(a + 1) ≥ 0 for all t ≥ 1 ,

which is satisfied for a ≥ −1 which is already ensured by conditions 2). Lastly, we
compute

4a)
2t

t + 1

(

a − a + 1

t2
+ 1

t

)

+ t2
(

2
a + 1

t3
− 1

t2

)

− 1 ≥ 0 ⇐⇒

2
at − t + a + 1

t + 1
≥ 0 for all t ≥ 1

which is fulfilled for a ≥ 1. For the case 0 ≤ a ≤ 1 the remaining condition

4b) 2
1 + t + 3t2 − t3 + a(1 + t + 3t2 + 3t3)

t2
≥ 0 for all t ≥ 1 (5.9)

is satisfied for a ≥ 1
3 . Overall, a = 1

3 yields the least rank-one convex
candidate with the isochoric term h(t) = t

3 + 4
3t + log t which generates

Wsmooth(F) := 1

3

λmax
λmin

+ 4

3

λmin
λmax

+ log
λmax
λmin

− log(det F) . (5.10)
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The energy Wsmooth(F) is strictly rank one convex for all t ∈ (1,∞), but unlike
W −

magic(F), it is only a least rank-one candidate in the sense that it is non-strictly
separately convex for t → ∞ and satisfies condition 2) of Theorem 3.2 by equality
for t = 1.

5.3 ObtainingW3b

We generate a third candidate using our original method with focus on the last two
inequalities of Theorem 3.2 and start with condition

3a)
2t

t − 1
h′(t) − t2h′′(t) + 1 = 0 ⇐⇒ h′′(t) = 2

t(t − 1)
h′(t) + 1

t2
.

(5.11)

We solve the differential equation by adding a particular solution to the associated
homogeneous equation:

h′(t) = xh(t) + x p(t) with x p(t) = 1 − t

t2
and (5.12)

x ′
h(t) = 2

(

1

t − 1
− 1

t

)

xh(t)

⇐⇒ log xh(t) = 2 (log |t − 1| − log t) + c

⇐⇒ xh(t) = c

(

t − 1

t

)2

. (5.13)

Thus

h′(t) = c

(

1 − 2

t
+ 1

t2

)

− 1

t
+ 1

t2
⇐⇒

h(t) = c

(

t − 2 log t − 1

t

)

− log t − 1

t
+ b . (5.14)

However, the monotonicity condition

h′(t) = c(t − 1)2 − (t − 1)

t2
≥ 0 ⇐⇒ c ≥ 1

t − 1
for all t > 1 (5.15)

cannot be satisfied in the limit t → 1. Thus there does not exist a rank-one convex
candidate which satisfies condition 3a) by equality for all t > 1. We continue with
condition

4a)
2t

t + 1
h′(t) + t2h′′(t) − 1 = 0 ⇐⇒ h′′(t) = − 2

t(t − 1)
h′(t) + 1

t2
.

(5.16)
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Again, we solve the differential equation by adding a particular solution to the asso-
ciated homogeneous equation:

h′(t) = xh(t) + x p(t) with x p(t) = − t + 1

t2
and (5.17)

x ′
h(t) = 2

(

1

t + 1
− 1

t

)

xh(t)

⇐⇒ log xh(t) = 2 (log(t + 1) − log t) + c

⇐⇒ xh(t) = c

(

t + 1

t

)2

. (5.18)

Thus

h′(t) = c

(

1 + 2

t
+ 1

t2

)

− 1

t
− 1

t2
⇐⇒

h(t) = c

(

t + 2 log t − 1

t

)

− log t + 1

t
+ b . (5.19)

We set b = 0 and determine c ∈ R by evaluating the remaining rank-one convexity
conditions. The separate convexity condition 1) yields

h0 = inf
t∈(1,∞)

t2h′′(t) = t2
[

c

(

− 2

t3
− 2

t2

)

+ 2

t3
+ 1

t2

]

= inf
t∈(1,∞)

2(1 − c)
1

t
+ 1 − 2c ≥ −1 . (5.20)

In the case c ≥ 1, the infimum is attained at t = 1 and

3 − 4c ≥ −1 ⇐⇒ c ≤ 1 .

For the case c ≤ 1, the infimum is at t → ∞ and

1 − 2c ≥ −1 ⇐⇒ c ≤ 1 .

Thus c ≤ 1. The monotonicity condition

2) h′(t) = c(t + 1)2 − (t + 1)

t2
≥ 0 ⇐⇒ c ≥ 1

t + 1
for all t ≥ 1

(5.21)

is satified for c ≥ 1
2 . The remaining condition 3a) leads to

2t

t − 1

c(t + 1)2 − (t + 1)

t2
−
[

c

(

− 2

t3
− 2

t2

)

+ 2

t3
+ 1

t2

]

+ 1 ≥ 0
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⇐⇒ 2
c(t + 1)2 − (t + 1)

t(t − 1)
+ 2(c − 1)

t + 1

t
≥ 0

⇐⇒ c(t + 1)2 − (t + 1) + (c − 1)(t + 1)(t − 1)

t − 1
≥ 0

⇐⇒ c(2t2 + 2t) − t2 − t

t − 1
≥ 0

⇐⇒ 2c − 1 ≥ 0 ⇐⇒ c ≥ 1

2
. (5.22)

Thus we can consider the two borderline cases

c = 1

2
: h(t) = 1

2

(

t + 1

t

)

, and c = 1 : h(t) = t + log t .

(5.23)

However, the first function

h

(

λ1

λ2

)

= 1

2

(

λ1

λ2
+ λ2

λ1

)

= λ11 + λ22

2λ1λ2
= ‖F‖2

2 det F
= K(F) (5.24)

is already polyconvex and therefore not suitable to provide an example for Mor-
rey’s question with respect to volumetric-isochorically split energies. The second part
h(t) = t + log t is already known as the isochoric part of W −

magic(F).
We consider the condition

3b) t2(t2 − 1)h′(t)h′′(t) − 2th′(t)2 + (t2 − 4t + 3)h′(t) + 2t(t − 1)2h′′(t) = 0 .

(5.25)

With the support of Mathematica, the only solution that also satisfies the remaining
inequalities turns out to be

h(t)= 1

2ct

[

1 +
√

4ct + (1 + t)2+t2 − 2(1 + 2
√
1 + c)t+

√

1 + 2(1 + 2c)t + t2
]

+ 2 log
(

2(1 + c + √
1 + c)

)

+ log t − log
(

1 − 2c + t +
√

4ct + (1 + t)2
)

− log
(

1 + (1 + 2c)t +
√

4ct + (1 + t)2
)

(5.26)

with an arbitrary constant c > 0. The condition 1) is non-strict in the limit t → ∞ and
condition 2) is non-strict for t = 1 which is a similar behaviour to that of Wsmooth(F).
In the case of c = 1, condition 4a) is non-strict in the limit t → ∞ and we obtain

h(t) = 1

2t

(

1 + t2 + (1 + t)
√

1 + 6t + t2
)

− log t

+ log
(

1 + 4t + t2 + (1 + t)
√

1 + 6t + t2
)

(5.27)
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as our new least rank-one convex candidate. Note that the relation

h(t) = 1

2

(

t + 1

t
+
√

2 + t2 + 1

t2
+ 6

(

t + 1

t

)

)

+ log

(

4 + t + 1

t
+
√

2 + t2 + 1

t2
+ 6

(

t + 1

t

)

)

= h

(

1

t

)

implies that h is smooth at t = 1. Together with the volumetric part f (z) = − log z
we arrive at

W3b(F) := 1

2

(

λmax
λmin

+ λmin
λmax

+ F
(

λmax
λmin

))

(5.28)

+ log

(

4 + λmax
λmin

+ λmin
λmax

+ F
(

λmax
λmin

))

− log det F ,

F(t) =
√

2 + t2 + 1

t2
+ 6

(

t + 1

t

)

,

which is equivalent to

W3b(F) = K(F) +
√

K2(F) + 3K(F)

+ log
(

2 + K(F) +
√

K2(F) + 3K(F)
)

+ log 2 − log det F .

For the last differential equation of Theorem 3.2,

4b) t2(t2 − 1)h′(t)h′′(t) − 2th′(t)2 + (t2 + 4t + 3)h′(t) + 2t(t + 1)2h′′(t) = 0 ,

(5.29)

we useMathematica again, but this time the already known candidate W −
magic(F) is the

only solution which also satisfies the remaining conditions as a least rank-one convex
candidate.

5.4 Comparison

Overall, we have obtained three energy function W −
magic(F), Wsmooth(F) and W3b(F)

which satisfy different conditions of Theorem 3.2 by equality (cf. Table 1, Fig. 1). We
use them as least rank-one convex representatives of M−.

Unfortunately, we cannot show yet that we identified all least rank-one convex
energies in the classM−. Similar to Sect. 5.2, it is possible to constructmore least rank-
one convex energies, in the sense that they satisfy at least one inequality condition of
Theorem 3.2 non-strictly for an arbitrary t ∈ [1,∞) or in the limit t → ∞ by choosing
a different ansatz than equation (5.8). Therefore, it is not sufficient to test these three
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Table 1 All three candidates
W−
magic(F), Wsmooth(F) and

W3b(F) ∈ M− satisfy different
conditions of Theorem 3.2
non-strictly; the ≡ indicates
equality for all t ≥ 1

Energy 1) 2) 3a) 3b) 4a) 4b)

W−
magic(F) ≡ � � ✗ ≡ ≡

Wsmooth(F) t → ∞ t = 1 � ✗ ✗ �
W3b(F) t → ∞ t = 1 � ≡ t → ∞ �
W+
magic(F) ≡ t = 1 ≡ t = 1 � �

Here, � represents that the inequality condition is strictly satisfied
(and not by equality) while ✗ states that condition is not satisfied for
all t ∈ (0, ∞). Only one of the two conditions 3a) and 3b) and one of
the two conditions 4a) and 4b) have to be fulfilled

−1 1 2 3 4 5 6 7 8 9

W3b

W−
magic

Wsmooth

t

h(t)

Fig. 1 Visualization of the isochoric part h : R+ → R with h(t) = h
( 1

t
)

of the three candidates

W−
magic, Wsmooth and W3b ∈ M−. The non-convex regions of h are shown by the dashed lines

candidates for quasiconvexity and conclude the quasiconvexity behaviour for thewhole
energy class M−. This has the following reasons: First, we only considered the case
where the isochoric part satisfies one of the conditions 3a) and 4a) for all t ≥ 1 or
3b) and 4b) for all t ≥ 1. This is a more restrictive constraint than needed for rank-
one convexity, e.g. it would be sufficient if an energy satisfies condition 3a) for some
interval I ⊂ R+ and condition 3b) for the remaining part R+ \ I . It is only necessary
that for every t ≥ 1 one of the two conditions 3a) or 3b) (and 4a) or 4b) respectively)
is satisfied.

It is not clear how to decidewhich of our three energies W −
magic, Wsmooth, W3b is the

best candidate for Morrey’s conjecture because each energy is already least rank-one
convex in the sense of satisfying one inequality condition of Theorem 3.2 non-strictly.
Thus the difference between two least rank-one convex candidates is neither a rank-
one convex nor a rank-one concave function, e.g. the transition from W −

magic to Wsmooth

is done by adding the isochoric part h(t) = 4
3
1
t − 2

3 t which is convex but monotone
decreasing. An energy function can also be non-rank-one convex and non-concave
simultaneously at some F0 ∈ GL+(2), similar to a saddle point. This makes it very
challenging, if not impossible, to find a single weakest rank-one convex candidate for
M−.

123



76 Page 26 of 49 Journal of Nonlinear Science (2022) 32 :76

Still, with separate convexity as the most important part of rank-one convexity, it
is reasonable to start with the candidate W −

magic(F) and check for quasiconvexity. Our
first (negative) result in this respect is the following.

Proposition 5.1 The energy

W −
magic : GL+(2) → R , W −

magic(F) = λmax
λmin

+ log

(

λmax
λmin

)

− log(λmaxλmin)

= λmax
λmin

− 2 log(λmin) .

is polyconvex.

Proof We check for polyconvexity with a Theorem due to Šilhavý (2002), Proposition
4.1 (see alsoMielke 2005, Theorem 4.1) for energy functions in terms of the (ordered)
singular values. It states that any W : GL+(2) → R of the form

W (F) = ĝ
(

λmax, λmin
)

for allF ∈ GL+(2) with singular values λmax ≥ λmin
(5.30)

is polyconvex if and only if for every γ1 ≥ γ2 > 0, there exists

c ∈
[

− f1 − f2
γ1 − γ2

,
f1 + f2
γ1 + γ2

]

, fi = d

dγi
ĝ(γ1, γ2) , (5.31)

such that for all ν1 ≥ ν2 > 0,

ĝ(ν1, ν2) ≥ ĝ(γ1, γ2) + f1(ν1 − γ1) + f2(ν2 − γ2) + c(ν1 − γ1)(ν2 − γ2) .

(5.32)

The energy W −
magic can be expressed in the form (5.30) with ĝ such that

ĝ(x, y) = x

y
− 2 log(y)

for x > y > 0. In particular, for γ1 ≥ γ2 > 0,

f1 = d

dγ1
ĝ(γ1, γ2) = d

dγ1

[

γ1

γ2
− 2 log(γ2)

]

= 1

γ2
,

f2 = d

dγ2
ĝ(γ1, γ2) = d

dγ2

[

γ1

γ2
− 2 log(γ2)

]

= − 2

γ2
− γ1

γ 2
2

= −2γ2 + γ1

γ 2
2

. (5.33)

Now, for any given γ1 ≥ γ2 > 0, choose

c = f1 + f2
γ1 + γ2

=
1
γ2

− 2γ2+γ1

γ 2
2

γ1 + γ2
=

−γ2−γ1

γ 2
2

γ1 + γ2
= − 1

γ 2
2

· γ1 + γ2

γ1 + γ2
= − 1

γ 2
2

.
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In order to establish the proposition, it suffices to show that for any ν1 ≥ ν2 > 0,

0 ≤ ĝ(ν1, ν2) − ĝ(γ1, γ2) − f1(ν1 − γ1) − f2(ν2 − γ2) − c(ν1 − γ1)(ν2 − γ2)

= ν1

ν2
− 2 log(ν2) − γ1

γ2
+ 2 log(γ2) − f1(ν1 − γ1) − f2(ν2 − γ2) − c(ν1 − γ1)(ν2 − γ2)

= ν1

ν2
− γ1

γ2
+ 2 log

(

γ2

ν2

)

− 1

γ2
· (ν1 − γ1) + 2γ2 + γ1

γ 2
2

· (ν2 − γ2) + 1

γ 2
2

· (ν1 − γ1)(ν2 − γ2)

= ν1

ν2
− γ1

γ2
+ 2 log

(

γ2

ν2

)

− ν1

γ2
+ γ1

γ2
+ 1

γ 2
2

· ((2γ2 + γ1)(ν2 − γ2) + (ν1 − γ1)(ν2 − γ2)
)

= ν1

ν2
− ν1

γ2
+ 2 log

(

γ2

ν2

)

+ 1

γ 2
2

(2γ2 + ν1)(ν2 − γ2)

= ν1 ·
(

1

ν2
− 1

γ2
+ ν2 − γ2

γ 2
2

)

+ 2 log

(

γ2

ν2

)

+ 1

γ 2
2

· 2γ2 · (ν2 − γ2)

= ν1 · γ 2
2 − γ2ν2 + ν22 − γ2ν2

γ 2
2 ν2

+ 2 log

(

γ2

ν2

)

+ 2(ν2 − γ2)

γ2

= ν1 · (γ2 − ν2)
2

γ 2
2 ν2

+ 2 log

(

γ2

ν2

)

+ 2
ν2

γ2
− 2 . (5.34)

Since ν1 ≥ ν2 > 0 by assumption,

ν1 · (γ2 − ν2)
2

γ 2
2 ν2

+ 2 log

(

γ2

ν2

)

+ 2
ν2

γ2
− 2

≥ ν2 · (γ2 − ν2)
2

γ 2
2 ν2

+ 2 log

(

γ2

ν2

)

+ 2
ν2

γ2
− 2

= γ 2
2 − 2γ2ν2 + ν22

γ 2
2

+ 2 log

(

γ2

ν2

)

+ 2
ν2

γ2
− 2

= 1 +
(

ν2

γ2

)2

− 2
ν2

γ2
+ 2 log

(

γ2

ν2

)

+ 2
ν2

γ2
− 2

=
(

ν2

γ2

)2

+ 2 log

(

γ2

ν2

)

− 1 =
(

ν2

γ2

)2

− log

(

(

ν2

γ2

)2
)

− 1 ≥ 0 , (5.35)

where the final inequality holds since t ≥ 1 + log(t) for all t > 0. ��

6 Connection to the Burkholder Functional

Recall that quasiconvexity of W +
magic(F) would imply quasiconvexity for all rank-one

convex energies with an additive volumetric-isochoric split and a convex isochoric
part, while proving the opposite would lead to an example of Morrey’s conjecture.

Definition 6.1 For an energy function W : GL+(n) → R, we define its Shield trans-
formation (Shield 1967; Ball 1977) as
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Does an isotropic energy W : GL+(2) → R with additive volumetric-isochoric split exist

W (F ) = h

(
λ1
λ2

)
+ f (λ1λ2) , h, f : (0, ∞) → R , h(t) = h

(
1
t

)
for all t ∈ (0, ∞) ,

that is rank-one convex but not quasiconvex?

convexity =⇒ polyconvexity =⇒ quasiconvexity =⇒ rank-one convexity

• · · · · · · · · · · · · · · · · · · · · · · · • · · · · · · · · · · · 4 cases· · · · · · · · · · · ·• · · · · · · · · · · · · · · · · · · · · · · ·•

h(t) convex + f (z) convex h(t) not convex + f (z) not convexFor both cases, it is sufficient to test f (det F ) = c log det F , c ∈ R

− := {h(t) not convex + f (z) convex} + := {h(t) convex + f (z) not convex}

2 remaining subclasses

· · · · least rank-one convex candidates · · · ·

∗− := {h(t) not convex + (f (z) = − log z)} ∗
+ := {h(t) convex + (f (z) = log z)}

Quasiconvexity: check if for all F0 ∈ GL+(2),

inf
{

1
|Ω|

∫
Ω W (∇ϕ) dx , ϕ ∈ W 1,∞(Ω;R2) , ϕ

∣∣
∂Ω(x) = F0x

}
≥ W (F0)

W+
magic(F ) := λmax

λmin
− log λmax

λmin
+ log det F

(least SC for all t > 1, least BE for t = 1 and
least condition 3) for all t > 1)

W−
magic(F ) := λmax

λmin
+ log λmax

λmin
− log det F

(least SC for all t > 1 and
least condition 4) for all t > 1)

Wsmooth(F ) := 1
3
λmax
λmin

+ 4
3

λmin
λmax

+ log λmax
λmin

− log det F

(least BE for t = 1 and least SC for t → ∞)

W3b(F ) := . . . − log det F

(least condition 3)b for all t > 1 and
least BE for t = 1 and least SC for t → ∞)

more least rank-one convex candidates

polyconvex

An isotropic energy W : GL+(2) → R with W (F ) = g(λ1, λ2) is
rank-one convex if and only if
i) gxx ≥ 0 and gyy ≥ 0 separate convexity (SC)
ii) xgx−ygy

x−y ≥ 0 for x 	= y Baker-Ericksen inequality (BE)
iii) gxx − gxy + gx

x ≥ 0 and gyy − gxy + gy

y ≥ 0 for x = y

iv) √
gxx gyy + gxy + gx−gy

x−y ≥ 0 for x 	= y

v) √
gxx gyy − gxy + gx+gy

x+y ≥ 0
for all x, y ∈ (0, ∞).

Define h0 = inft∈(1,∞) t2h′′(t) and f0 = infz∈(0,∞) z2f ′′(z).
W is rank-one convex if and only if
1) h0 + f0 ≥ 0 separate convexity (SC)
2) h′(t) ≥ 0 Baker-Ericksen inequality (BE)
3) 2t

t−1h′(t) − t2h′′(t) + f0 ≥ 0 or a(t) + [b(t) − c(t)] f0 ≥ 0
4) 2t

t+1h′(t) + t2h′′(t) − f0 ≥ 0 or a(t) + [b(t) + c(t)] f0 ≥ 0
for all t > 1, where a(t) = t2(t2 − 1)h′(t)h′′(t) − 2th′(t)2,
b(t) = t2 + 3

)
h′(t) + 2t(t2 + 1)h′′(t), c(t) = 4t h′(t) + th′′(t)

)

not rank-one convex

Without loss of generality, we can set c = ±1
h λ1

λ2

)
and f (λ1λ2)

individually polyconvex
not separate convex because

h0 > 0 and f0 < 0

Mielke criterium

unbounded below
for det F → 0

conjecture

not polyconvex

Fig. 2 Overview of the reduction from Morrey’s question for the class of isotropic planar energies with
an additive volumetric-isochoric split to the question whether or not the least rank-one convex candidates
are quasiconvex. For energies with a convex isochoric term h(t) it is sufficient to test the non-polyconvex
candidate W+

magic. Energies with a non-convex isochoric term h(t) cannot be reduced to a single candi-

date (W−
magic, Wsmooth, W3b, . . .) and it remains to show whether or not there exists a non-polyconvex

representative
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W # : GL+(n) → R , W #(F) = det(F) · W (F−1) . (6.1)

Lemma 6.2 Let W , W1, W2 : GL+(n) → R. Then

(i) W ## = W ,
(ii) W1 ≤ W2 if and only if W #

1 ≤ W #
2 ,

(iii) W is rank-one convex if and only if W # is rank-one convex,
(iv) W is C∞

0 -quasiconvex if and only if W # is C∞
0 -quasiconvex,6

(v) W is polyconvex if and only if W # is polyconvex.

Proof The equality

W ##(F) = det(F) · W #(F−1) = det(F) · [det(F−1) · W ((F−1)−1)] = W (F)

directly establishes (i). Now, if W1 ≤ W2, i.e. W1(F) ≤ W2(F) for all F ∈ GL+(n),
then

W #
1 (F) = det(F) · W1(F−1) ≤ det(F) · W2(F−1) = W #

2 (F)

which, combinedwith (i), establishes (ii). Finally, the invariance of rank-one convexity,
quasiconvexity6 and polyconvexity under the Shield transformation are well known
(Ball 1977, Theorem 2.6), and the equivalence can thus be inferred from i).

��
Note that (classical) convexity of W is not equivalent to the convexity of W # for
dimension n ≥ 2; for example, the constant mapping W ≡ 1 is convex, whereas
W #(F) = det F is not. Furthermore, in the one-dimensional case, the invariance of
the convexity properties can be expressed as the equivalence

f : R+ → R is convex ⇐⇒ f # : R+ → R , f #(t) = t · f

(

1

t

)

is convex ,

which is related to the study of so-called reciprocally convex functions (Merkle 2004,
Lemma 2.2) and, for f ∈ C2(R+), follows directly from the equality

d2

dt2

[

t · f

(

1

t

)]

= d

dt

[

f

(

1

t

)

− 1

t
f ′
(

1

t

)]

= 1

t3
f ′′
(

1

t

)

, t > 0 .

Applying now the Shield transformation, we show a surprising connection between
our candidate W +

magic(F) and the work of Iwaniec in the field of complex analysis and

the so-called Burkholder functional. Using the connection C
2 ∼= R

2×2 we arrive at
a much more general settings of functions W : R2×2 → R without a volumetric-
isochoric split defined on the linear space R2×2 instead GL+(2).

6 To the best of our knowledge, the equivalence between the quasiconvexity of W and W # has only been
shown if non-smooth variations ϑ /∈ C∞

0 (�) are excluded.
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6.1 The Burkholder Functional

In the following, we sketch an alternative approach to obtain the energy candidate

W +
magic(F) = λmax

λmin
− log

λmax
λmin

+ log det F = λmax
λmin

+ 2 log λmin . (6.2)

Theorem 6.3 (Iwaniec 2002, 1999, Proposition 5.1) The function

W −
IW : Rn×n → R , W −

IW(F) = |1 − n

p
|

︸ ︷︷ ︸

=:c

|F|p − |F|p−n det F (6.3)

is rank-one convex for all p ≥ n
2 . Furthermore, the factor c = |1− n

p | is the smallest
possible constant for which this statement is true.

Here |F| := sup‖ξ‖=1‖Fξ‖R2 = λmax denotes the operator norm (i.e. the largest
singular value) of F . The function W −

IW is homogeneous of degreee p, i.e. W (αF) =
α pW (F), but it is a non-polynomial function due to its dependence7 on |F|.Moreover,
the function is not isotropic but only hemitropic8 (not right-O(2)-invariant).

We continue with the planar case (n = 2) and restrict the investigation to p ≥ 2:

W −
IW(F) = |1 − 2

p
︸ ︷︷ ︸

>0

| |F|p − |F|p−2 det F =
[

− det F +
(

1 − 2

p

)

|F|2
]

|F|p−2 .

(6.4)

Let us define

Bp(F) := p

2
W −

IW(F) = −
[ p

2
det F +

(

1 − p

2

)

|F|2
]

|F|p−2 , (6.5)

where

Bp(F) = −
( p

2
det F +

(

1 − p

2

)

λ2max
)

λ
p−2
max = − p

2
det Fλ

p−2
max − 2 − p

2
λ

p
max

= − p

2
det F

(

‖F‖2 +√‖F‖4 − 4(det F)2

2

)
p−2
2

7 Note that W−
IW(F) is not differentiable at F = λR, λ ∈ (0, ∞), R ∈ O(2) due to the operator-norm at

non-single singular values.
8 Functions W : Rn×n → R that are right-invariant w.r.t the proper orthogonal group SO(n) are called
hemitropic, while functions that are right-invariance w.r.t. the larger group of orthogonal matrices O(n) are
called isotropic.
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− 2 − p

2

(

‖F‖2 +√‖F‖4 − 4(det F)2

2

)
p
2

(6.6)

is also known as the Burkholder functional9 (Burkholder 1988; Astala et al. 2012). It
is already established that the function Bp is rank-one convex and satisfies a quasicon-
vexity property at the identity F = 1 in the case of smooth non-positive integrands
(Astala et al. 2012, Theorem 1.2), namely ifϑ ⊂ C∞

0 (�;R2) and Bp(1+∇ϑ(x)) ≤ 0
for all x ∈ �, then

∫

�

Bp(1 + ∇ϑ(x)) dx ≥
∫

�

Bp(1) dx = −|�| , p ≥ 2 . (6.7)

Lemma 6.4 (Burkholder 1988) The function Bp : R2×2 → R with

Bp(F) = −
[ p

2
det F +

(

1 − p

2

)

|F|2
]

|F|p−2, p ≥ 2 ,

is rank-one convex.

Proof For the convenience of the reader, we add the proof from Burkholder (1988):
We use the connection to complex analysis R2×2 ∼= C

2 (cf. “Appendix”) where we
identify

F(z, w) :=
(�z + �w �w − �z

�z + �w �z − �w

)

(6.8)

and transform the Burkholder function Bp(F) to a function L p : C × C → R with

L p(z, w) = (|z| − (p − 1)|w|) (|z| + |w|)p−1 . (6.9)

Then Bp(F(z, w)) = −L p(z, w) and, for rank-one matrices ξ ⊗ η with ξ, η ∈ R
2,

we find

Bp(F(z, w) + tξ ⊗ η) = −L p(z + th, w + tk) , (6.10)

where

(

ξ1η1 ξ1η2
ξ2η1 ξ1η2

)

=
(�h + �k �k − �h

�h + �k �h − �k

)

⇐⇒ �h = 1
2 (ξ1η1 + ξ2η2) , �k = 1

2 (ξ1η1 − ξ2η2) ,

�h = 1
2 (ξ2η1 − ξ1η2) , �k = 1

2 (ξ1η2 + ξ2η1) .

9 In the literature, the Burkholder functional is usually defined via Bp(F) =
[

p
2 det F + (

1 − p
2
) |F|2

]

|F|p−2, i.e. with a reversed sign and it is investigated with respect to

rank-one concavity and quasiconcavity instead (Astala et al. 2012).
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In addition, for rank-one matrices with this definition,

4|h|2 = |2�h|2 + |2�h|2 = (ξ1η1 + ξ2η2)
2 + (ξ2η1 − ξ1η2)

2

= ξ21 η21 + 2ξ1η1ξ2η2 + ξ22 η22 + ξ22 η21 − 2ξ2η1ξ1η2 + ξ21 η22

= ξ21 η21 + ξ21 η22 + ξ22 η21 + ξ22 η22

= ξ21 η21 − 2ξ1η1ξ2η2 + ξ22 η22 + ξ21 η22 + 2ξ1η2ξ2η1 + ξ22 η21

= (ξ1η1 − ξ2η2)
2 + (ξ1η2 + ξ2η1)

2

= |2�k|2 + |2�k|2 = 4|k|2 ⇒ |h| = |k|. (6.11)

Now the rank-one convexity of Bp(F) follows from the concavity of−L p(z+ th, w+
tk) (cf. Burkholder 1988, Eq. (1.14)), i.e. the observation that for all z, w, h, k ∈ C

with |k| ≤ |h| the mapping

t �→ −L p(z + th, w + tk) (6.12)

is concave on R. ��

The function of Burkholder plays an important role in the martingale study of the
Beurling-Ahlfors operator (cf. “Appendix”)where several openquestions (in particular
an important conjecture of Iwaniec and Martin 1993) could be answered by showing
that Bp(F) is quasiconvex.

In case of p = 2 the energy function B2(F) is a null Lagrangian since

B2(F) = −
[

det F + (1 − 1) |F|2
]

|F|2−2 = − det F . (6.13)

Therefore, the expression Bp(F) − B2(F) has the same convexity behaviour as Bp

itself and we can formally compute the derivative with respect to p. We define

B�(F) := lim
p↘2

Bp(F) − B2(F)

p − 2
= d

dp
Bp(F)|p=2

= d

dp

[(

− p

2
det F +

( p

2
− 1

)

|F|2
)

e(p−2) log |F|]

p=2

= −1

2
det F + 1

2
|F|2 + (− det F + 0) log |F|

= −1

2
(1 + 2 log |F|) det F + 1

2
|F|2

= −1

2

(

1 + log
(|F|2)

)

det F + 1

2
|F|2. (6.14)
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The function B� remains globally rank-one convex and quasiconvex at the identity.10

If we restrict B� to GL+(2), we may now calculate its Shield transformation (Astala
et al. 2012)

B#
� (F) = det F · B�(F−1) = det F

[

−1

2

(

1 + log
(|F−1|2)

)

det(F−1) + 1

2
|F−1|2

]

= −1

2
− log |F−1| + 1

2
det F|F−1|2

= −1

2
− log

( |F|
det F

)

+ 1

2
det F

|F|2
(det F)2

= −1

2
− log |F| + log det F + 1

2

|F|2
det F

, (6.15)

where we have used that in the two-dimensional case,

|F−1| = 1

λmin
= λmax

λminλmax
= |F|

det F
.

Omitting the additive constant − 1
2 in Eq. (6.15), which has no effect on the convexity

behaviour, we arrive at

B#
� (F) + 1

2
= 1

2

|F|2
det F

− log |F| + log det F

= 1

2

λ2max
λmaxλmin

− log λmax + log(λmaxλmin)

= 1

2

λmax
λmin

+ log λmin = 1

2
W +

magic(F) . (6.16)

In particular, Lemma 6.2 and Theorem 6.3 also imply that W +
magic(F) is rank-one

convex.
An overview of the relation between our energy candidate W +

magic(F) and the
Burkholder functional Bp(F) is visualized in Fig. 3. Again, while we try to find
an example to settle Morrey’s question, i.e. show that our energy function W +

magic(F)

is not quasiconvex, in the topic of martingale study, it is sought to prove that Bp(F)

is quasiconvex to positively affirm some estimates in function theory, see “Appendix”
for more information.

10 For the quasiconvexity of B� we use that limk→∞
∫

� Wk (∇ϕ(x)) dx = ∫

� limk→∞ Wk (∇ϕ(x)) dx =
∫

� B�(∇ϕ(x)) dx with Wk (∇ϕ(x)) := − 1
k

(

B2+ 1
k
(∇ϕ(x)) − B2(∇ϕ(x))

)

holds because for every ∇ϕ ∈
R
2×2 the expression |Wk (∇ϕ(x))| is bounded for all x ∈ R

2 and k ∈ N.
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Iwaniec/Burkholder approach:
Bp : R2×2 → R

Volumetric-isochoric split approach:

W : GL+(2) → R , W (F ) = h
(λ1

λ2

)
+ f(detF )

Bp(F ) = −
[p

2
detF +

(
1 − p

2

)
|||F|||2

]
|||F|||p−2

the “heart of the matter” [15]
W+

magic(F ) =
λmax

λmin
− log

λmax

λmin
+ log(detF )

least rank-one convex candidate

B�(F ) := lim
p↘2

Bp(F ) − B2(F )
p − 2

=
d
dp

Bp(F )
∣∣
p=2

= −1
2

(
1 + log |||F|||2)) detF +

1
2
|||F|||2

B#
� (F ) :=

1
2

W+
magic(F ) − 1

)

B2(F ) is Null-Lagrangian

Shield
transformation

Fig. 3 Connection between the Burkholder functional Bp(F) and our energy candidate W+
magic(F) as a

chance to check Morrey’s conjecture, where |F| = sup‖ξ‖=1‖Fξ‖
R2 = λmax denotes the operator norm

(i.e. the largest singular value) of F

7 Radially Symmetric Deformations

Radial deformations play an important role for planar quasiconvexity. For isotropic
materials, it seems reasonable that any global minimizer under radial boundary con-
ditions is radial, but such a symmetry statement may cease to hold for non-convex
nonlinear problems11 (Brock et al. 1996). A deformation is radial if there exists a
function v : [0,∞) → R such that

ϕ(x) = v(‖x‖) x

‖x‖ with v(0) = 0 . (7.2)

In that case,

∇ϕ(x) = v(‖x‖)
‖x‖ 12 +

(

v′(‖x‖) x
‖x‖‖x‖ − v(‖x‖) x

‖x‖
‖x‖2

)

⊗ x

= v(‖x‖)
‖x‖ 12 +

(

v′(‖x‖) − v(‖x‖)
‖x‖

)

1

‖x‖2 x ⊗ x , (7.3)

11 Let � be the unit ball in Rn . Then the minimization problem of the non-convex functional

R(v) =
∫

�

1

1 + ‖∇v(x)‖2 dx (7.1)

has neither a radial nor a unique solution in the class

CM :=
{

v ∈ W 1,∞
loc (�;R) | 0 ≤ v(x) ≤ M ∀ x ∈ � , v is concave

}

.
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with the singular values of ∇ϕ(x) given by

λ1 = v′(‖x‖) , λ2 = v(‖x‖)
‖x‖ . (7.4)

Using mappings of this type, it is possible to construct an extensive class of inhomo-
geneous deformations for which the energy value of W +

magic is identical to that of the
homogeneous deformation (cf. Lemma 7.3). In particular, this implies that the homo-
geneous solution to the energy minimization problem is neither unique nor stable.

First, however, it is important to note that radial mappings cannot serve as a coun-
terexample to Morrey’s conjecture, since rank-one convexity of an energy is already
sufficient for a homogeneous mapping to be energetically optimal among all radial
deformations.

Lemma 7.1 (Ball 1987) Let W : GL+(2) → R be an isotropic, objective and sep-
arately convex energy function and g(λ1, λ2) = W (F) with λ1, λ2 as the singular
values of F. If F0 ∈ GL+(2) is a homogeneous radial mapping, i.e. F0 = λ1 with
λ ∈ R+, then

∫

B1(0)
W (∇ϕ(x)) dx ≥

∫

B1(0)
W (F0) dx = πg(λ, λ) (7.5)

for all radial deformations ϕ of the form (7.2) with ϕ|∂ B1(0)(x) = F0x.

Proof For the homogeneous radial deformation gradient of the form F0 = λ1, we
compute

∫

B1(0)
W (λ1)dx1dx2 = 2π

∫ 1

0
rg (λ, λ) dr = 2πg (λ, λ)

[

r2

2

]1

0
= πg(λ, λ) .

(7.6)

For an arbitrary radial deformation ϕ(x) = v(‖x‖) x
‖x‖ = g

(

v′(‖x‖), v(‖x‖)
‖x‖

)

, we

write
∫

B1(0)
W (∇ϕ(x1, x2)) dx1dx2 =

∫

B1(0)
g(λ1, λ2) dx1dx2

=
∫ 2π

0

∫ 1

0
g
(

v′, v

r

)

rdrdϑ = 2π
∫ 1

0
rg
(

v′, v

r

)

dr .

Separate convexity of g in the first argument ensures

g(x2, y) ≥ g(x1, y) + (x2 − x1)gx (x1, y) for all x1, x2, y ∈ R .

Setting symbolically x1 = y = v
r and x2 = v′ implies

g
(

v′, v

r

)

≥ g
(v

r
,
v

r

)

+
(

v′ − v

r

)

gx

(v

r
,
v

r

)

. (7.7)
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Thus we compute

∫

B1(0)
W (∇ϕ(x1, x2)) dx = 2π

∫ 1

0
rg
(

v′, v

r

)

dr

≥ 2π
∫ 1

0
r
[

g
(v

r
,
v

r

)

+
(

v′ − v

r

)

gx

(v

r
,
v

r

)]

dr

(∗)= 2π
∫ 1

0

d

dr

[

r2

2
g

(

v(r)

r
,
v(r)

r

)]

dr

= π

[

r2g

(

v(r)

r
,
v(r)

r

)]1

0
= πg(λ, λ) (7.8)

with λ = v(1) and v(0) = 0. Equality (∗) follows from

d

dr

[

r2

2
g

(

v(r)

r
,
v(r)

r

)

]

= rg

(

v(r)

r
,
v(r)

r

)

+ r2gx

(

v(r)

r
,
v(r)

r

)(

v′(r)

r
− v(r)

r2

)

= r

[

g

(

v(r)

r
,
v(r)

r

)

+
(

v′(r) − v(r)

r

)

gx

(

v(r)

r
,
v(r)

r

)]

, (7.9)

where we used the equality gx (λ, λ) = gy(λ, λ); note that g(λ1, λ2) = g(λ2, λ1) due
to the isotropy of W . Overall,

∫

B1(0)
W (∇ϕ(x1, x2)) dx ≥ πg(λ, λ) =

∫

B1(0)
W (F0) dx .

��

7.1 Expanding and Contracting Deformations

In general, non-trivial radial deformations do not have the same energy value as the
homogeneous deformation ϕ0(x) = λx , especially if the energy is strictly separately
convex. However, there exist non-trivial examples for the Burkholder energy Bp(F)

as well as for the energy W +
magic(F) for which equality holds. In order to construct such

deformations, we first consider the general class of radial functions with v(0) = 0 and
v(R) = R which keep the center point and exterior radius constant. More specifically,
we consider the subclasses of expanding and contracting functions

VR :=
{

v ∈ C1([0, R]) ∣∣ v(0) = 0 , v(R) = R ,
v(r)

r
≥ v′(r) ≥ 0 ∀ r ∈ [0, R]

}

,

(expanding)

V−1
R =

{

v ∈ C1([0, R]) ∣∣ v(0) = 0 , v(R) = R , v′(r) ≥ v(r)

r
≥ 0 ∀ r ∈ [0, R]

}

,

(contracting)

123



Journal of Nonlinear Science (2022) 32 :76 Page 37 of 49 76

for which the order of the singular values λmin and λmax remains fixed.12 The class
VR of expanding functions can be described by radial functions for which the gradient
of the tangent in a point (r , v(r)) is smaller then the gradient of the secant of the origin
with (r , v(r)) for any r ∈ [0, R] as shown in Fig. 4.

In contrast, the class V−1
R of contracting functions contains any radial functions v

such that the gradient of the tangent in a point (r , v(r)) is larger than the gradient
of the secant of the origin with (r , v(r)) for any r ∈ [0, R] as shown in Fig. 4. The
connection between VR and V−1

R is given by the inverse function theorem: For an
arbitrary v ∈ VR with r �→ v(r) and its inverse function v−1 ∈ V−1

R with t �→ v−1(t),
we find

v−1(t) = 1

v′(v−1(t)
) ≥ v−1(t)

t

⇐⇒ t

v−1(t)
≥ v′(v−1(t)

) ⇐⇒ v(r)

r
≥ v′(r) . (7.10)

Lemma 7.2 (Astala et al. 2012) The energy value of the Burkholder energy is constant
on the class of expanding functions VR, i.e.

∫

BR(0)
Bp(∇ϕ) dx =

∫

BR(0)
Bp(1) dx (7.11)

for all radial deformations ϕ(x) = v(‖x‖) x
‖x‖ with v ∈ VR, where BR(0) denotes the

ball with radius R and center 0.

Proof For v ∈ VR we have λmax = v(‖x‖)
‖x‖ ≥ v′(‖x‖) = λmin ≥ 0 and calculate

∫

BR(0)
−Bp(∇ϕ) dx =

∫

BR(0)

p

2

v′(‖x‖)v(‖x‖)p−1

‖x‖p−1 + 2 − p

2

v(‖x‖)p

‖x‖p
dx

= 2π
∫ R

0

(

p

2

v′(r)v(r)p−1

r p−1 + 2 − p

2

v(r)p

r p

)

r dr

= π

∫ R

0
p
v′(r)v(r)p−1

r p−2 + (2 − p)
v(r)p

r p−1 dr

= π

∫ R

0

d

dr

[

v(r)p

r p−2

]

dr = π

[

v(R)p

R p−2 − lim
r→0

v(r)p

r p−2

]R

0
= π R2

=
∫

BR(0)
1 dx =

∫

BR(0)
−Bp(1) dx . (7.12)

��
12 The condition v(r)

r ≥ v′(r) is not trivial and only allows radial functions which inflate all disks with
center in zero, i.e. v(r) ≥ r for all r ∈ [0, R]. Note that if there exists a point r0 with v(r0) < r0, then

v′(r0) ≤ v(r0)
r0

< 1, which would imply that v(r) < r for all r ≥ r0 and thus v(R) < R.
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R

R

v(r) = r (identity)
v1(r)

r

v(r)

R

R

v(r) = r (identity)

v2(r) := v−1
1 (r)

r

v(r)

v(0) = 0

v(R) = R

v(r) > r

v(0) = 0

v(R) = R

v(r) < r

Fig. 4 Left: Visualization of an expanding radial function v1 ∈ VR with v1(r) > r . Right: Visualization of
a contracting radial function v2 ∈ V−1

R with v2(r) < r which is the inverse of v1

The following lemma establishes an analogous result for the function W +
magic with

W +
magic(F) = λmax

λmin
− log

λmax
λmin

+ log
(

λmaxλmin
) = λmax

λmin
+ 2 log λmin .

(7.13)

Lemma 7.3 The energy value of W +
magic is constant on the class of contracting func-

tions V−1
R , i.e.

∫

BR(0)
W +

magic(∇ϕ) dx =
∫

BR(0)
W +

magic(1) dx (7.14)

for all radial deformations ϕ(x) = v(‖x‖) x
‖x‖ with v ∈ V−1

R .
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Proof We first extend Lemma 7.2 to the function B� : GL+(2) → R with

B�(F) = lim
p↘2

Bp(F) − B2(F)

p − 2
= d

dp
Bp(F)|p=2

= −1

2

(

1 + log
(|F|2)

)

det F + 1

2
|F|2,

for all F ∈ GL+(2), where B2(F) = det F ; note that B2 is a null Lagrangian. For
expanding deformations defined by VR , we find

∫

BR(0)
B�(∇ϕ) dx =

∫

BR(0)
lim
p↘2

Bp(∇ϕ) − B2(∇ϕ)

p − 2
dx

= lim
p↘2

1

p − 2

∫

BR(0)
Bp(∇ϕ) − B2(∇ϕ) dx

= lim
p↘2

1

p − 2

∫

BR(0)
Bp(1) − B2(1) dx =

∫

BR(0)
B�(1) dx ,

thus the energy potential of B� is indeed constant on the class VR . Next, recall that B�

and W +
magic are related via the Shield transformation, i.e. that B#

� (F) = 1
2

(

W +
magic(F)−

1
)

for all F ∈ GL+(2), and that for every expanding radial deformation ϕ, its inverse
mapping ϕ−1 is a contracting radial deformation, i.e. that for every v(r) ∈ V−1

R there
exists a uniquew(r) ∈ VR withw = v−1. We can therefore apply the general formula

∫

�

W
(∇ϕ(x)

)

dx =
∫

ϕ(�)

W
([∇ξ (ϕ

−1)(ξ)
]−1) det∇ξ ϕ

−1(ξ) dξ

=
∫

ϕ(�)

W #(∇ξ (ϕ
−1)(ξ)

)

dξ (7.15)

to ϕ(�) = � = BR(0) to find

∫

BR(0)
W +

magic(Fv) dx =
∫

BR(0)
2B�(Fw) + 1 dx

=
∫

BR(0)
2B�(1) + 1 dx =

∫

BR(0)
W +

magic(1) dx , (7.16)

where Fv and Fw are the deformation gradients corresponding to v(r) and w(r) =
v−1(r), respectively. ��
Both the radial deformations ϕ(x) = v(‖x‖) x

‖x‖ defined by v ∈ VR in Lemma 7.2 and

v ∈ V−1
R in Lemma 7.3 can be extended by Astala et al. (2012)

(i) Choosing any F0 = λQ instead of 1 for arbitrary λ > 0 and Q ∈ SO(2),
(ii) Choosing any point z0 ∈ � instead of the origin,
(iii) Combining multiple separate balls BRi (zi ) with

⋂

i BRi (zi ) = ∅,
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Fig. 5 Circular packing of several balls with various contracting mappings to achieve an overall non-
symmetric deformation, also called piecewise radial mapping. Note that for the right-hand figure, the
contraction in the “outer” circles need to satisfy the conditions stated in (iv) above

(iv) Inductively adding more balls Br (z′
0) which are contained in a previous ball

BR(z0) under the assumption that the contracting deformation of the outer ball
BR(z0) maintains F0 = λQ at the boundary of the inner ball Br (z′

0),

to construct an overall non-radially symmetric deformation (cf. Fig. 5) with the same
energy level as the homogeneous deformation.

8 Summary

The class of planar energy functions with an additive volumetric-isochoric split, i.e.
functions on GL+(2) of the form

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2) , h, f : R+ → R ,

h(t) = h

(

1

t

)

for all t ∈ (0,∞) , (8.1)

where λ1, λ2 > 0 denote the singular values of F and h, f are given real-valued
functions, proves to be a rather interesting subject in the context ofMorrey’s conjecture:
On the one hand, if neither h nor f is convex, then W is not rank-one convex; on the
other hand, convexity of both f and h already implies that W is quasiconvex.

Investigating the remaining cases, we first focused on functions with a convex
isochoric part h. In that case, Theorem 4.1 shows that the question whether or not
rank-one convexity implies quasiconvexity can be reduced to the question whether the
particular (rank-one convex) function W +

magic : GL+(2) → R with

W +
magic(F) = λmax

λmin
− log

(

λmax
λmin

)

+ log det F = λmax
λmin

+ 2 log λmin (8.2)
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is quasiconvex. While W +
magic is not polyconvex according to Lemma 4.3, determining

whether or not W +
magic is indeed quasiconvex remains an open problem at this point.

The case of volumetric-isochorically split functions with a convex volumetric part
f appears to be more involved: In Sect. 5, we identified three “least” rank-one
convex functions W −

magic(F), Wsmooth(F), and W3b(F), none of which is currently
known to be quasiconvex. A comprehensive overview for candidates with an additive
volumetric-isochoric split is given in Fig. 2.

8.1 Symmetry and Stability

The energy potential W +
magic also exhibits a number of interesting properties regard-

ing the relation between symmetry and stability: According to Lemma 7.3, W +
magic is

constant for the non-trivial class of contracting radially symmetric deformations, i.e.
W +

magic allows for inhomogeneous deformations whose energy level is equal to the
homogeneous one. This implies that the homogeneous solution to the energy mini-
mization problem is neither unique nor stable.

As shown in Fig. 5, it is thereby possible to construct a non-symmetricalmicrostruc-
ture for the fully isotropic energy potential W +

magic even if the applied boundary
conditions are fully symmetrical. This is in stark contrast to the linear convex case,
where such symmetrically posed problems generally yield symmetric solutions; in
practice, this observation allows for certain simplifications (e.g. by reducing calcu-
lations to any quarter of a cylinder) of symmetric linear problems. However, in the
nonlinear non-convex case, it is even possible for a symmetrically stated problem (cf.
Eq. (7.1)) to not have a stable symmetric solution at all (Brock et al. 1996). This
phenomenon, which is exhibited by the energy function W +

magic as well, demonstrates
a “preference of disorder over order” which can occur in non-(strictly-)quasiconvex
problems.

Note that due to Lemma 7.1, radially symmetric deformations cannot be energet-
ically favourable compared to the affine solution even under the weaker assumption
of separate convexity. Additionally, in an intriguing article by Kawohl and Sweers
(1990), it is shown that the simple assumption ϕ(x, y) = ϕ(−x, y) for the test func-
tion ϕ ∈ W 1,∞

0 (�) on the domain � = (−1, 1)2 is enough for the transition from
rank-one convexity to quasiconvexity. Thus in general, the break of symmetry plays
an essential role in stability and, in particular, must be taken into account for the
minimization of potentially non-quasiconvex energies.

Funding Open Access funding enabled and organized by Projekt DEAL.
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Appendix: Complex Analysis

As indicated in Sect. 6, the energy function W +
magic has an intriguing connection to

the work of Iwaniec in the field of complex analysis and Burkholder’s martingale
theory. Here, we briefly discuss the conversion of the energy W +

magic(F) into complex
notation.

Generally, we now consider a complex-valued function f : U ⊂ C → C with
z �→ f(z). (Note that this function f should not be mistaken with the volumetric part
f : R+ → R used in the additive volumetric-isochoric split.) It is common to use the
complex vector (∂z f, ∂z f) to describe the derivative of a non-holomorphic function on
C instead of the deformation gradient F = Df(z) ∈ R

2×2. Thus we need to rephrase
any energy function onR2×2 or on GL+(2) as a mapping L : C×C → R and consider
the corresponding minimization problem

min
f : U→C

∫

U
L(∂zf, ∂z f) dz . (A.1)

On the other hand, we can always translate (z, w) �→ L(z, w) to a real-valued function
W : R2×2 → R using the identity

∂z f(z) = 1

2

(

∂x − i∂y
)

[u(x, y) + iv(x, y)] = 1

2

[

∂x u + ∂yv + i
(

∂xv − ∂yu
)]

,

(A.2)

∂z f(z) = 1

2

(

∂x + i∂y
)

[u(x, y) + iv(x, y)] = 1

2

[

∂x u − ∂yv + i
(

∂xv + ∂yu
)]

(A.3)

to compute the corresponding deformation gradient F = Df(z), i.e. using the isomor-
phism

(

z(F), w(F)
) =

(

F11 + F22 F11 − F22
i(F21 − F12) i(F21 + F12)

)

⇐⇒ F(z, w) =
(�z + �w �w − �z

�z + �w �z − �w

)

. (A.4)

Example A.1 We consider L : C × C → R with

L(z, w) = |z|2 − |w|2 (A.5)

and compute

L(∂zf, ∂z f) = |∂z f|2 − |∂z f|2

=
∣

∣

∣

∣

1

2

[

∂x u+∂yv+i
(

∂xv − ∂yu
)]

∣

∣

∣

∣

2

−
∣

∣

∣

∣

1

2

[

∂x u − ∂yv + i
(

∂xv + ∂yu
)]

∣

∣

∣

∣

2
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= 1

4

[

(

∂x u + ∂yv
)2 + (

∂xv − ∂yu
)2 − (

∂x u − ∂yv
)2 − (

∂xv + ∂yu
)2
]

= 1

4

[

∂x u2 + 2∂x u∂yv + ∂yv
2 + ∂xv

2 − 2∂xv∂yu + ∂yu2

−∂x u2 + 2∂x u∂yv − ∂yv
2 − ∂xv

2 − 2∂xv∂yu − ∂yu2
]

= 1

2

[

∂x u∂yv − ∂xv∂yu + ∂x u∂yv − ∂xv∂yu
]

= ∂x u∂yv − ∂xv∂yu = Jf(z) . (A.6)

Thus we can identify the complex mapping L(z, w) = |z|2 − |w|2 with the isotropic
energy function

W (F) = F11F22 − F12F21 = det F . (A.7)

Similarly, since

|∂z f|2 + |∂z f|2 =
∣

∣

∣

∣

1

2

[

∂x u + ∂yv + i
(

∂xv − ∂yu
)]

∣

∣

∣

∣

2
+
∣

∣

∣

∣

1

2

[

∂x u − ∂yv+i
(

∂xv + ∂yu
)]

∣

∣

∣

∣

2

= 1

4

[

(

∂x u + ∂yv
)2 + (

∂xv − ∂yu
)2 + (

∂x u − ∂yv
)2 + (

∂xv + ∂yu
)2
]

= 1

4

[

∂x u2 + 2∂x u∂yv + ∂yv2 + ∂xv2 − 2∂xv∂yu + ∂yu2

+∂x u2 − 2∂x u∂yv + ∂yv2 + ∂xv2 + 2∂xv∂yu + ∂yu2
]

= 1

2

[

∂x u2 + ∂yv2 + ∂xv2 + ∂yu2
]

= ∂x u2 + ∂yv2, (A.8)

we identify L(z, w) = |z|2 + |w|2 with W (F) = 1
2‖F‖2.

Analogous computations yield the representations

|z|2 = 1

2

[(

|z|2 + |w|2
)

+
(

|z|2 − |w|2
)]

= 1

4
‖F‖2 + 1

2
det F ,

|w|2 = 1

2

[(

|z|2 + |w|2
)

−
(

|z|2 − |w|2
)]

= 1

4
‖F‖2 − 1

2
det F ,

|z||w| =
√

1

4
‖F‖2 + 1

2
det F ·

√

1

4
‖F‖2 − 1

2
det F = 1

4

√

‖F‖4 − 4(det F)2

(|z| + |w|)2 = |z|2 + |w|2 + 2|z||w| = 1

2
‖F‖2 + 2

4

√

‖F‖4 − 4(det F)2

= ‖F‖2 +√‖F‖4 − 4(det F)2

2
= |F|2 = λ2max ,

|z| − |w| = |z|2 − |w|2
|z| + |w| = det F

λmax
= λmin ,
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K(F) = λmax
λmin

= |z| + |w|
|z| − |w| ,

K (F) = ‖F‖2
2 det F

= |z|2 + |w|2
|z|2 − |w|2 , (A.9)

which can be used to to convert the energy

W +
magic(F) = λmax

λmin
− log

λmax
λmin

+ log det F = K (F) + 2 log λmin

= |z| + |w|
|z| − |w| + 2 log (|z| − |w|) (A.10)

to a mapping L : C × C → R; note that |z| > |w| holds for arbitrary F ∈ GL+(2)
because13 |z| − |w| = det F > 0.

As indicated in Sect. 6, the Burkholder functional14

Bp(F) = −
[ p

2
det F +

(

1 − p

2

)

|F|2
]

|F|p−2 , (A.11)

with p ≥ 2 and

|F| = λmax =
√

‖F‖2 +√‖F‖4 − 4(det F)2

2
(A.12)

denoting the operator norm, plays an important role in complex analysis. Its represen-
tation as a complex mapping L p : C × C → R can be computed via

−Bp(F) =
[ p

2
det F +

(

1 − p

2

)

|F|2
]

|F|p−2

=
[ p

2

(

|z|2 − |w|2
)

+
(

1 − p

2

)

(|z| + |w|)2
]

(|z| + |w|)p−2

= 1

2

[

p|z|2 − p|w|2 + (2 − p)
(

|z|2 + 2|z||w| + |w|2
)]

(|z| + |w|)p−2

=
[

|z|2 + (2 − p)|z||w| + (1 − p)|w|2
]

(|z| + |w|)p−2

= (|z| − (p − 1)|w|) (|z| + |w|)p−1 =:L p(z, w) . (A.13)

In addition to its connection to Morrey’s conjecture (cf. Sect. 6), the Burkholder
functional Bp(F), or rather its complex representation L p(z, w), plays an important

13 Similarly, det F = |z| − |w| = 0 for any rank-one matrix F = ξ ⊗ η with ξ, η ∈ R
2.

14 Usually, for the Burkholder functional one refers to a work by Burkholder about sharp estimates for
martingales (Burkholder 1988). However, there is some disagreement about which expression exactly
defines the function. Here, we use the expression Bp(F) as defined by Astala et al. (2012) but a reversed
sign so that we are looking for quasiconvexity instead of quasiconcavity. Baernstein and Montgomery-
Smith (2011), for example, generalizes the Burkholder function to include the case p ∈ (1, 2) as well and
introduces an additional constant αp (cf. inequality (A.16)).
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role inmartingale inequalities and theBeurling-Ahlfors transform (also called complex
Hilbert transform) S : L p(C) → L p(C), defined as the singular integral

(Sω)(z) = − 1

π

∫∫

C

ω(ξ)

(z − ξ)2
dξ , ω ∈ L p(C) . (A.14)

One primary aim in function theory is determining the p-norm

‖S‖p = sup
ω∈L p(C)

‖S(ω)‖p

‖ω‖p
, 1 < p < ∞

of the Beurling transform. A yet unsolved conjecture of Iwaniec (1982), Iwaniec and
Martin (1993), Iwaniec (2002) states that

‖S‖p = p� − 1 =
{

p − 1 if 2 ≤ p < ∞ ,
1

p−1 if 1 < p ≤ 2 .
(A.15)

We can shorten the notation in (A.15) by introducing p� = max(p, p′)with 1
p + 1

p′ = 1
for arbitrary p > 1. It is already known (Iwaniec andMartin 1993) that ‖S‖p ≥ p�−1
as well as ‖S‖p ≤ Cn(p� − 1), where the constant Cn is at best exponential in n.
Burkholder (1988) proved that the inequality

|z|p − (p� − 1)p|w|p ≤ αp
(|z| − (p� − 1)|w|) (|z| + |w|)p−1 ,

αp = p

(

1 − 1

p�

)p−1

, (A.16)

holds for all p > 1. In the case p ≥ 2, we can identify Burkholder’s functional
L p(z, w) in complex notion with the right hand side of (A.16). The term on the
left-hand side,

V (z, w) = |z|p − (p� − 1)p|w|p , (A.17)

plays an important role in sharp estimates for martingales (Burkholder 1988). To prove
Iwaniec’s conjecture (A.15), the expression (Astala et al. 2015)

‖S(f)‖p ≤ (p� − 1)‖f‖p , 1 < p < ∞ (A.18)

must be shown to hold for all f ∈ L p(C).With the identity (cf. Banuelos and Lindeman

1997) S ◦ ∂

∂z
= ∂

∂z
, the above inequality is equivalent to

‖∂z f‖p ≤ (p� − 1)‖∂z f‖p , f ∈ C∞
0 (C) , (A.19)
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which shows a direct connection to the mapping V : C × C → R in Eq. (A.17). The
conjecture of Iwaniec would follow (Banuelos and Lindeman 1997) from

∫∫

C

L p(∂z f, ∂z f) dξ ≤ 0 ∀ f ∈ C∞
0 (C) . (A.20)

This inequality is the motivation for the claim of quasiconcavity of L p(z, w), i.e.
quasiconvexity of the Burkholder functional Bp(F), as a sufficient but not necessary
statement to ensure Iwaniec’s conjecture (Davis et al. 2011). In fact, inequality (A.20) is
equivalent to quasiconcavity of L p at 0 (Banuelos 2010). In an olderwork ofBaernstein
and Montgomery-Smith (2011) they present some first numerical evidence in favour
of inequality (A.20) up to machine precision, using a 2N 2 real dimensional space
splitting the unit square [0, 1]2 into triangles to approximate L p(z, w) by piecewise
linear functions (with N ranging from 6 to 100).
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